FUNDAMENTOS DE PROGRAMACIÓN LINEAL
|
|
|
- Andrea Alarcón Roldán
- hace 7 años
- Vistas:
Transcripción
1 18 de Septiembre de 2017 FUNDAMENTOS DE PROGRAMACIÓN LINEAL Ingenierí Industril Ingenierí Informátic Fcultd de Ingenierí Universidd Ctólic Andrés Bello Progrmción Linel José Luis Quintero 1
2 Puntos trtr 1. Modelos y reliddes 2. Modelo básico de PL 3. Suposiciones básics 4. El problem de PL Progrmción Linel José Luis Quintero 2
3 Modelos y reliddes Modelo Análisis Resultdos Mundo simbólico Juicio del tomdor de decisiones Mundo rel Relidd ser observd Intuición Decisiones Progrmción Linel José Luis Quintero 3
4 Puntos trtr 1. Modelos y reliddes 2. Modelo básico de PL 3. Suposiciones básics 4. El problem de PL Progrmción Linel José Luis Quintero 4
5 El modelo básico de PL Un problem de PL de mimizción se epres por: m z = f() s..: S donde: : Opción dd por ls vribles 1, 2,..., n f: Función objetivo S: Región fctible del espcio de opciones con ls vribles de decisión continus y siendo, tnto f() como ls restricciones que definen S, epresiones lineles de ess vribles. Se recuerd que un epresión Θ es linel en ls vribles si cumple Θ( 1, 2,..., n ) = α 1 1 +α α n n con los esclres α i constntes (i = 1, 2,..., n). Si lgun de ls vribles no es continu, o el objetivo o lgun restricción no es linel entonces el modelo no es linel. Progrmción Linel José Luis Quintero
6 El modelo básico de PL Si el problem de PL es de minimizción, puede epresrse por: min z = f() s..: S con l mism notción nterior. El objeto de un problem de PL es determinr un opción que rroje el mejor vlor del objetivo, es decir, determinr un solución óptim: Un solución óptim se crcteriz porque no eiste otr solución fctible que rroje un mejor vlor de l función objetivo. En síntesis, l PL trt el problem de optimizr un función objetivo linel en un región limitd por restricciones lineles. Progrmción Linel José Luis Quintero
7 Puntos trtr 1. Modelos y reliddes 2. Modelo básico de PL 3. Suposiciones básics 4. El problem de PL Progrmción Linel José Luis Quintero 7
8 Suposiciones del modelo de PL Pr utilizr l PL el modelo debe stisfcer: Proporcionlidd: L contribución de un vrible de decisión en tods ls relciones es proporcionl su vlor y el fctor de proporcionlidd es constnte. Por ejemplo, si en un problem de minimizción de costos se tienen costos vribles, es decir, el costo de lgun ctividd j es 2,75 si j 1000 y que ese costo cmbi 2,50 si j > 1000, entonces l proporcionlidd no se sostiene. Si en un problem ddo el objetivo o lgun restricción tiene epresiones distints según el rngo de ls vribles l proporcionlidd no se cumple. Es el cso si se tiene que z= cundo 1 5 y 2 15 y que z=2 1 cundo 1 > 5 y 2 >15. Progrmción Linel José Luis Quintero
9 Suposiciones del modelo de PL Aditividd: El vlor del objetivo y de culquier restricción, es igul l sum de los portes de ls vribles. L contribución de culquier vrible debe ser independiente de los vlores de ls otrs. Ello implic que el objetivo es seprble en un sum de funciones, cd un de ls cules es un epresión linel de un únic vrible, es decir: Divisibilidd: z = f( 1, 2,..., n ) = f 1 ( 1 ) + f 2 ( 2 ) f n ( n ) Ls vribles de decisión se pueden dividir en culquier nivel frccionl. Por ejemplo, si se dese un ptrón de embrque de cjs que minimice el costo no tiene sentido obtener 2.31 cjs. En csos como éste l divisibilidd no se sostiene y el modelo linel puede no corresponder l problem. Progrmción Linel José Luis Quintero
10 Suposiciones del modelo de PL Certidumbre: Cd prámetro que interviene en el problem se supone conocido con certez. Ls posibles vriciones de los coeficientes de ls vribles, tnto en l función objetivo como en ls restricciones, que pueden ocurrir en l relidd no son tomds en cuent por los métodos de resolución. Por ejemplo, si en un problem de presupuesto de cpitl donde se us el criterio del Vlor Presente, se sbe que el vlor de l ts de interés fluctú dentro de cierto rngo, es preciso fijr un vlor pr resolver el problem hciendo cso omiso de ess fluctuciones, por lo menos en primer instnci. Progrmción Linel José Luis Quintero
11 Suposiciones del modelo de PL L proporcionlidd, l ditividd y l certidumbre son consecuencis directs de l definición mism de linelidd, mientrs que l divisibilidd es consecuenci de l continuidd eigid ls vribles Si no se cumple lgunos de los supuestos de proporcionlidd, ditividd, divisibilidd o certidumbre, el modelo no es linel. En muchos csos estos supuestos no se cumplen en l relidd y sin embrgo, se formuln y resuelven problems eitosmente utilizndo l PL, con l interpretción del cso. Lo importnte es que l scr conclusiones del modelo, se teng clr concienci de l proimción que se reliz l violr lguno de los supuestos de bse. Progrmción Linel José Luis Quintero
12 Puntos trtr 1. Modelos y reliddes 2. Modelo básico de PL 3. Suposiciones básics 4. El problem de PL Progrmción Linel José Luis Quintero 12
13 El problem de l PL Un problem de PL es un problem de optimizción en el cul: Se busc optimizr (mimizr o minimizr) un función objetivo, l cul es un epresión linel de ls vribles de decisión. Ls opciones considerr stisfcen un conjunto de restricciones lineles, que conformn l región fctible del espcio de opciones. Cd restricción es un ecución o inecución linel. Cd vrible está sujet un restricción de signo determind. El objetivo de un problem de PL es determinr un solución óptim, l cul es un solución fctible donde el objetivo lcnz su mejor vlor. Progrmción Linel José Luis Quintero
14 El problem de l PL Se el problem: s..: 1,1 2,1. m,1 m z = c c cnn 1,2 2,2. m, ,n 2,n. m,n j n n n b b b 0 pr j=1,...n. 1 2 m donde: 1, 2,..., n son ls vribles de decisión z = c c c n n es l función objetivo Progrmción Linel José Luis Quintero
15 El problem de l PL Los c 1,c 2,...,c n son vlores constntes conocidos llmdos coeficientes de costo. Un c j (j=1,2,...,n) represent l vrición que eperiment el objetivo, por un cmbio unitrio en l vrible j. b 1, b 2,...,b m son constntes conocids que constituyen el vector de recursos y representn los requerimientos que deben ser stisfechos. Los i,j (i=1,2,...,m y j=1,2,...,n) son constntes conocids llmdos coeficientes tecnológicos. Un i,j represent l vrición que tiene el recurso b i por un vrición unitri de j. Ellos formn l mtriz tecnológic. L no negtividd j 0 (j=1,2,...,n) puede derivr del problem, pero siempre debe introducirse pr plicr el Simple. Progrmción Linel José Luis Quintero
16 El problem de l PL Un form equivlente del problem nterior es: s..: El cul se puede epresr mtricilmente por: min z = c T s..: A b 0 min n j= 1 z = n j= 1 c j j i,j j bi pr i = 1,2,...,m j 0 pr j = 1,2,...,n Progrmción Linel José Luis Quintero
17 El problem de l PL siendo: c T = (c 1,c 2,...,c n ) es un vector fil o vector de costos A es l mtriz tecnológic. es un vector column de ls vribles de decisión b es un vector column llmdo vector de recursos 1,1 2,1 m,1 1,2 2,2. m, ,n 2,n. m,n M 1 2 n b b M b 1 2 m Progrmción Linel José Luis Quintero
18 El problem de l PL A un solución óptim se le suele denotr por * y l vlor que en ell lcnz el objetivo se le denot por z *. L solución un problem de PL no consiste en dr el vlor de z*, sino, lo que es más importnte, dr el vector *, pues es él quien indic l form de lcnzr z*. Progrmción Linel José Luis Quintero
19 Pensmiento de hoy Nd es permnente eceptoelcmbio. Heráclito Progrmción Linel José Luis Quintero 19
Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES
puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )
Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri
Tema 3: Sistemas de ecuaciones lineales
Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m
a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3
8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7
TEMA 2. DETERMINANTES
TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función
Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A
Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu
Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:
Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):
Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:
BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales
MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices
Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García
ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,
según los valores del parámetro a.
Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr
Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:
UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.
BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en
56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado
56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si
Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3
Fórmuls de Viet Entrenmiento extr Qué es el tiempo? Por: Argel Resumen En el presente mteril se trtrá con un cuestión relciond con ls ríces de un polinomio, en l que se estblece un serie de relciones entre
SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.
SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se
TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3
TEMA 7 DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN 2 7.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
CAPÍTULO 2. , para 0 p 1. [] x
CAPÍTULO LAS CURVAS DE LORENZ Y EL SISTEMA DE PEARSON RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES Deprtmento de Métodos Cuntittivos pr l Economí y l Empres Fcultd de
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE.
INSTITUCION EDUCATIVA LA RESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIO DE GUIA: MATEMATICAS MATEMATICAS EDISON MEJÍA MONSALVE. CONCETUAL - EJERCITACION ERIODO GRADO 8 A/B N FECHA Enero / 0
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}
NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero
MATEMÁTICAS II Tema 4 Vectores en el espacio
Geometrí del espcio: Vectores; producto esclr, vectoril y mixto Aplicciones MATEMÁTICAS II Tem 4 Vectores en el espcio Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...
el blog de mate de aida: MATE I. Cónicas pág. 1
el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
UNIDAD IV ÁLGEBRA MATRICIAL
Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,
Sistemas de ecuaciones lineales
Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL
OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
Pauta Certamen N 3. Universidad Técnica Federico Santa María Departamento de Matemática. Matemática II (MAT-022) 1 dx es: (a + x)(b x)
Universidd Técnic Federico Snt Mrí Deprtmento de Mtemátic Put Certmen N Mtemátic II (MAT-22) P) Si, b R +, l ntiderivd d es: ( + )(b ) A) + ln + b b + c B) ln ( + )(b ) + c + b C) + b ln b + + c D) ( +
2. MATRICES 2.1. CONCEPTO DE MATRIZ 2.2. TIPOS DE MATRICES 2.3. OPERACIONES CON MATRICES
Mtrices Herrmients informátics pr el ingeniero en el estudio del lgebr linel 2. MARICES 2.. CONCEPO DE MARIZ 2.2. IPOS DE MARICES 2.3. OPERACIONES CON MARICES 2.3.. PRODUCO DE UNA MARIZ POR UN ESCALAR
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS
Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto
Límite y Continuidad de Funciones
CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como
DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K
DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd
5.2 Integral Definida
80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos
TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1
Estudios J.Conch ( funddo en 200) ESO, BACHILLERATO y UNIVERSIDAD Deprtmento Bchillerto MATEMATICAS 2º BACHILLERATO Profesores Jvier Conch y Rmiro Froilán TEMA DETERMINANTES Mtemátics II 2º Bchillerto
Funciones trascendentes
Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte
Unidad 10. Sistemas de ecuaciones lineales
Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
