ECUACIÓN DE BERNOULLI
|
|
|
- Ricardo Córdoba Robles
- hace 8 años
- Vistas:
Transcripción
1 ECUACIÓN DE BERNOULLI 1. RESUMEN Ete lbortorio trt obre l comprobción de l ecución de Bernoulli. Aquí e intent comprobr l relción que exite entre l velocidd (cbez dinámic), l cbez (cbez etátic) y l cbez totl (energí del fluido) obre un líne de fluido, comprándolo pr diferente flujo. ABSTRACT Thi lbortory i bout the comprobtion of the Bernoulli eqution. Here, it tryng to comprobe the reltion tht exit betwin the peed (dinmic hed), the hed (ttic hed) nd the totl hed (energy of the flux) under flux line, compring it for diferent flux.. CONTENIDO.1. INTRODUCCIÓN L ecución de Bernoulli e un form prticulr de l primer ley de l termodinámic. En et no e tienen en cuent cmbio de energí intern, cmbio de fe, compreión, etc. Aquí l energí totl de un fluido e form de tre form de energí: energí de preión P, energí cinétic v g y energí grvitcionl h. L ecución de Bernoulli dice que obre un líne de flujo e debe conervr l energí independiente de u tryectori. Aí que un form idel en l que no hy perdid e puede ecribir como P v igue: h cte. Et ecución g e l que e quiere comprobr pr diferente nivele de flujo... PROCEDIMIENTO Pr comprobr l ecución de Bernoulli, e hizo necerio de lo iguiente elemento: Venturi Pitot Bomb hidráulic Cronómetro Mucho gu
2 Se comenzó con clculr lo flujo que e etbn trbjndo prtir de lo principio del medidor de Venturi y que on m precio que lo dto tomdo con reloj nálogo. A prtir de et, e conoce l velocidd del fluido en un ección determind por dich áre. Con l velocidde (cbez dinámic) y l preión, (cbez etátic) e puede conocer l cbez totl y e compr con l obtenid por el tubo de Pitot (cbez totl)..3. DATOS Lo dto obtenido e el lbortorio e muetrn en l tbl 1. () b c d e f Q1 etátic Pitot Q etátic Pitot Q3 etátic Pitot Q4 etátic Pitot Q5 etátic Pitot Tbl 1. Medid de column de fluido..4. RESULTADOS En l tbl e muetrn lo vlore de l áre pr l diferente poicione. b c d e f 5 13,9 11,8 10, A ( ) 490,9 151,7 109,4 89,9 78,5 490,9 Tbl. Diámetro y áre pr l poicione.
3 Aplicndo l ecucione pr un tubo de Venturi, tenemo que Q v A, i que pr Q 1 tenemo: v g ( h A A e h e) 1 y tmbién que Q Q , (110 0) 490,9 78,5 1 Lo dto de lo cudle e muetrn en l tbl 3. Q 1 Q Q 3 Q 4 Q , , , , ,7 Tbl 3. Cudle. L cbez dinámic etá dd por: h v D g, entonce pr l cbez dinámic en, pr el cudl Q 1 tenemo lo iguiente: h D (38 ), En l tbl 4 e muetrn lo vlore de l cbez etátic (h E ) obtenid, l cbez dinámic (h D ) clculd, l um de ell (H T ) y e muetr tmbién l cbez obtenid con el tubo de Pitot (H P ) con u repectivo error (E%). b c d e f h E h D,9 30, 58, 86,1 11,9,9 H T1 11,9 110, 118, 106,1 11,9 4,9 H P E% 5,9 8,1 1,5 7,7 1,8,0 h E h D,4 4,7 47,6 70,5 9,4,4 H T 9,4 94,7 10,6 100,5 9,4 4,4 H P E%,8 0,3 8,0 5,8,8 3,0 h E h D,8 8,9 55,6 8, 107,8,8 H T3 107,8 108,9 115,6 107, 107,8 4,8 H P E%,0 1,0 5,1,5,0,3 Q1 Q Q3
4 h E h D 1,7 17,9 34,4 50,9 66,7 1,7 H T4 81,7 8,9 89,4 85,9 81,7 41,7 H P E% 3,9,5 11,8 7,4,1 4, h E h D 0,9 9,6 18,5 7,4 35,9 0,9 H T5 65,9 64,6 68,5 67,4 65,9 40,9 H P E% 5,8 7,7,1 3,7 5,8 5,6 Tbl 4. Vlore de cbez etátic y dinámic. En de fluido. Q4 Q5.5. ANÁLISIS DE RESULTADOS Como vemo en l tbl 4, ninguno de lo errore uper el 10% excepción de f y que ete unto tiene un comportmiento epecil. El error promedio fue de 7.6% teniendo en cuent lo vlore que etán fuer de l mod como lo de f. Sin eto el promedio e de 3.7%, lo cul e btnte ceptble. El comportmiento de l cbez clculd y de l obtenid con el tubo de Pitot e imilr; eto e puede ver en lo iguiente gráfico. Totl Q H ht Figur. en l 6 poicione pr Q. Totl Q3 Totl Q H1 ht H3 ht3 Figur 3. en l 6 poicione pr Q 3. Figur 1. en l 6 poicione pr Q 1.
5 Totl Q4 Totl Q5 100,0 80,0 60,0 40,0 H4 ht4 80,0 60,0 H5 ht , Figur 4. en l 6 poicione pr Q 4. En tod l curv vemo que ditn olo un poco del vlor medido. Aquí e pueden preentr errore debido m que todo l medición de l velocidd en cd punto y que no tenemo medidore precio. L form Figur 5. en l 6 poicione pr Q 5. lterntiv que e utilizo d mejore reultdo que lo obtenido llenndo probet. Con el método de l probet lo errore ociln entre 5 y 45%, en cmbio con eto ociln entre 3 y 7%, lo cul e ignifictivmente m bjo..6. CONCLUSIONES nálii de problem y l tom de deciione. Otr vez m, el uo del medidor de Venturi pr medir el cudl fue lgo.7. BIBLIOGRAFÍA relevnte en el nálii de lo dto, y que redujeron el error en lo vlore clculdo. Eto no dice que l exctitud y l preciión de lo intrumento e muy importnte en el STREETER, Victor. Mecánic de Fluido. 9ª Edición. Mc Grw Hill. Snt Fé de Bogotá, Colombi. 740 pág.
INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202
UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA
UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.
Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL
Titulación de ácido fuerte-base fuerte
Químic Anlític (9123) urv de titulcción y cp. buffer SUBTEMA 3 1 Titulción de ácido fuertebe fuerte En olución cuo, lo ácido y l be fuerte e encuentrn totlmente diocido. Por lo tnto, el ph lo lrgo de l
LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA:
LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO DE MECÁNICA DE FLUIDOS PRESENTADO A: ING. VLADIMIR QUIROZ
MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas
MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.
PRÁCTICA VI VARIACIÓN VERTICAL DE LA VELOCIDAD EN CONDUCTOS A FLUJO LIBRE
UNIERSIDAD DEL CAUCA I.1 PRÁCTICA I I ARIACIÓN ERTICAL DE LA ELOCIDAD EN CONDUCTOS A FLUJO LIBRE I.1 OBJETIOS Determinr l vrición verticl de l velocidd en flujo libre. Comprr gráficmente el perfil de velocidd
PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.
ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60
EJERCICIOS DE CINEMÁTICA PARA REPASAR
EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede
UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS AGROPECUARIAS PROGRAMA INGENIERÍA AGROINDUSTRIAL
ASIGNATURA: FÍSICA DE FLUIDOS CÓDIGO: FIS113CA CRÉDITOS: 4 MODALIDAD: Presencial (Teórico-Práctica) REQUISITOS: Mecánica INTENSIDAD: 6 horas semanales DIMENSIÓN: Científico Tecnológica INTRODUCCIÓN El
Capítulo III AGUA EN EL SUELO
Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del
El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal
El principio de Bernoulli y efecto de tubo de Venturi Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal FLUIDOS EN MOVIMIENTO El flujo de fluidos suele ser extremadamente complejo, como
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA
ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema
ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.
Prácticas de Laboratorio de Hidráulica
Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi
UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto
UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí
FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.
EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr
Transformadas de Laplace
Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -
INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender
P t. Primer Semestre 2010 PAUTA AYUDANTÍA 7 DINÁMICA DE FLUIDOS. Loa fluidos se pueden clasificar de las siguientes maneras:
Unieridad Técnica Federico Santa María Introducción a la Mecánica de Fluido y Calor Prier Seetre 00 Profeor: Rodrigo Suárez yudante: Macarena Molina PUT YUDNTÍ 7 DINÁMIC DE FLUIDOS Loa fluido e pueden
ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES
CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
PRÁCTICA 5. Corrección del factor de potencia
PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.
Capítulo 6: Entropía.
Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito
DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE
Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.
Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
FÍSICA I CAPÍTULO 6: CINEMÁTICA III
FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un
HIDRÁULICA Ingeniería en Acuicultura.
HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica
Ecuaciones Integradas de Velocidad
Químic Fíic I Velocidd de Rección Ecucione Inegrd de Velocidd Reccione de Primer Orden e Pr un rección del io P, l ecución diferencil de velocidd d d k k (donde k k ). Inegrndo e oiene d d [ ] d k d k.
ANEJO I : Cálculos Luminotécnicos
ANEJO I : Cálculos Luminotécnicos Págin 1 de 9 ANEXO I CÁLCULOS LUMINOTÉCNICOS I.1.- CLASIFICACIÓN DE LAS VÍAS I.2.- REQUISITOS MÍNIMOS DE EFICIENCIA ENERGÉTICA I.3.- CLASE DE ALUMBRADO I.4.- NIVELES DE
APLICACIONES DE LA ECUACION DE BERNOULLI
EL MEDIDOR VENTURI Se ua ara edir la raidez de flujo en un tubo. La arte angota del tubo e llaa garganta. cont gy gy V,, a a h y y a gh a gh - g(h -h gh y PLICCIONES DE L ECUCION DE BERNOULLI h / ( gh
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
www.fisicaeingenieria.es
7.- RÉGIMEN E FLUJO A TRAVÉS E TUBERÍAS. 7.1.- Ecución de Bernoulli generlizd. L ecución de Bernoulli generlizd tiene en cuent demás de términos energéticos ls energís suministrds o bsobids por elementos
Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero
Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn ([email protected].) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO
INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:
Unidad 10. Sistemas de ecuaciones lineales
Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
MATRICES DE NÚMEROS REALES
MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m
Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.
UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos
La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.
LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1
DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
REPASO DE ECUACIONES (4º ESO)
TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución
Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?
CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
Teorema de la Función Inversa
Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones
APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.
Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción
ANEJO 1: Instrumental de laboratorio utilizado en la práctica
Univeridd de Aicnte - ráctic de Mterie de Contrucción I.T.O. ráctic Nº 1 Cér Grcí Andreu, Joé Migue Sv érez, Frncico Bez Broton, Antonio Joé Tenz Abri ráctic de Mterie de Contrucción I.T. Obr úbic ÁCTICA
f (t) dt Veamos primero el caso en que uno de los límites es infinito: si b =, entonces se define f (t) dt = lím
Cpítulo 2 Trnformd de Lplce 2.. Integrle impropi Vmo repr l co prendid en Análii I obre integrle impropi. Por hor penremo en un función de vrible e imgen rel, e decir, f : [, b] R. Cundo e define f (t
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
TEMA 5: INTEGRACIÓN. f(x) dx.
TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l
Psicrometría. nrt. nrt. p p p. nrt. a a. v v
Estudio de sistems consistentes en ire seco y gu. Aire húmedo: mezcl de ire seco y or de gu. El ire seco se trt como si fuer un comonente uro. L mezcl globl y sus comonentes se comortn como un gs idel
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF -01 1. INTRODUCCIÓN LABORATORIO DE NOMBRE DE LA
Transformada de Laplace
Cpítulo Trnformd de Lplce L trnformd de Lplce (T.L) e un tipo epecil de trnformción integrl. En generl, un trnformd integrl e un ocición entre l función Y () = y(t)k(, t)dt (.) I con l función y(t) pr
Función Longitud de Arco
Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva
TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui
TEMA II.9 Ecuación de Bernoulli Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas, Campus
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS
Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante
CAPÍTULO. La derivada
CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,
El objetivo de nuestro trabajo es construir una clepsidra. Para ello se tuvo que:
XXII CONGRESO DE INVESTIGACIÓN CUAM, MOR COLEGIO ALEMÁN ALEXANDER VON HUMBOLDT A.C. Clepsidra Sebastián Sánchez Alcalá, Luis Alberto Pacheco Pimentel, Santiago Hernández Haller Asesor: Carlos Prieto de
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
UNIDAD DIDÁCTICA 4: LOGARITMOS
Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES
TEMA 4: El movimiento circular uniforme
TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci
PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA
PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo
Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010
Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.
Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura
DINÁMICA Y LAS LEYES DE NEWTON
DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.
5. CINÉTICA DEL CUERPO RÍGIDO
149 5.1 Trlción pur 5. CINÉTIC DEL CUERP RÍID 1. El utomóvil repreentdo en l fiur vij hci l izquierd 7 km/h cundo comienz frenr, uniformemente, ht detenere por completo en un lonitud de 40 m. Sbiendo que
TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO
TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis
3 DESCRIPCIÓN DEL PROGRAMA EXPERIMENTAL. EQUIPOS Y METODOLOGÍA.
3 DESCRIPCIÓN DEL PROGRAMA EXPERIMENTAL. EQUIPOS Y METODOLOGÍA. 3.1 Objetivos y descripción generl de los ensyos En el estudio experimentl se hn empledo mteriles limo rcillosos procedentes de dos entornos
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
Presentación Axiomática de los Números Reales
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos
INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS
INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS INTEGRANTES: Angie De Jesus Gutierrez de la Rosa Bayron David Santoya Reales Brian Jesus Pereira Cantillo Oscar De Jesus Pedrozo Cadena PRESENTADO
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K
DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd
GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO
Elegir y desrrollr un de ls dos opciones propuests. Puntución máxim: Problems 6 puntos (1,5 cd prtdo). Cuestiones 4 puntos (1 cd cuestión teóric o práctic). No se lorrá l notción de un ítem como solución
