Funciones convexas Definición de función convexa. Tema 7

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones convexas Definición de función convexa. Tema 7"

Transcripción

1 Tema 7 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones definidas en intervalos, las funciones convexas. Haremos una discusión breve de estas funciones, empezando por la interpretación geométrica de la convexidad, que nos llevará fácilmente a su definición. Para funciones que sean derivables, o dos veces derivables, en un intervalo, obtendremos útiles caracterizaciones de la convexidad Definición de función convexa La noción de función convexa es muy intuitiva y fácil de entender geométricamente. Si I es un intervalo no trivial, una función f : I R es convexa cuando la gráfica de la restricción de f a cualquier intervalo cerrado y acotado [a,b] I, queda siempre por debajo del segmento que une los puntos ( a, f (a) ) y ( b, f (b) ). Enseguida convertimos esta sencilla idea geométrica en una definición concreta. Para cualesquiera a,b I con a < b, la recta secante a la gráfica de f que pasa por los puntos ( a, f (a) ) y ( b, f (b) ) tiene ecuación y = f (a) + f (b) f (a) b a (x a) Por tanto f será convexa cuando, para cualesquiera a, b I con a < b, se tenga que o equivalentemente, f (z) f (a) + f (b) f (a) b a (z a) z [a,b] f (z) b z b a f (a) + z a f (b) z [a,b] (1) b a Obsérvese que esta desigualdad es obvia para z = a y para z = b, de hecho en ambos casos se da la igualdad. Bastaría por tanto exigirla para todo z ]a,b[. Pero vamos a expresarla de forma más cómoda y fácil de recordar. 69

2 7. Funciones convexas 70 Dado t [0,1] podemos tomar z = a + t (b a) [a,b] y (1) nos dice que f ( (1 t)a + t b ) (1 t) f (a) + t f (b) t [0,1] (2) Pero recíprocamente, dado z [a, b] podemos tomar t = z a b z, que verifica t [0,1] y 1 t = b a b a con lo que al aplicar (2) obtenemos directamente (1). Nótese que ahora se da obviamente la igualdad en (2) para t = 0 y t = 1. En resumen, f será convexa cuando verifique (2) para cualesquiera a, b I con a < b y para todo t [0,1]. Ahora bien, observamos que cuando a = b se tiene siempre la igualdad en (2). Pero es que además, en el caso a > b, podemos aplicar (2) intercambiando los papeles de a y b, pero sustituyendo t por 1 t, con lo que obtenemos exactamente la misma desigualdad. Así pues, en (2) podemos tomar como a y b dos puntos cualesquiera del intervalo I. Hemos llegado así a la definición cómoda de función convexa que buscábamos. Si I es un intervalo no trivial, una función f : I R es convexa cuando verifica: f ( (1 t)x + t y ) (1 t) f (x) + t f (y) x,y I, t [0,1] (3) Aunque esta es la forma más conveniente de expresar la convexidad de una función, hay algo en la discusión anterior que no conviene olvidar: para probar (3), no se pierde generalidad suponiendo que x < y y que 0 < t < 1. Tampoco conviene olvidar la interpretación geométrica de la convexidad, con la que hemos iniciado la discusión. Como ejemplo, la función valor absoluto es convexa, pues evidentemente, (1 t)x + t y (1 t) x + t y x,y R, t [0,1] Conviene comentar que lo ocurrido en este sencillo ejemplo es bastante excepcional. Rara vez se prueba que una función es convexa usando la definición, pues incluso para funciones muy sencillas, no suele ser fácil comprobar la desigualdad (3). Lo habitual es, sabiendo que una función es convexa gracias a alguna de las caracterizaciones que vamos a estudiar, deducir que se verifica (3), obteniendo así desigualdades nada evidentes. Al cambiar de signo una función convexa se obtiene una función cóncava. Así pues, si I es de nuevo un intervalo no trivial, decimos que una función f : I R es cóncava cuando f es convexa, es decir, cuando se verifica que f ( (1 t)x +ty ) (1 t) f (x) + t f (y) para cualesquiera x,y I y para todo t [0,1]. Obsérvese que la convexidad o concavidad de una función, como ocurre con la monotonía, es una propiedad bastante restrictiva. Es frecuente que una función f : I R no sea convexa ni cóncava, pero podamos expresar I como una unión finita de intervalos no triviales, de forma que la restricción de f a cada uno de esos subintervalos sí tenga una de las dos propiedades. Para tratar cómodamente estas situaciones, cuando I,J sean intervalos no triviales con J I, diremos que una función f : I R es convexa en J cuando f J sea convexa. Lógicamente, f será cóncava en J cuando f J sea cóncava, es decir, cuando f sea convexa en J. En lo sucesivo trabajaremos preferentemente con las funciones convexas, pues cualquier resultado que obtengamos dará información sobre una función cóncava, sin más que aplicarlo a la función opuesta.

3 7. Funciones convexas Continuidad y derivabilidad Para obtener propiedades importantes de las funciones convexas, conviene deducir de la definición de función convexa, o más directamente de la condición (1), una doble desigualdad que relaciona las pendientes de tres rectas secantes a la gráfica de la función. Sea pues I un intervalo no trivial, f : I R una función convexa y tomemos x 1,x 2,x 3 I tales que x 1 < x 2 < x 3. Aplicando (1) con a = x 1, b = x 3 y z = x 2 tenemos f (x 2 ) x 3 x 2 f (x 1 ) + x 2 x 1 f (x 3 ) (3) Restando en ambos miembros f (x 1 ) y dividiendo luego por x 2 x 1 > 0 obtenemos f (x 2 ) f (x 1 ) x 2 x 1 f (x 3) f (x 1 ) Por otra parte, si en (3) cambiamos de signo ambos miembros invirtiendo la desigualdad, sumamos f (x 3 ) a ambos y después dividimos por x 3 x 2 > 0 obtenemos f (x 3 ) f (x 2 ) x 3 x 2 f (x 3) f (x 1 ) Enlazando las dos desigualdades obtenidas, hemos probado que f (x 2 ) f (x 1 ) x 2 x 1 f (x 3) f (x 1 ) f (x 3) f (x 2 ) x 3 x 2 (4) A poco que se piense, esta relación entre las pendientes de tres rectas secantes a la gráfica de una función convexa tiene una interpretación geométrica muy clara. Podemos ya probar fácilmente la primera propiedad clave de las funciones convexas: su cociente de incrementos, tomando cualquier punto como origen, es una función creciente. Sea I un intervalo no trivial y f : I R una función convexa. Entonces, para cada a I f (x) f (a) la función f a : I \ {a} R, dada por f a (x) = para todo x I \ {a}, es x a creciente. En efecto, dados a I y x,y I \ {a} con x < y, distinguimos los tres casos posibles, para probar siempre que f a (x) f a (y). Si a < x < y, usamos la primera desigualdad de (4) con x 1 = a, x 2 = x, x 3 = y, obteniendo directamente que f a (x) f a (y). Si x < y < a, usamos la segunda desigualdad de (4) con x 1 = x, x 2 = y, x 3 = a, obteniendo la misma conclusión. Finalmente, si x < a < y, usamos la desigualdad entre el primer y último miembro de (4) con x 1 = x, x 2 = a, x 3 = y, obteniendo de nuevo f a (x) f a (y). Deducimos ahora fácilmente que toda función convexa admite derivadas laterales, y por tanto es continua, en todo punto interior de su intervalo de definición:

4 7. Funciones convexas 72 Sea I un intervalo no trivial y f : I R una función convexa. Entonces f es derivable por la izquierda y por la derecha, y por tanto es continua, en todo punto a I. De hecho, se tiene f (a ) = sup{ f a (x) : x I, x < a} f (5) (a+) = ínf{ f a (y) : y I, y > a} Fijado a I, la comprobación de (5) es bien sencilla, usando solamente que f a es una función creciente. Tomando b I con b > a, que existe porque a I, para x I con x < a se tiene f a (x) f a (b), luego el conjunto { f a (x) : x I, x < a} está mayorado y, llamando s a a su supremo, veremos enseguida que f (a ) = s a. Dado ε > 0, por definición de supremo existirá x 0 I con x 0 < a tal que f a (x 0 ) > s a ε. Tomando δ = a x 0 > 0, para a δ < x < a tendremos s a ε < f a (x 0 ) f a (x) s a, de donde f a (x) s a < ε. Esto prueba que lím f a(x) = s a, como se quería. El cálculo de la derivada x a por la derecha es análogo. Merece la pena resaltar que en general no podemos asegurar que una función convexa sea derivable en todos los puntos interiores de su intervalo de definición. Por ejemplo, la función valor absoluto es convexa pero no es derivable en 0. Cuando el intervalo de definición tiene mínimo o máximo, tampoco podemos asegurar que una función convexa sea continua en tales puntos. Por ejemplo, tomando f (x) = 0 para todo x ]0, 1[ y f (0) = f (1) = 1, obtenemos una función convexa f : [0, 1] R que no es continua en 0 ni en Caracterizaciones de las funciones convexas Podemos ya caracterizar la convexidad de funciones que sean derivables en un intervalo: Sea I un intervalo y f D 1 (I). Las siguientes afirmaciones son equivalentes: (i) f es convexa. (ii) f es creciente. (iii) Para cualesquiera a,x I se tiene que f (x) f (a) + f (a)(x a). (i) (ii). Para a,b I con a < b deberemos probar que f (a) f (b). Para ello fijamos c ]a,b[ I y usamos las dos expresiones de f (c) calculadas anteriormente, obteniendo que f c (a) f (c) f c (b). Si ahora tomamos x,y I en la situación a < x < c < y < b, usando que f a y f b son crecientes, tenemos: f a (x) f a (c) = f c (a) f (c) f c (b) = f b (c) f b (y) de donde deducimos claramente que f (a) = lím x a+ f a(x) f (c) lím y b f b(y) = f (b). (ii) (iii). Para a,x I con a x, usando el Teorema del Valor Medio podemos escribir f (x) = f (a) + f (c)(x a) donde c es un punto del intervalo abierto de extremos a y x, luego bastará comprobar que f (c)(x a) f (a)(x a).

5 7. Funciones convexas 73 En efecto, si a < c < x, al ser f creciente tendremos f (c) f (a), y basta multiplicar ambos miembros por x a > 0. En otro caso será x < c < a luego f (c) f (a) pero la desigualdad se invierte al multiplicar ambos miembros por x a < 0. (iii) (i). Para ver que f es convexa, fijamos x,y I con x < y, junto con t ]0,1[ y, tomando a = (1 t)x +ty, bastará comprobar que f (a) (1 t) f (x) +t f (y). Anotemos que t = a x y x y 1 t = y a y x Aplicando (iii) tenemos f (x) f (a) + f (a)(x a), así como f (y) f (a) + f (a)(y a). Teniendo en cuenta que y a > 0 y x a < 0, enlazamos ambas desigualdades: f (x) f (a) x a f (a) f (y) f (a) y a Basta ya operar con la desigualdad anterior para obtener f (a) y a y x f (x) + a x f (y) = (1 t) f (x) + t f (y) y x Nótese la clara interpretación geométrica de la condición (iii) anterior: para cada punto a I, la gráfica de la función f se mantiene siempre por encima de la recta tangente a dicha gráfica en el punto ( a, f (a) ). Pero usemos ahora, cuando exista, la segunda derivada: Sea I un intervalo no trivial y f D 2 (I). Las siguientes afirmaciones son equivalentes: (i) f es convexa. (ii) f (x) 0 para todo x I. Por supuesto, los dos resultados anteriores se traducen inmediatamente para tener sendas caracterizaciones de la concavidad. Concretamente, si I es un intervalo no trivial, una función f D 1 (I) será cóncava si, y sólo si, f es decreciente y, cuando f D 2 (I), ello equivale a que f (x) 0 para todo x I Ejemplos Veamos que las caracterizaciones anteriores permiten encontrar fácilmente intervalos de convexidad o de concavidad para diversas funciones. Empecemos con un ejemplo obvio: todo polinomio P de primer orden define una función que es simultáneamente convexa y cóncava en R, bien porque su primera derivada es constante, bien porque su segunda derivada es idénticamente nula. En realidad esto se puede comprobar directamente con las definiciones: es claro que P ( (1 t)x + ty ) = (1 t)p(x) + tp(y) para cualesquiera x,y,t R. Tenemos lo que suele denominarse una función afín. Una función dada por un polinomio de grado 2, P(x) = ax 2 + bx + c para todo x R, es convexa cuando a > 0 y cóncava cuando a < 0, puesto que P (x) = 2a para todo x R.

6 7. Funciones convexas 74 Fijado p N con p 2, consideremos la función potencia, f (x) = x p para todo x R. Tenemos f (x) = p(p 1)x p 2 para todo x R. Por tanto, si p es par, f es convexa. Si p es impar, entonces f no es convexa ni cóncava, más concretamente, es convexa en R + 0 y cóncava en R 0. Usando la definición de función convexa, obtenemos por ejemplo las siguientes desigualdades: [ ] 4 (1 t)x + t y (1 t)x 4 + t y 4 x,y R, t [0,1] [ ] 3 (1 t)x + t y (1 t)x 3 + t y 3 x,y R +, t [0,1] Comprobar directamente estas desigualdades no es del todo fácil. Para la función potencia de exponente impar p > 1, el origen es lo que suele denominarse un punto de inflexión. De manera más general, sea I un intervalo, f : I R una función y a I. Se dice que f tiene en a un punto de inflexión, cuando existe un δ > 0 tal que ]a δ,a+δ[ I, f es convexa en ]a δ,a] y cóncava en [a,a + δ[, o bien, f es cóncava en ]a δ,a] y convexa en [a,a + δ[. Si f D 2 (I), esto implica, obviamente que f (a) = 0. Para tener más ejemplos interesantes, consideremos la función raíz q-ésima, g(x) = q x para todo x R +, con q N fijo, q > 1. Tenemos entonces g (x) = 1 q q x q 1, g (x) = (1 q) q x q 2 x 2 x R + De la primera igualdad deducimos claramente que g es decreciente, luego g es cóncava. La segunda derivada nos hubiera llevado a la misma conclusión, pues g (x) < 0 para todo x R Ejercicios 1. Probar que la suma de dos funciones convexas es una función convexa. 2. Dar un ejemplo de dos funciones convexas cuyo producto no sea una función convexa. 3. Sean I,J intervalos no triviales, f : I J una función convexa y g : J R una función convexa y creciente. Probar que entonces g f es convexa. 4. Sea I un intervalo no trivial y f : I R una función convexa. Supongamos además que f es continua e inyectiva, luego estrictamente monótona. Probar que, si f es creciente, f 1 es cóncava, mientras que, si f es decreciente, entonces f 1 es convexa. 5. Encontrar intervalos de convexidad o concavidad para la función f : R R en cada uno de los siguientes casos: (a) f (x) = x 5 5x 4 + 5x x R (b) f (x) = x2 + 3x + 1 x x R

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7 Tema 7 Reglas de l Hôpital Estudiamos en este tema el método práctico más efectivo para calcular ites de funciones en los que se presenta una indeterminación del tipo [0/0], o [ / ]. Este método se atribuye

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

1 CONCAVIDAD Y CONVEXIDAD

1 CONCAVIDAD Y CONVEXIDAD 1 CONCAVIDAD Y CONVEXIDAD Ya sabemos como determinar si una función es estric. creciente o decreciente en un punto. Pero nos interesa determinar si la función crece o decrece de forma cóncava o convexa.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR

TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR 5.1 DERIVADA DE UNA FUNCIÓN 5.1.1 Definición de derivada Definición: Sea I in intervalo abierto, f : I y a I. Diremos que f es derivable en a si existe y

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Números reales Suma y producto de números reales. Tema 1

Números reales Suma y producto de números reales. Tema 1 Tema 1 Números reales Comprender el conjunto de los números reales, su estructura y sus principales propiedades, es el primer paso imprescindible en el estudio del Análisis Matemático. Presentaremos dicho

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

Derivadas. Derivabilidad

Derivadas. Derivabilidad Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

2 x

2 x FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Importante: Visita regularmente ttp://www.dim.ucile.cl/~calculo. Aí encontrarás las guías de ejercicios

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

Representación de funciones

Representación de funciones Representación de funciones 1) Sea la función Calcule: a) Los intervalos de crecimiento y decrecimiento. Sol: La función es creciente en (0,4) y decreciente en (,0) (4, ). b) Las coordenadas de sus extremos

Más detalles

12.1. Definición de las derivadas sucesivas

12.1. Definición de las derivadas sucesivas Tema 12 Derivadas sucesivas El proceso de derivación de funciones reales de variable real puede obviamente iterarse, obteniendo la segunda y sucesivas derivadas de una función. Como es lógico, para n N,

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles