UNIDAD DIDÁCTICA 4: LOGARITMOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD DIDÁCTICA 4: LOGARITMOS"

Transcripción

1 Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES PARA EL ESTUDIO En est unidd, nuestro objetivo básico es el estudio de los ritmos, unque pr ello comenzremos recordndo ls propieddes básics de ls potencis de ls funciones eponenciles. Seguidmente introduciremos l función rítmic como l función invers de l función eponencil. A continución introducimos ls propieddes básics de los ritmos el cmbio de bse. Finlmente, veremos lgunos ejemplos de cómo se resuelven ecuciones rítmics eponenciles. 3. OBJETIVOS ESPECÍFICOS Conocer l definición de l función rítmic Estudir sus propieddes crcterístics 4. DESARROLLO DE LOS CONTENIDOS 1. Introducción L espernz de vid, ún en los píses poco desrrolldos, creció después de l Segund Guerr Mundil unque distinto ritmo. Este crecimiento, si bien l principio trjo mor ctividd progreso, l lrg h producido grves problems: flt de viviends, escuels, puestos de trbjo... El umento de l poblción por l prolongción de l vid se h visto compensdo en prte por el descenso de l ntlidd en los píses industrilizdos. De todos modos, h precido el problem del envejecimiento de l poblción (es decir el umento de l edd promedio). Anlizremos hor lgún modelo mtemático que trt de describir l evolución de un poblción. En Europ occidentl, durnte los siglos XVII XVIII, comenzó descender el índice de mortlidd, el incremento poblcionl en muchos píses se situó entre 0.5 1% 1

2 Tem 4 nul. Pr evitr complicciones con los cálculos considerremos que el crecimiento poblcionl fue del 1% nul durnte los primeros 20 ños de este siglo. Supongmos que l cntidd de poblción europe l comienzo del siglo XVII (ño ) se 10 (en cientos de millones). L función P(t) medirá l cntidd de poblción en el tiempo t. Como comenzremos nuestro estudio prtir del ño este será el tiempo inicil, es decir, t = 0. Podemos hllr un fórmul que nos permit clculr l poblción pr culquier Vlor de t?.pr ello nlizremos lo que hemos hecho hst el momento en cd pso: en t = 0, P (0) = 10 en t = 1, P (1) = ,01.10 = 10 ( 1 + 0,01) = 10.1,01 = P (0). 1,01 en t = 2, P (2) = P (1) + 0,01. P (1) = 10. 1,01 + 0, ,01 = 10. 1,01 ( 1 + 0,01) = 10. 1,01. 1,01 = 10 (1.01)2 Podrás relizr el cso t = 3? (Ten en cuent los psos hechos en los csos t = 1 t =2) En generl, l poblción después de t períodos será: P (t ) = 10 (1.01) t donde 10 es l poblción inicil P (0). Verifiquemos que l fórmul obtenid nos d, por ejemplo pr t = 2, P (2) = 10. 1,012 = 10,201 que coincide con el vlor de l tbl. Si queremos estimr l poblción en el ño 1610, será P (10) = 10. 1,0110 = Observemos que en l fórmul P (t ) = 10 (1,01) t, el fctor 10 es l poblción inicil l vrible t figur en el eponente. A este tipo de funciones se ls llm eponenciles. Por otr prte, supongmos que un determindo bien mteril que ho cuest 150 euros se devlú con el uso, cd ño, un 4% de su vlor durnte el ño nterior. Por ejemplo: En t = 0 (inicio) el vlor en 0 V(0) = 150 En t = 1 (1 ño después ) V(1) = 150 4% de 150 = 144 En t = 2 (2 ños después) V(2) = 144 4% de 144 = 138,24 En t = 3... En generl, un fórmul que represent est situción, puede obtenerse como en el ejemplo nterior V(t) = 150. (096) t Supongmos hor, que queremos sber después de cuántos ños de uso el vlor del bien se redujo proimdmente 92 euros. Pr esto necesitmos resolver l siguiente ecución 92 = 150 (0,96) t 2

3 Tem 4 Cómo despejr t de est fórmul?.observemos que el vlor de t que estmos buscndo 92 es tl que elevndo el número 0,96 ese vlor d por resultdo. 150 Es decir, nuestr pregunt es: cómo podemos resolver ecuciones del tipo 10 = k?, ó en generl = k?. Podemos hcerlo si conocemos l función invers de = 10, es decir, l función rítmic. 3. Potencis funciones eponenciles 3.1. Potencis potencis de eponente nturl potencis de eponente nulo potenci de eponente negtivo potenci de eponente frccionrio 3.2. Propieddes básics de ls potencis Ejemplos: 3.3. Función eponencil 3

4 Tem 4 El comportmiento de l función eponencil es mu distinto según se > 1, < 1, = 1. Ejemplo: Anlicemos l gráfic de l función eponencil de cuerdo l vlor de. ) Si > 1, por ejemplo = 2, l función = 2 es creciente. Observemos que culquier se el vlor de > 0, l gráfic de l función eponencil debe psr por el punto (0,1), que es el vlor de l ordend l origen; es decir el vlor que tom l función pr = 0. Por otro ldo, es clro que medid que el vlor de ument, el vlor de tmbién, si el vlor de decrece (con vlores negtivos) entonces el vlor de tiende 0. b) Si 0 < < 1, por ejemplo 1 = 2 l función es decreciente. L siguiente tbl de vlores nos permite hcer un estudio comprtivo de ls funciones = 2 e 1 = 2 4

5 Tem 4 Como hemos comentdo en l introducción, l función eponencil prece con frecuenci en modelos mtemáticos de diferentes procesos evolutivos. Por ejemplo, ls mebs son seres unicelulres que se reproducen dividiéndose en dos. Supongmos que ls condiciones de un cultivo son tles que ls mebs se duplicn proimdmente cd hor, que inicilmente solo h un meb. Proponemos clculr el número de mebs que hbrá según psn ls hors: Observemos que si en el momento inicil h k mebs, en l primer hor se duplicn, entonces hor h 2k. En l segund hor se vuelven duplicr, es decir, 2 (2k) = 2 2 k, en l tercer hor se repite l situción tenemos 2(22 k) =2 3 k, etc. Luego en generl se tiene 2 k. Es decir, si l comienzo del proceso hbí k mebs, el número totl l cbo de hors será = k Ecuciones eponenciles 5

6 Ejemplos: Tem 4 4. Función rítmic ritmos 4.1. Función rítmic Nuestr pregunt es: cómo podemos resolver ecuciones del tipo 10 = k?, l respuest es conociendo l función invers de =10. Ahor, podemos decir que, si 10 = k entonces = k es decir, el ritmo de un número en bse 10 es el eponente l que h que elevr l bse 10 pr obtener dicho número. Ejemplo: Si 10 = 100 entonces = = 2 pues 10 2 = 100 Si 3 = entonces 10 3 = = 1/100 entonces = = -2 pues 10-2 = Generlizndo: Se > 0 1, e > 0, llmremos ritmo en bse de l único número que verific =. Es decir, = = 6

7 Ejemplos: Interpretción de l definición de ritmo: ) 2 7 = 128 por tnto = 7 b) 8 1/3 = 2 por tnto 8 2= 1/3 Tem 4 Clculmos ) = 2 = 16 = 2 4 = 4 b) = 2 = 32 = 2 = 5 Resolvemos un ecución 4.2. Propieddes de los ritmos = = = ,47712 luego - 0, = 0 = 1 El ritmo de un producto es igul l sum de los ritmos de los fctores Log (. ) = + Ejemplo 2 (4.8) = 2 32 = = = 5 El ritmo de un potenci es igul l eponente por el ritmo de l bse Log ( ) =. Ejemplo = 2 64 = 6 pues 2 6 = = 3.2 = 6 A prtir de ls dos propieddes nteriores podemos deducir ls dos propieddes siguientes: El ritmo de un cociente es igul l ritmo del numerdor menos el ritmo del denomindor. = Observr que 1 = = + 1 = 7

8 Tem 4 Ejemplo 3 81/9 = 3 9 = 2 por otro ldo = 4 2 = 2. El ritmo de un ríz es igul l ritmo del rdicndo dividido por el índice de l ríz. Observr que = 1 = = 1 1 = Ejemplo 4 3 = 3 = 1 por otro ldo 3 = ( 4) = Cmbio de bse Ls clculdors científics permiten solmente obtener ritmos decimles neperinos. Los ritmos decimles son los ritmos de bse 10, se costumbr denotr 10 = omitiendo l bse. El ritmo neperino o nturl es el ritmo cu bse es el número e 2,7182 se denot e = ln. Si queremos clculr ritmos en otr bse, es conveniente relizr cmbios de bse. Si, por ejemplo, tuviérmos que clculr 2 3: Lo primero que hcemos es llmr = = 3 por tnto, tomndo ritmos en mbos ldos de l últim iguldd tenemos 3 2 = 3 2 = 3 de donde tenemos que 2 3 = =. 2 En generl tenemos que: = de donde tenemos que = b = b = b b 8

9 Tem 4 5. Ecuciones eponenciles rítmics 9

10 Tem 4 10

11 Tem 4 5. RESUMEN Potencis Definición de ritmo Se > 0 1, e > 0, llmremos ritmo en bse de l único número que verific =. Es decir, = = Propieddes de los ritmos o 1 = 0 = 1 o Log (. ) = + o Log ( ) =. 11

12 o Log ( ) =. Tem 4 o o = 1 = = Cmbio de bse = = b b 6. BIBLIOGRAFÍA Emilio Bujlnce otros. Mtemátics especiles. Editoril Snz Torres (1998). 2ª Edición Mrí E. Bllvé otros. Problems de mtemátics especiles. Editoril Snz Torres (1996). 2ª Edición. José T. Pérez Romero José A. Jrmillo Sánchez. Mtemátics. Pruebs de cceso l universidd pr mores de 25 ños. Editoril MAD. (2002)

13 Tem 4 7. ACTIVIDADES 1. Clculr: 2. Mostrr con un ejemplo que en generl 3. Resolver plicndo l definición de ritmo 4. Sbiendo que clculr, plicndo ls propieddes de los ritmos 5. Clculr relizndo cmbio de bse 8. EJERCICIOS DE AUTOCOMPROBACIÓN 1. Sbiendo que 2= = , clculr:. 8 b. 6 c d. 3 3 e f Clculr, utilizndo l clculdor, con ritmos decimles:. 2 5 b c

14 Tem 4 3. Clculr, utilizndo l clculdor, con ritmos neperinos b c SOLUCIONES A LOS EJERCICIOS DE AUTOEVALUACIÓN b c d e f b c b. 1, c

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

7. EXPONENCIALES Y LOGARITMOS

7. EXPONENCIALES Y LOGARITMOS Eponenciles y Logrítmos 7. EXPONENCIALES Y LOGARITMOS En est Unidd estudiremos y nlizremos ls funciones y ecuciones eponenciles y logrítmics. Comenzremos con ls funciones eponenciles pr luego continur

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. POTENCIAS L epresión n se llm potenci de bse y eponente n: Si n es un número nturl: n =, n veces. 0 =, = n m n n m = y = n Ejercicios: º)

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( )

LOGARITMOS. John Neper ( ) Henry Briggs ( ) LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto.

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. LOGARITMOS John Neper (550-67) Henry Briggs (56-60) MATEMÁTICAS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que l vrible

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Mtemátics Nivel Medio Mtemátics Ap.CC.SS.I Mrtes 0 de noviembre de 01 1 hor NOMBRE APELLIDOS CALIFICACIÓN 1. Oper medinte notción rdicl y simplific l máximo: (0 puntos). Resuelv ls siguientes cuestiones

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4.

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4. Deprtmento de Mtemátics http://www.colegiovirgendegrci.org/eso/dmte.htm ARITMÉTICA: Rdicles. RADICALES... Ríz cudrd. Anlicemos los siguientes ejemplos: == es un potenci de se y exponente. El resultdo,,

Más detalles

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10:

Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10: Potencis Potenci Qué es un potenci? Relizr el siguiente cálculo : 7 Utilizndo solmente tres doses escribe tods ls epresiones numérics que se pueden formr con ellos. No vle usr otros signos. Cuál es el

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA.

Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA. TEORIA GENERAL DE LAS ECAUCIONES I. IGUALDADES Y ECUACIONES Ls igulddes son epresiones en donde precen el símolo = Ejemplos:. 5 + = 15-7. + 6 = 5 Alguns propieddes de ls igulddes que utilizremos son: Si

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

P O L I T E C N I C O 1 FUNCIÓN EXPONENCIAL Y FUNCIÓN LOGARÍTMICA

P O L I T E C N I C O 1 FUNCIÓN EXPONENCIAL Y FUNCIÓN LOGARÍTMICA Función Eponencil y Logritmo Mtemátic º Año Cód. 07-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. C r l N á p o l i P r o f. J o r g e l i n O s é s Dpto. de Mtemátic FUNCIÓN EXPONENCIAL Y FUNCIÓN

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

Límite de funciones. Continuidad MATEMÁTICAS II 1

Límite de funciones. Continuidad MATEMÁTICAS II 1 Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS LA FUNCIÓN EXPONENCIAL. Introducción Siempre que hy un proceso que evolucione de modo que el umento (o disminución) en un pequeño intervlo de tiempo, se proporcionl

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

Universidad de Antioquia

Universidad de Antioquia Fcultd de Ciencis Ects Nturles Instituto de Mtemátics Grupo de Semilleros de Mtemátics (Semátic) Funciones inverss gráfics Mtemátics Opertivs Tller 7 0 El concepto mtemático de función epres l ide intuitiv

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles