Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e."

Transcripción

1 0.1. Ciruito. Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la direión y magnitud de la orriente en el alambre horizontal entre a y e. b R 2R d ε 4R 3R 2ε a e Soluión: Dibujemos las orrientes Figura 1: Bosquejo del iruito. I 1 I 2 b R 2R d ε I 4 4R 3R I 3 2ε a I 5 e Las euaiones de Kirhhoff Figura 2: El iruito on las orrientes. I 1 + I 2 = I 4 + I 3 I 4 = I 1 + I 5 ε = I 1 R + 4RI 4 2ε = 2I 2 R + 3I 3 R 0 = 3I 3 R 4I 4 R Esribiendo las euaiones on las orrientes omo inognitas I 1 +I 2 I 3 I 4 = 0 I 1 I 4 +I 5 = 0 RI 1 +4RI 4 = ε 2RI 2 +3RI 3 = 2ε +3RI 3 4RI 4 = 0 despejando I 3 = 4I 4 /3 e I 1 = I 4 I 5 reemplazando I 2 4I 4 /3 I 5 = 0 +5RI 4 RI 5 = ε 2RI 2 +4RI 4 = 2ε

2 despejando I 2 = 4I 4 /3 + I 5 tenemos 5RI 4 RI 5 = ε 20RI 4 /3 2RI 5 = 2ε Multipliamos la última euaión por -3/4 y sumamos El sentido es de a e. 5 2 RI 5 = 1 2 ε = I 5 = ε 5R = 0.05 [A]

3 0.2. Potenia máxima. Demostrar que si una batería de fem ε fija y resistenia interna R i se oneta a una resistenia exterior R, se suministra la máxima potenia a la resistenia exterior uando R = R i. Soluión: La potenia disipada en R es P = I 2 R La orriente en el iruito es I = ε/(r + R i ), luego Difereniando Igualando a ero la derivada P = ε 2 R (R + R i ) 2 dp dr = ε2 (R + R i ) 2 2ε 2 R(R + R i ) = ε 2 (R + R i) 2R (R + R i ) 4 (R + R i ) 3 dp dr = (R ε2 i R (R + R i ) = 0 = R = R 3 i

4 0.3. Campo magnétio de un ondutor on hueos en el diámetro. Un largo ondutor ilíndrio de radio a tiene dos avidades ilíndrias de diámetro a lo largo de toda su longitud, ver figura 3. Una orriente I se dirige haia fuera de la página y es uniforme por toda la seión transversal del ondutor. Enuentre la magnitud y la direión del ampo magnétio en los puntos P 1 y P 2. P 1 r a/2 P 2 a/2 r Figura 3: Condutor on dos hueos en el diametro. Soluión: Evaluemos la densidad uniforme de orriente ] I = J d a = JA = J [πa 2 2π a2 4 Por lo tanto, J = 2I πa 2 Luego el able ompleto de radio a lleva una orriente 2I y ada able de radio a/2 lleva una orriente I/2. la suma de los tres ables orresponde a la figura 3. Campo en el punto P 1 es B = [ 4I r ] I (r a/2) I ( ˆx) (r + a/2) sumando simplifiando En el punto P 2 B = I(16r2 4a 2 4r 2 2ar 4r 2 + 2ar) ( ˆx) (4r 2 a 2 )r B = 4I(a2 2r 2 ) (4r 2 a 2 )r ˆx [ B 4I = r I r d d I ] r (ŷ) d d

5 donde d 2 = r 2 + a 2 /4. Sumando B = I(16r2 + 4a 2 4r 2 4r 2 ) ŷ (4r 2 + a 2 )r simplifiando B = 4I(2r2 + a 2 ) (4r 2 + a 2 )r ŷ

6 0.4. Campo magnétio de una espira mitad uadrada mitad irular. La espira en la figura 4 ondue una orriente I. Determine el ampo magnétio en el punto A en funión de I y R. R L_ 2 A L I Figura 4: Espira. Soluión: Separemos la espira en un semiírulo superior de radio R y la mitad de un uadrado de ara L. Comenzemos por el semiírulo Ahora los segmentos retos B si = I π 0 Rdθ R 2 ẑ = πi Rẑ B su = I R R dx R R 2 + x 2 R2 + x ẑ 2 luego usando: tenemos B su = 2IRẑ B su = 2IRẑ R 0 dx (R 2 + x 2 ) 3/2 dx (x 2 + a 2 ) = x 3/2 a 2 x 2 + a 2 x R 2 x 2 + R 2 R 0 = 2IRẑ R R 3 2 = 2Iẑ R 2 Multipliamos por dos para obtener toda la ontribuión de la parte uadrada. Sumando ambas ontribuiones [ B A = πi R 4I ] R ẑ 2 finalmente B A = I R [ 2 ] 2 + π ẑ

