Estabilidad de los sistemas en tiempo discreto
|
|
- Guillermo Rico Pérez
- hace 5 años
- Vistas:
Transcripción
1 Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos probr: Estbilidd de estdo Estbilidd de entrd slid
2 Estbilidd de estdo de los sistems en tiempo discreto Con u =, podemos observr que pr que el sistem se estble sintóticmente de estdo según Lypunov, l mtri Φ debe extinguirse sintóticmente cundo A d. x A d x A d B d u Esto es l norm Φ A d debe tender cero cundo. Φ
3 con ˆ A V Vdig V Φ V d L condición será stisfech cundo todos los modos i se extinguen. Lo nterior implic que todos los vlores propios i de l mtri A d deben ser menores que lo que se expres en l condición. i condición necesri y suficiente pr estbilidd sintótic en tiempo discreto λ i i,,..., n
4 Criterios de estbilidd de estdo prtir de los coeficientes de l e. c. p Método de Jury det I - Ad p n n n n Se bs en el rreglo de Jury, que tiene n-3 fils donde n es el orden del polinomio crcterístico en tiempo discreto. Los coeficientes i se rregln dos fils Se clculn ls fils por pres hst obtener un fil con solo tres coeficientes. Se comprn ls mgnitudes de los coeficientes determinr l estbilidd del sistem.
5 Tbl pr evlur el criterio de estbilidd de Jury Arreglo de Jury Fil... n- n- n... n- n- n n n- n b b b... b n- b n- 4 b n- b n- b n-3... b b 5 c c c... c n- 6 c n- c n-3 c n-4... c n-5 r r r r 3 n-4 r 3 r r r n-3 s s s
6 Criterio de estbilidd de Jury Todos los ceros del polinomio crcterístico tienen mgnitud menor que uno exctmente si ls siguientes condiciones son stisfechs: El polinomio crcterístico evludo en es myor que cero p El polinomio crcterístico evludo en - es positivo pr polinomios de orden pr y negtivo pr polinomios de orden impr. - n p 3 El coeficiente n del polinomio crcterístico debe ser positivo y myor que el vlor bsoluto del coeficiente. n
7 4 Todos los coeficientes clculdos de l column iquierd en ls fils impres del rreglo deben tener un mgnitud myor que el coeficiente más l derech de l mism fil. b c b n c n s s
8 Psos pr l prueb de Jury Pruebe primero ls condiciones, y 3. Clcule los coeficientes del rreglo de Jury de l siguiente form y evlúe l condición 4 con ellos. det b n n det b n n n n b det det b b b b c n n n n b b b b c det NOTA: Y que el coeficiente s del rreglo de Jury no se emple pr determinr l estbilidd, no es necesrio clculrlo.
9 Eemplo : Probr l estbilidd de estdo del sistem. p Procedemos probr ls tres primers condiciones p n p n Ls tres condiciones primers fueron stisfechs por lo que procedemos clculr los coeficientes del rreglo de Jury y probr l condición 4.
10 Eemplo : Arreglo de Jury Fil Pruebs X L condición 4 no es stisfech pues no se cumple que s s en l últim fil del rreglo. Por lo tnto el sistem es inestble.
11 Método de estbilidd de Routh- Hurwit en tiempo discreto Se reli un trnsformción bilinel del plno l plno w, que es similr l plno s. L trnsformción l plno w se efectú l sustituir cd ocurrenci de l vrible en el polinomio crcterístico. w w Se plic l polinomio en w el criterio de Routh-Hurwit.
12 Estbilidd de entrd slid de los sistems en tiempo discreto SISO x = u T y Slid y pr un entrd u con condiciones iniciles cero. Si l entrd u es itd entonces l slid y debe estr itd. u y u y
13 Sumtori de convolución Si hcemos el estdo inicil cero, l slid será. u u y d T d B Φ c u g y Tomndo el vlor bsoluto u g y
14 Reemplndo los vlores bsolutos de y y u por sus límites u g y u g y y u g y g Conclusión: Pr tener estbilidd de entrd slid l sumtori de g debe tener un límite.
15 L condición pr estbilidd de entrd slid en sistems continuos g t dt Conclusión: Pr probr l estbilidd de entrd slid en tiempo discreto podemos usr los mismos criterios que pr probr l estbilidd de estdo en tiempo discreto. Método: Se reempl l vrible por en l fil superior del rreglo de Jury y en el polinomio crcterístico, que es el polinomio denomindor de l función de trnsferenci G y se procede l prueb de estbilidd de estdo
16 Eemplo : Encuentre el vlor de K pr grntir l estbilidd de E/S. T Y R K K K p.37 K K Ddo que se trt de un sistem de segundo orden, n-3 =, con n > ; ls condiciones de estbilidd pueden simplemente escribirse como: p p p n
17 Eemplo : cont. Probmos entonces l estbilidd de entrd slid pr el sistem. p.64 K K p.74. K K K 5.7 K. 33 n Conclusión: Pr que el sistem en tiempo discreto se estble K.33
18 Eercicio Con un controldor proporcionl de gnnci vrible K, se cre un sistem reentdo unitrimente pr l plnt G, con T =.s. Pruebe l estbilidd de estdo. Solución : -.6 < K <.58 G =
19 Error de estdo estcionrio en tiempo discreto Aplicmos el teorem del vlor finl en tiempo discreto l trnsmitnci de error T E o l trnsmitnci equivlente direct G E. e r y E T R e r y T E D G E R + E - D G Y Sistem en tiempo discreto con reentción unitri.
20 Error de estdo estcionrio nte un entrd esclón Pr l entrd esclón en tiempo discreto r = A, l entrd esclón en Z es A R. Aplicndo el teorem del vlor finl tenemos: G D A T R E e E G D A G D A e
21 Coeficiente de error de posición K p Hcemos K P D G G E K P es el coeficiente de error de posición y G E es l trnsmitnci direct equivlente. El error de estdo estcionrio normlido nte esclón, utilindo K p es: e SS normlido e A K P
22 Error de estdo estcionrio nte un entrd rmp Pr l entrd rmp en tiempo discreto dd por r = AT; l entrd rmp en Z será T A R. G D T A e G D T A G D T A e
23 Coeficiente de error de velocidd K v Hcemos G T G D T K E V K V es l constnte de error de velocidd; por lo que el error de estdo estcionrio normlido nte un rmp, usndo K v es: V o normlid SS K e
24 Error de estdo estcionrio nte un entrd prbólic L entrd de prueb prbólic en tiempo discreto que vmos plicr es r = ½AT, entonces l entrd prbólic correspondiente en Z es 3 T A R. 3 G D T A e G D T A G D T A e
25 Coeficiente de error de celerción K Hcemos G T G D T K E K es l constnte de error de celerción y en consecuenci, el error de estdo estcionrio normlido, nte un entrd prbólic es: o normlid SS K e
26 Tipo de sistem En tiempo discreto el tipo de sistem se define como el número de fctores - del numerdor de T E o el número de fctores - del denomindor de G E. Si i es el exponente de T pr l entrd de prueb en tiempo discreto, entonces l constnte de error es K i y se clcul de l mner siguiente: G T G D T K E i i i pr i =,,,...
27 Error normlido generlido de estdo estcionrio Error normlido generlido de estdo estcionrio Tipo/entrd Esclón i = r = A K P Rmp i = r = AT K V Prábol i = r =½AT K
28 Eemplo 3: Error de estdo estcionrio nte entrd esclón G E ; T.s Primero verificmos l estbilidd del sistem en lo cerrdo evlundo el polinomio crcterístico + KG E p.597 K K.67 Se trt de un sistem de segundo orden, n-3 =, con n =.597 >.
29 Eemplo 3: cont. Probmos entonces l estbilidd de entrd slid pr el sistem. p K K. 5 p K K K.67 n K.867 Conclusión: Pr que el sistem en tiempo discreto se estble.5 K.867
30 Imginry Axis Eemplo 3: Lugr de ls ríces Grficmos el lugr de ls ríces pr G E.5 Root Locus.5.6/T.5/T.4/T.7/T.3/T...3.8/T.4./T /T.8./T.9 /T /T.9/T./T -.5.8/T./T -.7/T.6/T.5/T.4/T.3/T Rel Axis
31 Eemplo 3: Ess normlido Un ve confirmd l estbilidd de lo cerrdo, procedemos clculr el error de estdo estcionrio pr K =. El sistem es tipo cero y por lo tnto el error estcionrio nte entrd esclón es finito y se clcul el coeficiente de error K P. e SS normlido K P G E Resultdo: e ss = 3.5%
32 Eercicio : Encontrr el error de estdo estcionrio normlido Encuentre el error de estdo estcionrio nte esclón y rmp pr el sistem ddo G E.385 ; T.s Primero verificmos l estbilidd del sistem en lo cerrdo evlundo el polinomio crcterístico + KG E 3 p. 3473* * K*. 949K Se trt de un sistem de orden 3, n-3 = 3, con n = >.
33 Probmos entonces l estbilidd de entrd slid pr el sistem. p -.e * K K 3 p K K K.4493 n.867 K 4.94 Como el sistem es de orden tres debemos hor relir el rreglo de Jury
34 Arreglo de Jury pr el eercicio Fil 3.949K K K K s s s Conclusión: Pr que el sistem en tiempo discreto se estble, tomndo en cuent tods ls condiciones tenemos que: K.687 Ahor se de l lector resolver el problem de error de estdo estcionrio pr un vlor de K =.4.
35 Eercicio 3: Encontrr el e ss pr l plnt del eercicio Se hn determindo los límites de l gnnci K, pr grntir l estbilidd del sistem reentdo unitrimente pr l plnt G, con T =.. Encuentre el error de estdo estcionrio nte entrds normlids de prueb esclón y rmp pr los vlores de gnnci K = y K = 5. Solución: G = Gnnci/Entrd Esclón Rmp K = e ss = + G =.375 K = 5 No existe No existe
DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.
DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)
Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:
Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión
1. Análisis de los Sistemas Discretos. 1. Análisis de los Sistemas Discretos 1
. Análisis de los Sistems Discretos. Análisis de los Sistems Discretos.. Introducción.. Estbilidd... Estbilidd de Sistems Lineles... Estbilidd de Sistems con Entrd y Slid Acotds(BIBO) 3..3. Cómputo de
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES
el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
Determinantes de una matriz y matrices inversas
Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión
Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1.
Apellido Apellido Nomre DNI Clificción. Considere l socición de cudripolos de l siguiente figur: R G Cudripolo A c v G (t) R [ Z ] = R L : Cudripolo B [ Z ] = d Se pide: ) Clculr l mtri de prámetros Z
IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE
IES Fernndo de Herrer Curso 01/1 Globl 1ª evlución º ESO 8 de noviembre de 01 NOMBRE 1) Simplificr ls siguientes expresiones, rcionlindo el denomindor, en su cso: ( 1) ( ) ) ( puntos) 19 0 ( ) b) 8 c)
Análisis de Sistemas Lineales. Controlabilidad y Observabilidad
Análisis de Sistems Lineles Controlbilidd y Observbilidd Contenido Controlbilidd de estdo Trnsformción form cnónic (regulr) controlble, FCC Observbilidd de estdo Trnsformción form cnónic (regulr) observble,
GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA
Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:
EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
, que, como está triangularizado, se observa que es
MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es
Límite y Continuidad de Funciones
CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES
puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Transformaciones en 2D. Sistemas de coordenadas. 2 dimensiones: traslación. 2 dimensiones: escalado
Trnsformciones Contenido Sistems de coordends Trnsformciones en D Trnsformciones en 3 dimensiones Composición de trnsformciones Rotción lrededor de un pivot Rotción lrededor de un eje Agrdecimientos: A
Tema 3: Sistemas de ecuaciones lineales
Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:
METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado
56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si
IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:
IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
Tema 1: Números reales.
Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]
Teorema fundamental del Cálculo.
Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.
Tema 3. DETERMINANTES
Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de
Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 08 - Todos resueltos
Problems Tem 8: Solución problems sobre Determinntes - Hoj 8 - Todos resueltos págin /9 Problems Tem 8 Solución problems sobre Determinntes - Hoj 8 - Todos resueltos Hoj 8. Problem. Se M un mtriz cudrd
LÍMITES CONCEPTO INTUITIVO DE LÍMITE
Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:
UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente
1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO
Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest
Curso de Mecánica Cuántica. Enero-Mayo de 2017
Curso de Mecánic Cuántic. Enero-Myo de 7 Tre Ejercicios del cpítulo (págin 76) del libro Quntum Mechnics. Concepts nd pplictions. Second edition. Nouredine Zettili........6..9 6.. 7.. 8..7 9..9....8..
Clase 2: Expresiones algebraicas
Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!
Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo
Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )
Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A
Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu
DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:
ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de
Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática
12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18
Solución Segund Prueb Intermedi 3//8) Curso 7/8 Problem. Indic si los siguientes enuncidos son VERDADEROS o FALSOS, justicndo l respuest. ) Si f : [, b] R es continu con c f)d < b f)d. b) Si f : [, + )
= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13
Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l
UNIDAD 8.- Determinantes (tema 2 del libro)
UNIDD 8.- Determinntes (tem del libro). DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) Definición: Pr un mtriz cudrd de orden, not por det( ) ó,
Problema 2 Sea el sistema:
UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB6A) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO A ESCRIBA CLARAMENTE
TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1
TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-
TEMA 0: CONCEPTOS BÁSICOS.
TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)
UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como
AX = B. X es la matriz columna de las variables:
ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:
Examen con soluciones
Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi
RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO
RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles
Grado en Química Bloque 1 Funciones de una variable
Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn
La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a
L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,
De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.
DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera
.7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles
Descomposición elemental (ajustes por constantes)
Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido
BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.
BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
Tema 2. Sistemas conservativos
Te. Sistes conservtivos Prier prte: Dináic de l prtícul en un rect studios el oviiento de un prtícul puntul de s lo lrgo de un rect bjo l cción del potencil V (. L fuerz que ctú sobre l prtícul es F =
Matemática DETERMINANTES. Introducción:
Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.
SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se
Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite
INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,
Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím
Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte
Límite de funciones. Continuidad MATEMÁTICAS II 1
Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest
Hasta el momento solo hemos trabajado con funciones reales de la forma
Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde
Método de sustitución trigonométrica
MB0005_MAAL_Sustitución Versión: Septiembre 0 Método de sustitución trigonométric Por: Sndr Elvi Pérez El método de sustitución trigonométric se utiliz cundo ls integrles directs de epresiones rcionles
Matemáticas Empresariales I. Integral Definida
Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología
Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
FUNCIONES ELEMENTALES
Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2
JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método
Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±
CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes
FUNDAMENTOS DE PROGRAMACIÓN LINEAL
18 de Septiembre de 2017 FUNDAMENTOS DE PROGRAMACIÓN LINEAL Ingenierí Industril Ingenierí Informátic Fcultd de Ingenierí Universidd Ctólic Andrés Bello Progrmción Linel José Luis Quintero 1 Puntos trtr
Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3
Fórmuls de Viet Entrenmiento extr Qué es el tiempo? Por: Argel Resumen En el presente mteril se trtrá con un cuestión relciond con ls ríces de un polinomio, en l que se estblece un serie de relciones entre
DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número
DETERMINNTES CPR. JORGE JUN Xuvi-Nrón Se mtriz cudrd de orden, n. Formdos todos los productos posibles de, n elementos, tomdos entre los, n 2 elementos, de l mtriz,, de modo que en cd producto hy un fctor
MATRICES Y DETERMINANTES
MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio
AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA
GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades:
T Números. Escribe en form de intervlos los números que verificn ests desigulddes y represéntlos: ) x < o x 6 x > y x < 6 x - y x > x < o x -. Escribe en form de inecuciones o sistems de inecuciones e
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr