Teorema de la Función Inversa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema de la Función Inversa"

Transcripción

1 Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones inverss que describen u y v como funciones de x, y. Es decir queremos tener (F F )(u, v) F (F (u, v)) F (x, y) F (f(u, v), g(u, v)) (u, v) (F F )(x, y) F (F (x, y)) F (u, v) F (ϕ(x, y), ψ(x, y)) (x, y) Un cso prticulr del Teorem generl de l función implícit es el Teorem de l función invers. Ddo un sistem de n-ecuciones f (x, x,..., x n ) y f (x, x,..., x n ) y. f n (x, x,..., x n ) y n Trtmos de resolver ls n-ecuciones pr x, x,...x n como funciones de y, y,...y n. Esto es, estmos trtndo de invertir ls ecuciones del sistem nterior, que es lgo nálogo formr los inversos de funciones como senx y y e x y, sólo que est vez se intentrá con funciones de vris vribles. L cuestión de existenci se responde por medio del teorem generl de l función implícit plicdo ls funciones y i f i (x, x,..., x n ) con ls incognits x, x,..., x n. L condición de existenci pr l solución en un vecindd del punto x 0 es que el erminnte de l mtriz Df(x 0 ) y f (f i, f,...f n ) sen distintos de cero. Explicitmente: (f, f,..., f n ) (x, x,..., x n ) Ms ún, si considermos ls expresiones: J(f)(x 0 ) xx0 (x 0 ).... n (x 0 )... G(x, y, u, v) x f(u, v) 0 H(x, y, u, v) y g(u, v) 0 (x 0 ). 0 n (x 0 ) n

2 Lo que pretendemos es despejr de ell u y v en términos de x e y y poder estblecer sí ls funciones u ϕ(x, y), v ψ(x, y). Entonces el T.F.Im. (tercer versión) nos d ls condiciones pr que podmos hcer esto. Se P (x, y, u, v)ɛr 4 un punto tl que G(p) H(p) 0. Supongmos que en un bol de centro en P ls derivds prciles de G y H son continus. Si el jcobino 0 en P, entonces es posible despejr de ells u y v en terminos de x e y, y estblecer sí funciones u ϕ(x, y), v ϕ(x, y) definids en un vecindd V de (x, y) F (u, v), ls cules tienen derivds prciles continus en V que se pueden clculr como,,, ((x, v) Por lo tnto: 0 ((y, v) Por lo tnto: 0 ((u, x) 0

3 ((u, y) 0 En resumen tenemos: Sen f, g : U R R funciones definids en el conjunto bierto U de R. Sen x f(u, v), y g(u, v). Supong que lgun bol B de R con centro (u, v), ls derivds prciles,,, son continus. Si el jcobino es no nulo en (u, v) entonces un vecindd V de x, ȳ donde podemos definir funciones inverss u ϕ(x, y), v ψ(x, y) es decir tles que u ϕ(x, y), v ψ(x, y), y f(ϕ(x, y), ψ(x, y)) x, g(ϕ(x, y), ψ(x, y)) y pr (x, y)ɛv ls cules tienen derivds prciles continus en V que se clculn como,,, ( ) Dd l función invers F (x, y). Est tiene por funciones coordends ls funciones u ϕ(x, y). Es decir F (x, y) (u, v) (ϕ(x, y), ψ(x, y)). L mtrix jcobin de est función es: JF El resultdo nterior ( ) nos dice como clculr ls derivds prciles,,, en un vecindd V de (x, y) l sustituir ls fórmuls correspondientes en JF, recordndo que. JF Multipliquemos JF y JF, se obtiene U 3

4 (JF )(JF ) [ 0 0 ] [ 0 0 Así concluimos que l mtriz jcobin de l función invers de F es justmente l invers de l mtriz jcobin de F. Es decir se tiene JF (JF ) Teorem de l Función Invers Se F : U R n R n un función definid en el conjunto bierto U R n. Se F (p) q donde p (x,..., x n ) y q (y,..., y n ). Supong que en un bol B R n con centro p, F es clse C y JF (p) 0. Entonces hy un bol B R n con centro q en l que se puede definir l función invers de F, F l cul es de clse C y JF (y) [JF (x)] donde y F (x) B Ejemplo: Considere l función F : R R dd por f(u, v) (u +v 3, u +uv). Se tiene f(, ) (9, 3). Est función es de clse C en R. Ls derivds prciles de sus funciones coordends x f(u, v) u 3 + v 3, y g(u, v) u + uv son 3u, L mtriz jcobin de f es JF 3v, u + v, u 3u 3v u + v u l cul en el punto (, ) es invertible pues JF (, ) Así podemos concluir que en un bol B de (9, 3) se d l invers F de F o bien, que podemos despejr de x u 3 + v 3, y u + uv u, v como funciones de x e y, l cul es de clse C en B y que su derivd es JF (x, y) [JF (u, v)] JF 4 3u 3 6uv 3v 3 ] u 3v (u + v) 3u