7 0.5. Induión en espira semiirular. Un ondutor semiirular de radio R se hae girar en torno al eje a una rapidez angular onstante ω (ver figura 5). Un ampo magnétio uniforme en toda la mitad inferior de la figura se dirige haia fuera del plano de rotaión y tiene una magnitud de B.Soluión: i) Calule el valor máximo de la fem induida en el ondutor. ii) Cuál es el valor de la fem induida promedio para ada rotaión ompleta? ω R Figura 5: Espira semiirular girando en un ampo magnétio. Soluión: El flujo depende de la posiión instantanea de la espira. Supongamos que a tiempo ero la espira está perpendiular al ampo, luego el flujo Φ(t) = B d a = B πr2 2 os(ωt) donde ω = 2π/T Evaluamos la fem ε(t) = Bω πr2 sen ωt 2 La fem máxima será uando sen ωt = 1, es deir Si promediamos ε = 1 T E máx = BωπR2 2 T 0 BωπR 2 sen ωtdt 2 Sólo entre π/2 y π/2 el flujo es distinto de ero el flujo por lo tanto ε = bωπr2 2T π/2 π/2 sen ωtdt = 0

8 0.6. Espira que varía en tamaño en ampo que varía en intensidad. Considere una espira irular uyo radio ree linealmente en el tiempo. La espira está en una región en la ual hay un ampo magnétio uniforme perpendiular a ésta. Calule la fem induida en los siguientes asos: i) La intensidad del ampo magnétio ree en forma uadrátia en el tiempo. ii) La intensidad del ampo magnétio es onstante en el tiempo. iii) La intensidad del ampo magnétio deree proporional a 1/t 2. Soluión: Supongamos que el radio es nulo a tiempo ero y luego ree linealmente r = vt omo el ampo es uniforme, el flujo será Φ(t) = B(t)A(t) = B(t)πv 2 t 2. i) Si B(t) = bt 2, luego el flujo es Φ(t) = bπv 2 t 4 luego la fem en este aso será ε = 1 dφ dt = t 3 4bπv2 ii) Si B(t) = B 0, luego el flujo es Φ(t) = B 0 πv 2 t 2 luego la fem en este aso será ε = 1 dφ dt = 2B 0πv 2 t iii) Si B(t) = b t 2, luego el flujo es Φ(t) = b πv 2 luego la fem en este aso será ε = 1 dφ dt = 0

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

2. CARGA Y DESCARGA DE UN CONDENSADOR

2. CARGA Y DESCARGA DE UN CONDENSADOR 2. ARGA Y DESARGA DE UN ONDENSADOR a. PROESO DE ARGA La manera más senilla de argar un ondensador de apaidad es apliar una diferenia de potenial V entre sus terminales mediante una fuente de.. on ello,

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

Ángulo de desfase en un circuito RC Fundamento

Ángulo de desfase en un circuito RC Fundamento Ángulo de desfase en un iruito RC Fundaento En un iruito de orriente alterna, están situados en serie una resistenia variable R V y un ondensador. Debido a que las aídas de tensión en ada eleento no están

Más detalles

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2 El aluno elegirá una sola de las opiones de probleas, así oo uatro de las ino uestiones propuestas. No deben resolerse probleas de opiones diferentes, ni tapoo ás de uatro uestiones. Cada problea se alifiará

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN. RESOLUCIÓN REDUCIÉNDOLA A UNA ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN Miguel Angel Nastri, Osar Sardella miguelangelnastri@ahoo.om.ar, osarsardella@ahoo.om.ar

Más detalles

2.4 Transformaciones de funciones

2.4 Transformaciones de funciones 8 CAPÍTULO Funiones.4 Transformaiones de funiones En esta seión se estudia ómo iertas transformaiones de una funión afetan su gráfia. Esto proporiona una mejor omprensión de ómo grafiar Las transformaiones

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Reyes - Instrucciones -Tiene dos horas para resolver los

Más detalles

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO 1 Tema 8 íneas de Transmisión: análisis iruital y transitorio Eletromagnetismo TEMA 8: INEAS DE TRANSMISIÓN: ANÁISIS CIRCUITA Y TRANSITORIO Miguel Angel Solano Vérez Eletromagnetismo Tema 8 íneas de transmisión:

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

TEMA 4.- Campo magnético

TEMA 4.- Campo magnético TEMA 4.- Campo magnético CUESTIONES 31.- a) Dos conductores rectos y paralelos están separados 10 cm. Por ellos circulan, respectivamente, corrientes de 10 A y 20 A en el mismo sentido. Determine a qué

Más detalles

FIS1533/FIZ Examen Facultad de Física

FIS1533/FIZ Examen Facultad de Física FIS533/FIZ022 - Examen Facultad de Física Nombre: Pontificia Universidad Católica de Chile Segundo Semestre 204-24 de Noviembre Tiempo para responder: 50 minutos Sección: Buenas Malas Blancas Nota Instrucciones

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Fernando Martínez García 1 y Sonia Navarro Gómez 2

Fernando Martínez García 1 y Sonia Navarro Gómez 2 Análisis de la Operaión Estable de los Generadores de Relutania Autoexitados, bajo Condiiones Variables en la Carga, la Capaidad de Exitaión y la Veloidad Fernando Martínez Garía y Sonia Navarro Gómez

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Capítulo 2. El valor de la resistencia de la NTC es uno, con independencia del modelo mediante el cual se describa. Por lo tanto,

Capítulo 2. El valor de la resistencia de la NTC es uno, con independencia del modelo mediante el cual se describa. Por lo tanto, //8 Sensores resistios y sus aondiionadores Capítulo Nota: Las euaiones, figuras y problemas itados en el desarrollo de los problemas de este apítulo que no ontengan W en su referenia orresponden al libro

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Dpto. Cienias Abientales - Área de Quíia Físia Prátia 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD 1. Objetivo Se pretende alular el grado de disoiaión

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Apliaiones de ED de segundo orden 5.. Vibraiones amoriguadas libres Coninuando el desarrollo del esudio de las vibraiones, supongamos que se agrega ahora un disposiivo meánio (amoriguador) al

Más detalles

Diseño y Construcción de un Robot Seguidor de Línea Controlado por el PIC16F84A

Diseño y Construcción de un Robot Seguidor de Línea Controlado por el PIC16F84A 8º Congreso Naional de Meatrónia Noviembre 26-27, 2009. Veraruz, Veraruz. Diseño y Construión de un Robot Seguidor de Línea Controlado por el PIC16F84A Medina Cervantes Jesús 1,*, Reyna Jiménez Jonattan

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponda a las uestiones C1 y C Esoja una de las opiones (A o B) y esuelva el poblema P y onteste a las uestiones C3 y C4 de la opión esogida (En total hay que esolve dos poblemas

Más detalles

CARGA ELÉCTRICA, LEY DE COULOMB Y CAMPO ELECTRICO

CARGA ELÉCTRICA, LEY DE COULOMB Y CAMPO ELECTRICO ARGA ELÉTRIA, LEY DE OULOMB Y AMPO ELETRIO 1.- Sean tres objetos A, B y. uando se acercan los objetos A y B, se atraen. uando se acercan los objetos B y, se repelen, uál de las siguientes opciones es verdad?

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

PRÁCTICAS DE ELECTRÓNICA DIGITAL

PRÁCTICAS DE ELECTRÓNICA DIGITAL PRÁCTICAS DE ELECTRÓNICA DIGITAL P R Á C T I C A S D E E L E C T R Ó N I C A D I G I T A L Nombres y apellidos: Curso:. Feha:.. PRÁCTICA 1: PUERTA NOT (INVERSORA) OBJETIVO: Comprobar el omportamiento de

Más detalles

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO.

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. 1) Halla el radio de la órbita que describe un electrón que entra en un campo magnético de 10 T, con una velocidad de 10 4 m/s, de modo que forma un

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g)

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g) Las reaiones químias se pueden dividir en reversibles e irreversibles, según puedan transurrir en los dos sentidos o en uno sólo. En las reaiones reversibles tanto las sustanias reaionantes omo los produtos

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN Alberto Gómez-Lozano Universidad Cooperativa de Colombia Sede Ibagué Doumentos de doenia Course Work oursework.u.e.o No. 5. Nov, 05 http://d.doi.org/0.695/greylit.6

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa Matriz Inversa Transpuesta de una matriz Si A es una matriz m x n entones la transpuesta de A denotada por A T se dene omo la matriz n x m que resulta de interambiar los renglones y las olumnas de A Si

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

Tema 2 La elección en condiciones de incertidumbre

Tema 2 La elección en condiciones de incertidumbre Ejeriios resueltos de Miroeonomía. Equilibrio general y eonomía de la informaión Fernando Perera Tallo Olga María Rodríguez Rodríguez Tema La eleión en ondiiones de inertidumbre http://bit.ly/8l8ddu Ejeriio

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD - 24.11.15 NOMBRE: GRUPO: INSTRUCCIONES: Este examen consta de de cuatro componentes: Componente conceptual de 10

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t U S O: FÍSIA Mención MATEIAL: FM-08 MOVIMIENTO IULA UNIFOME (MU) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria descrita

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

2. Generalidades sobre receptores

2. Generalidades sobre receptores . Generalidades sobre reeptores.1 Modulaiones analógias La modulaión es la operaión que onvierte la señal pasa-bajo original (o señal en banda base) en un señal pasa-banda entrada en la freuenia portadora

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN.

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. Ing. Carlos Rodríguez Garía 1 1. Universidad de Matanzas, Vía Blana, km 3 ½, Matanzas, Cuba. CD de

Más detalles

Ciclones. 1.- Descripción.

Ciclones. 1.- Descripción. Cilones 1.- Desriión. Los ilones son equios meánios estaionarios, amliamente utilizados en la industria, que ermiten la searaión de artíulas de un sólido o de un líquido que se enuentran susendidos en

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple Física de PSI - Inducción electromagnética Preguntas de opción múltiple 1. Una espira de alambre se coloca en un campo magnético comienza a aumentar, Cuál es la dirección de la corriente 2. Una espira

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7

Más detalles

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10 0. La fusión nulear en el Sol produe Helio a partir de Hidrógeno según la reaión: 4 protones + 2 eletrones núleo He + 2 neutrinos + nergía Cuánta energía se libera en la reaión (en MeV)? Datos: Masas:

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

Fisica III -09. Autoinducción. Cátedra de Física Experimental II. Prof. Dr. Víctor H. Rios

Fisica III -09. Autoinducción. Cátedra de Física Experimental II. Prof. Dr. Víctor H. Rios Autoinducción Cátedra de Física Experimental II Prof. Dr. Víctor H. Rios 2009 Contenidos Autoinducción. Corriente autoinducida Circuito RL. Energía del Campo Magnético Inducción mutua. Corriente inducida

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN INTERCCIÓN ELECTROMGNÉTIC INDUCCIÓN IES La Magdalena. vilés. sturias En el tema dedicado al electromagnetismo se ha visto que una corriente eléctrica crea un campo magnético. Podríamos preguntarnos si

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1 OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que

Más detalles

La fem inducida es F 0 0 0,251

La fem inducida es F 0 0 0,251 Campo Magnético 01. El flujo magnético que atraviesa una espira es t -t en el intervalo [0, ]. Representa el flujo y la fem inducida en función del tiempo, determinando el instante en que alcanzan sus

Más detalles

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE SECCIÓN : CÁCUO DE GOPE DE ARIETE CÁCUO DE GOPE DE ARIETE SEGÚN AIEVI El impato de la masa líquida ante una válvula no es igual si el ierre es instantáneo o gradual. a onda originada no tendrá el mismo

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

EQUILIBRIO QUÍMICO QCA 01

EQUILIBRIO QUÍMICO QCA 01 1.- En un reiiente de 1L, a 000, se introduen 6 1 10-3 moles de CO y una ierta antidad de H, roduiéndose la reaión: H (g) + CO (g) H O(g) + CO(g) Si uando se alanza el equilibrio, la resión total es de

Más detalles

Equivalencia de los enunciados del Segundo. Trabajo perdido en una máquina térmica real. Ingeniería Industrial Dpto. Física Aplicada III

Equivalencia de los enunciados del Segundo. Trabajo perdido en una máquina térmica real. Ingeniería Industrial Dpto. Física Aplicada III Índie Introduión Desigualdad de Clausius Entropía Prinipio del inremento de entropía Equivalenia de los enuniados del Segundo Prinipio rabajo perdido en una máquina térmia real Resumen ema 2: Entropía

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Instruiones a) Duraión: 1 hora y 30 minutos b) Debe desarrollar las uestiones y problemas de una de las dos opiones ) Puede utilizar aluladora no programable d) Cada uestión o problema se alifiará entre

Más detalles