Medios de Transmisión
|
|
|
- Javier Fernández Maldonado
- hace 10 años
- Vistas:
Transcripción
1 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que ecotramos e los cables, ya sea twisted pair o cable coaxial. Como la frecuecia es mayor, la fibra óptica cueta co u mayor acho de bada que el cable coaxial. Otra vetaja de la fibra óptica es que es imue al crosstalk de señales eléctricas y a la iterferecia de señales eléctricas. Por eso es que se usa a lo largo de líeas de trasmisió de alto voltaje si peligro de que le afecte la iterferecia. Fibra óptica tambié se impoe e ambietes de alta seguridad pues es muy difícil hacer u tap a ua fibra e uso y que el usuario pricipal o lo ote. U cable de fibra óptica está hecho de cristal o plástico y puede operar a uas velocidades de trasmisió muy por ecima de las permitidas e u cable coaxial. Como la data es trasmitida por u haz de luz, es ecesario realizar la coversió de óptica a electróica y viceversa.
2 40 Medios de Trasmisió LED o laser photodiode trasmisor fibra receiver U LED o u laser hace la coversió electrico óptico. U photodiode hace la coversió óptico eléctrico.
3 41 Fibra Optica Ref. Practical Data Commuicatios by Roger L. Freema, Wiley, 001, ISBN Ua fibra óptica es ua guía de oda circular muy fia, como del grosor de u cabello humao. Geeralmete está hecha de cristal o de plástico, auque tambié se está utilizado otros materiales co propiedades de reflejar la luz. Vetajas de la fibra óptica: 1. Acho de bada: Ua fibra óptica tiee ua bada de operació de etre 1550 a 1635 m de largo de oda. Como c = 3 x 10 8 m/sec = f esto equivale a u acho de bada de 10 T Hz. Si cosideramos que el espectro de radio tiee uos 100 GHz de acho de bada, etoces ua fibra óptica tiee, e pricipio, la capacidad de trasportar 100 espectros completos de radio.. La fibra óptica es liviaa y pequeña e espesor.
4 4 3. Distacia etre repetidores: Todo proveedor de servicios de telecomuicacioes desea cotar co el meor úmero posible de repetidores. Cada repetidor cuesta diero. Además, cada repetidor requiere de servicios de istalació y mateimieto que cuesta diero. Uo de los mayores problemas que efreta la trasmisió digital es la acumulació de jitter, el cual si llega a ciertos iveles aumeta el BER, y hasta puede ocasioar reframes. La acumulació de jitter es fució del úmero de repetidores coectados e serie (tadem) e u sistema de telecomuicacioes digital. U sistema de fibra óptica requiere como ua cetésima parte del total de repetidores e serie que requeriría u sistema de cable coaxial. Al teer meos repetidores se reduce los costos, se reduce la acumulaciód de jitter, y se mejora la calidad del servicio. 4. Electromagetic compatibility (EMC): Los sistemas de fibra óptica i irradia RF i so afectados por el RF. Es por esto que es comú que las compañías de electricidad utilize sistemas de fibra óptica para trasmitir telemetría y/o señalizació para cotrolar su red. Muchas veces la fibra óptica es istalada e los mismos postes de alta tesió.
5 43 5. Crosstalk: E los cables metálicos es comú el crosstalk el cual es causado por la iducció de voltajes. Las fibras ópticas o tiee este problema. 6. Temperatura y humedad Uo de los mayores eemigos de la plata extera basada e cables metálicos es el agua y la humedad que se les cuela, afectado así su respuesta e frecuecia. Las fibras ópticas o tiee este problema. 7. Costo Fibra óptica cotiúa abaratádose. Prueba de ello es el creciete éfasis e sistemas de NGDLC (ext geeratio digital loop carrier). 8. Asigació del espectro y licecias para trasmitir: Los sistemas de microodas requiere de licecias de la FCC para poder trasmitir legalmete, y ua cuidadosa asigació de frecuecias. Los sistemas de fibra óptica o requiere de licecia algua. Composició de la fibra óptica: La siguiete figura muestra la composició típica de la fibra óptica.
6 44 Ua fibra óptica se compoe de u core cetral cilídrico co ídice de refracció 1 y u claddig cocétrico co ídice de refracció, dode < 1. Ua capa de plástico cubre el claddig. Esta capa de plástico e realidad o tiee igú efecto sobre la propagació de la luz. Secillamete se utiliza para proteger la fibra y para darle rigidez mecáica. La fibra actúa como ua guía de odas circular e dode la luz se propaga a través del core. Como el claddig tiee u meor ídice de refracció que el core, la luz se refleja e su totalidad hacia el core y o peetra el claddig. La ley de Sell es el pricipio físico que permite el fucioamieto de la fibra óptica. Cosideremos el iterfase etre el core y el claddig:
7 45 Caso A: El águlo de icidecia 1 es meor que el que el águlo crítico c. ormal claddig core 1 icidete reflejado > 1 c refractado E este caso parte de la oda se refleja hacia el core y parte se refracta hacia el claddig, apartádose de la ormal (i.e. > 1 ) Caso B: El águlo de icidecia 1 es igual al águlo crítico c. ormal claddig core 1 icidete reflejado > 1 c refractado El refractado se propaga e forma horizotal.
8 46 Caso C: El águlo de icidecia 1 es mayor que el águlo crítico c. ormal claddig core 1 icidete > 1 > c No hay refractado. reflejado No hay refractado. Ocurre reflexió itera total. Segú la ley de Sell, 1 si 1 = si Cuado el águlo de icidecia es igual al águlo crítico, 1 = c y = 90 grados Por lo tato, si c = / 1 Resumamos los resultados de la ley de Sell:
9 47 Cuado el águlo de icidecia es meor que el águlo crítico, casi toda la eergía del haz de luz icidete se escapa a través del claddig. E cambio, cuado el águlo de icidecia excede el águlo crítico, ocurre reflexió total itera y el haz se propaga a lo largo de la fibra óptica. Este resultado tiee importates repercusioes e la forma que se acopla la salida del trasmisor (i.e. u LED o u laser) a la fibra óptica. Sólamete aquellos s de luz que se ecuetre detro de u coo de aceptació podrá propagarse a lo largo de la fibra óptica. El águlo de aceptació A es el águlo máximo medido co respecto al eje de la fibra que permite que todo que etre a la fibra experimete total reflexió itera. Como ua medida para cuatificar el coo de aceptació o cuáta luz es capaz de trasportar la fibra óptica, se ha defiido el umerical aperture (NA) = si A
10 48 Cómo se relacioa el umerical aperture co los ídices de refracció del core y del claddig? Para compreder dicha relació teemos que cosiderar dos iterfases: del aire al core, y del core al claddig. aire A core = 90 grados claddig eje de la fibra Llamemos 0 al ídice de refracció del aire, y cuyo valor es 1. Aplicado la Ley de Sell al primer iterfase de aire al core obteemos Simplicado, obteemos 0 si A = 1 si 1 si A = 1 si 1 NA = 1 si 1
11 49 Apliquemos ahora la ley de Sell al segudo iterfase del core al claddig. 1 si( 90-1 ) = si = si 90 o = 1 cos 1 = cos 1 = / 1 cos 1 = ( / 1 ) 1 - cos 1 = 1 - ( / 1 ) si 1 = 1 - ( / 1 ) si 1 = 1 - ( / 1 ) si 1 = ( 1 - ) / 1 NA = 1 si 1 = 1 -
1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)
1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :
Análisis de datos en los estudios epidemiológicos II
Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices
Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano
(VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,
Ejercicios Resueltos ADC / DAC
Curso: Equipos y Sistemas de Cotrol Digital Profesor: Felipe Páez M. Programa: Automatizació, espertio, 010 Problemas Resueltos: Ejercicios Resueltos ADC / DAC ersió 1.1 1. Se tiee u DAC ideal de 10 bits,
Medidas de Tendencia Central
EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los
1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)
Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =
PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD
PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).
ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)
ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger
Teorías de falla bajo cargas estáticas
Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto
CURSO 2.004-2.005 - CONVOCATORIA:
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe
Soluciones Hoja de Ejercicios 2. Econometría I
Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,
Tema 6. Sucesiones y Series. Teorema de Taylor
Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació
Capítulo 2. Operadores
Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática
ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:
ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía
DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)
UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,
Para Newton la luz emite unos pequeños corpúsculos que se propagan en línea recta y a gran velocidad y que pueden ser reflejados por la materia.
NATURALEZA DE LA LUZ Es eidete que u rayo lumioso trasporta eergía, o hay más que tumbarse al sol o acercar la mao a ua bombilla para comprobarlo. Como sabemos las úicas formas de propagar la eergía es
REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL
375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la
ESPECTRO ELECTROMAGNÉTICO
ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel
BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON
págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:
5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras
PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder
Unión Internacional de Telecomunicaciones. Universidad Blas Pascal. Tecnologías de Comunicaciones Ópticas y Normativas
Uió Iteracioal de Telecomuicacioes Uiversidad Blas Pascal Tecologías de Comuicacioes Ópticas y Normativas Propagació Propagació detro de la Fibra La fibra óptica es u medio de trasmisió capaz de trasportar
COJINETES (RODAMIENTOS)
COJINETES (RODAMIENTOS) Teoría y aplicacioes Proyectos de Igeiería Mecáica Ig. José Carlos López Areales Primeros rodamietos Fricció Es la resistecia que hay etre dos objetos al mometo de mover uo sobre
Programación Entera (PE)
Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome
ANEXO 2 INTERES COMPUESTO
ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.
MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre
Cap. 36: Interferencia. Principio de Huygens: Cada punto de un frente de onda es una fuente de frentes de onda secundarios
Cap. 36: Iterferecia Pricipio de Huyges: Cada puto de u frete de oda es ua fuete de fretes de oda secudarios BC = 1 = 1 t AD = = t 2 2 1, 1 < 2 1 > 2 1 2 θ 1 A t D θ 2 B 1 t C θ 1 θ 2 = () 1 1 1 2 2 Si
Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)
Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio
Gradiente, divergencia y rotacional
Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para
DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)
Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico
Elementos y Equipos Eléctricos
5.- Fibras Ópticas Las fibras ópticas e sistemas de comuicacioes y e geeral e sistemas de trasmisió de señales, después de u largo periodo de experimetació y elaces pilotos, etre los años 1975 y 1980 etro
MC Fco. Javier Robles Mendoza Primavera 2009
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2
Matemáticas I - 1 o BACHILLERATO Binomio de Newton
Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete
INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN
INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)
Imposiciones y Sistemas de Amortización
Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas
CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS
CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL
8 Funciones, límites y continuidad
Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto
OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS
OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa
Estimación puntual y por Intervalos de Confianza
Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo
Modelo Planetario de Rutheford para el Átomo
Modelo Plaetario de Rutheford para el Átomo Átomo cosiste de electroes orbitado e toro a ua pequeña pero muy desa carga cetral (el úcleo atómico) Pricipal problema de este modelo, Átomo de Hidrogeo debiera
MATEMÁTICAS FINANCIERAS
MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas
TEMA 4: ARRANQUE DE LOS MOTORES DE CORRIENTE ALTERNA
TEA 4: ARRANQUE DE LOS OTORES DE CORRENTE ALTERNA ARRANQUE DE LOS OTORES DE C.A. El Reglameto Electrotécico de BT establece límites para la corriete absorbida e el arraque. Para los motores de corriete
ASIGNATURA: MATEMATICAS FINANCIERAS
APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua
CAPÍTULO I. FIBRA ÓPTICA. La fibra óptica se ha vuelto el medio de comunicación de elección para la
CAPÍTULO I. FIBRA ÓPTICA. 1.1 INTRODUCCIÓN. La fibra óptica se ha vuelto el medio de comunicación de elección para la transmisión de voz, video, y de datos, particularmente para comunicaciones de alta
MAN HydroDrive. Más tracción. Más flexibilidad. Más seguridad.
MN ydrorive. Más tracció. Más flexibilidad. Más seguridad. U milagro de tracció eficiete. Más tracció co gra capacidad de carga. Meor cosumo de combustible y mayor carga útil que e u vehículo co tracció
(PROBABILIDAD) (tema 15 del libro)
(PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el
www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: [email protected]
Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: [email protected] Zeó de Elea (90 A.C) plateó la
CONCEPTOS BÁSICOS DE PRESTAMOS.
GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,
Capítulo I. La importancia del factor de potencia en las redes. eléctricas
La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,
Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.
ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de
El Transistor de Efecto de Campo (FET)
El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.
11. TRANSFORMADOR IDEAL
. TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe
ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS
ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR. OSCILACIONES Y ONDAS CONTENIDO.1. MOVIMIENTO ARMONICO SIMPLE.. RELACION ENTRE MOVIMIENTO ARMONICO SIMPLE Y CIRCULAR
Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica
Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características
Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.
II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros
2. LEYES FINANCIERAS.
TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),
Tema 9. Inferencia Estadística. Intervalos de confianza.
Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los
Polarización de una onda
Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético
Límite de una función
Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía
SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN
Media aritmética, media geométrica y otras medias Desigualdades Korovkin
Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,
Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004
Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos
Los sistemas operativos en red
1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS
INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel
Ley de los números grandes
Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso
A N U A L I D A D E S
A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras
Análisis en el Dominio del Tiempo para Sistemas Discretos
OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo
MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO
FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo
GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:
GENERALIDADES I. DEFINICIÓN DE METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los
QUÉ SON LOS POLÍGONOS? ELEMENTOS DE UN POLÍGONO
Las matemáticas so u juego: Figuras plaas: S. CEIP Mauel Siurot (La Palma del Cdo.) QUÉ SON LOS S? So figuras plaas formadas por ua líea poligoal cerrada y su iterior. Cualquier figura plaa que esté formada
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)
IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las
TEMA 3.- OPERACIÓN FINANCIERA
. DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,
Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo
Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada
Estimación puntual y por intervalos de confianza
Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció
REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted:
REFRACCIÓN OBJETIVOS Después de copletar el estudio de este tea podrá usted:. Defiir el ídice de refracció y expresar tres leyes que describe el coportaieto de la luz refractada.. Aplicar la ley de Sell
1.1. Campos Vectoriales.
1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal
INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN
3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas
Qué causa la distorsión de los pulsos de entrada?
250 Distorsión en Fibras Opticas: En todas las fibras ópticas ocurre la distorsión de los pulsos de entrada. Esto es, los pulsos de entrada se ensanchan al pasar a través de la fibra, llegando al punto
Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0
Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada
ÓPTICA FCA 10 ANDALUCÍA
. a) Explique los eómeos de relexió y reraió de la luz. b) Tiee igual reueia, logitud de oda y eloidad de propagaió la luz iidete, relejada y reratada? Razoe sus respuestas.. U teléoo móil opera o odas
ELEMENTOS DE ÁLGEBRA MATRICIAL
ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:
Fundamentos físicos de la topografía
Fudametos físicos de la topografía Luis Muñoz Mato Liceciado e Física por la USC Título: Fudametos físicos de la topografía Autor: Luis Alberto Muñoz ISBN: 978 84 8454 789 1 Depósito legal: A 920-2009
Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia
Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de