5 donde x u 3 + v 3, y u + uv. Es decir (u3 + v 3, u u + uv) 3u 3 6uv 3v 3 (u3 + v 3, u 3v + uv) 3u 3 6uv 3v 3 (u3 + v 3, u u + v + uv) 3u 3 6uv 3v 3 (u3 + v 3, u 3u + uv) 3u 3 6uv 3v 3 Ejemplo: Considere ls ecuciones x u + v + e w y u + w + e v x v + w + e 3u pr p (u, v, w) (0, 0, 0) se tiene que q (x, y, z) (,, ) el erminnte de l mtriz jcobin de l función F (u, v, w))(x, y, z) es: (x, y, z) JF (u, v, w) w w e w e v 3e 3u (0,0,0) 3 w Si clculmos su erminnte obtenemos ( ) ( 3)+ ( 6) +5 0 Podemos loclmente invertir l función F, entorno l punto q, donde podemos definir funciones de clse c u(x, y, z), v(x, y, z) y w(x, y, z). Ahor bien como JF (q) [JF (p)] 3 }{{}

6 * Vmos clculr l invers usndo l mtriz de cofctores de l mtriz 3 () + () + 3 () +3 3 () + () + 3 () () 3+ () 3+ () Trnsponiendo l ultim mtriz tenemos ls prciles son: 3 (p) (p) w (p) (p) 0 (p) w w (p) (p) (p) 0 (p) Ejemplo: Dd l función F : R R dd por F (u, v) (e u+v, e uv ) es diferencible siempre y su derivd es JF (u, v) eu+v e u+v e uv e uv Como (JF (u, v)) e u 0 concluimos que es posible despejr u y v en términos de x, y. Más ún, como e uv e u+v (JF (u, v)) e u e u euv eu+v e uv eu+v e u e u euv eu+v Concluimos que ls derivds prciles de ls funciones inverss u ϕ(x, y), v ψ(x, y) son en el punto (e u+v, e uv ) euv, eu+v, euv, eu+v En este cso es posible hcer explícits u ϕ(x, y), v ψ(x, y). En efecto de ls expresiones x e u+v, y 6

7 e uv, se deduce u lnx+lny, v (lnxlny) cuys derivds coinciden con ls obtenids de l mtriz jcobin. Ejemplo: Se g ( : R R un función continu tl que g(0). Considere l función F : R R dd por F (x, y) x g(t)dt, ) x g(t)dt. Demuestre que est función tiene un invers F definid en un y bol B del origen de coordends. Determine JF Tenemos que: Análogmente f (x, y) x g(t)dt x g(t)dt + g(t)dt g(x) g(y) x g(t)dt + g(t)dt Por lo tnto JF (f, f ) (x, y) f (x, y) x y g(t)dt y x g(t)dt + g(t)dt xg(x ) g(x) g(x )x g(y) g(y) g(y) (0,0) x g(t)dt + g(t)dt g(0) g(0) g(0 ) 0 g(0) Por lo tnto en los lrededores del (0,0) podemos definir funciones inverss. Ahor pr clculr JF tenemos que JF (JF ) 0 }{{} 0 0 ( ) ( ) b d b * Recordndo que si A entonces A c d A c Ejercicio: Vmos clculr l mtriz jcobin de l funcion F : R 3 R 3 dd por F (x, y, z) (x y, z, xyz) Tenemos que: MJF xy x yz xz xy A l trz de l mtriz Jcobin se le conoce tmbién como Divergenci se le denot divf o F (,, ) (f, f, f 3 ) En nuestro cso divf divf F (,, ) (x y, z, xyz) y + + yz xy xy 3xy 7

8 A l diferenci de los elementos que estn fuer de l digonl principl ( 3, 3, ) se le conoce como rotcionl y se le denot rotf, tmbién se puede clculr î ĵ k rotf f f f 3 En nuestro cso rotf ( xz, yz, x ) A l divergenci de un grdiente ( F ) f + f + f f se le conoce como el operdor lplcino y desempeñ un ppel importnte en l físic Ejemplo: Mostrr que f 0 pr f(x, y, z) donde (x, y, z) 0 x +y +z Tenemos que: x (x + y + z ) 3 y (x + y + z ) 3 z (x + y + z ) 3 f + f + f 3x (x + y + z ) 5 f 3x (x + y + z ) 5 f 3y (x + y + z ) 5 f 3z (x + y + z ) 5 (x + y + z ) 3 (x + y + z ) 3 (x + y + z ) 3 3y + (x + y + z ) 3 (x + y + z ) 5 + (x + y + z ) 3 3z (x + y + z ) 5 (x + y + z ) 3 3(x + y + z ) (x + y + z ) 5 3 (x + y + z ) (x + y + z ) 3 (x + y + z ) 3 0 8

Funciones de R en R. y = 1. son continuas sobre el conjunto

Funciones de R en R. y = 1. son continuas sobre el conjunto Funciones de R n en R m Teorem de l Función Invers Funciones de R en R Se f(x) un función rel de vrible rel con derivd continu sobre un conjunto bierto A se x 0 un punto de A donde f (x 0 ) 0. Considere

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Teoremas de la Función Inversa y de la Función Impĺıcita

Teoremas de la Función Inversa y de la Función Impĺıcita Teorems de l Función Invers y de l Función Impĺıcit Betriz Porrs 1 Introducción En el cpítulo nterior estudimos lguns propieddes de ls funciones diferencibles que tenín l diferencil nul El desrrollo de

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

4. Definición: Convergencia uniforme de una sucesión de funciones

4. Definición: Convergencia uniforme de una sucesión de funciones 1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla: UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente

Más detalles

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series.

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series. PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO INSTITUTO DE MATEMATICAS LUISA ABURTO HAGEMAN, Secretri Acdémic del Instituto de Mtemátics Certific este, PROGRAMA Asigntur MAT 223 CALCULO 2 I DATOS GENERALES

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Dados V y V dos espacios vectoriales sobre un cuerpo, una aplicación f: V V se dice que es una aplicación lineal si verifica:

Dados V y V dos espacios vectoriales sobre un cuerpo, una aplicación f: V V se dice que es una aplicación lineal si verifica: FACUTAD DE CIENCIAS SOCIAES Universidd de Jén Deprtmento de Mtemátics (Are de Álgebr) PRÁCTICA Nº 7 Aplicciones lineles. Con est práctic se pretende revisr l definición de plicción linel sí como el cálculo

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice

Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática Electromgnetismo Auxilir: 27 de gosto, 2008 Método de Imágenes en Electrostátic Nuestro objetivo es clculr el cmpo electrostático en el espcio considerndo l presenci de un conductor, ue está expuesto l

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas.

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas. Semn 2 - Clse 5 15/1/1 Tem 1: Series Series de Tylor Antes de comenzr con l series de Tylor, repsemos lguns propieddes importntes de ls series infinits. 1. Algebr de series de potencis El álgebr elementl

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Cálculo de volúmenes II: Método de los casquetes cilíndricos

Cálculo de volúmenes II: Método de los casquetes cilíndricos Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Tema 1.3: Concepto de derivada. Ecuaciones de Cauchy-Riemann. De nición y primeras propiedades de las funciones holomorfas

Tema 1.3: Concepto de derivada. Ecuaciones de Cauchy-Riemann. De nición y primeras propiedades de las funciones holomorfas Tem 1.3: Concepto de derivd. Ecuciones de Cuchy-Riemnn. De nición y primers propieddes de ls funciones holomorfs Fcultd de Ciencis Experimentles, Curso 2008-09 E. de Amo L estructur de cuerpo pr C tiene

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A = Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada. Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

f(t)dt para todo x [a, b].

f(t)dt para todo x [a, b]. ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd

Más detalles

1. La derivada del producto de funciones derivables

1. La derivada del producto de funciones derivables Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. LONGITUDES, AREAS Y VOL UMENES. Un trtmiento mlio de l integrl ermite el clculo de longitudes de curvs, res de suercies (lns y lbeds) y de volumenes. Con nuestro conocimiento

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles