TEMA 1 EL NÚMERO REAL
|
|
|
- María Luz Lucero Pinto
- hace 9 años
- Vistas:
Transcripción
1 Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8 Deciml ecto, Frccionrio, Rcionl, Rel 0 = Nturl, Entero, Rcionl, Rel -, =, Deciml periódico puro, Frccionrio, Rcionl, Rel 7 Deciml no periódico, Irrcionl, Rel = Nturl, Entero, Rcionl, Rel Deciml no periódico, Irrcionl, Rel - Entero negtivo, Entero, Rcionl, Rel 7, Deciml periódico mito, Frccionrio, Rcionl, Rel EJERCICIO : Sitú cd número en su lugr correspondiente dentro del digrm:,; ; ; 8; ; ; ;,... EJERCICIO : Represent sobre l rect los siguientes números: 7,; ;
2 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO : Represent en l rect rel los siguientes números, utilizndo el Teorem de Pitágors: ) 0 8 ) 0 7 L hipotenus de un triángulo rectángulo de ctetos 7 y es l longitud pedid. Con el compás podemos trsldr est medid donde deseemos. 8 9 EJERCICIO : Represent en l rect rel los siguientes números, utilizndo el Teorem de Pitágors: ) 8 EJERCICIO : Represent en l rect rel: ),7, )
3 Tem El número rel Ejercicios resueltos Mtemátics B º ESO INTERVALOS Y SEMIRECTAS EJERCICIO 7 : Escribe en tods ls forms posibles los siguientes intervlos y semirrects: / b, c Números myores que - d, b / c, d [, 7] Intervlo semibierto Semirrect Semirrect Intervlo cerrdo Números comprendidos entre - y, incluido - Números menores o igules que - / / 7 Números comprendidos entre y 7, mbos incluidos FRACCIONES, POTENCIAS Y DECIMALES EJERCICIO 8 Oper y simplific el resultdo: b Simplific:, Epresmos N, en form de frcción: 00N,... 0N, N 0 N 90 Opermos y simplificmos: b EJERCICIO 9 Clcul y simplific el resultdo: b Simplific, usndo ls propieddes de ls potencis: Epresmos N 0,8 en form de frcción: 00N 8,... 0N 8, N 7 N 90 Opermos y simplificmos: 0,8 -
4 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b 0 EJERCICIO 0 ) Efectú y simplific:, 9 Reduce un sol potenci: 0 ) Epresmos N, en form de frcción: 00N,... 0N, N 0 N 90 Opermos y simplificmos: : EJERCICIO Oper y simplific:, 8 b Reduce un sol potenci y clcul: Epresmos N, en form de frcción: 00N,... 0N,... : 9 90N 9 N 90 Opermos y simplificmos: b : : RAÍCES EJERCICIO : Averigu el vlor de k en cd cso: ) k 7 k c) k
5 Tem El número rel Ejercicios resueltos Mtemátics B º ESO ) k 7 7 k k 0 k k k c) k k k EJERCICIO : Epres como potenci de y simplific. D el resultdo finl en form de ríz: ) c) ) 7 7 EJERCICIO : Etre del rdicl todos los fctores que se posible: ) 8 b c) y z b c 7 ) 8 b b b b y y y z z z c) 7 c) b c b c c EJERCICIO : Simplific y etre los fctores que pueds fuer del rdicl: ) c) ) c) 0 EJERCICIO : Epres como potenci de eponente frccionrio y simplific. D el resultdo finl en form de ríz: ) 0 c) 9 7
6 Tem El número rel Ejercicios resueltos Mtemátics B º ESO ) 0 0 / / c) 9 7 EJERCICIO 7 ) Oper y simplific: 00 Rcionliz y simplific: ) EJERCICIO 8 ) Clcul y simplific: 8 7 Rcionliz y simplific: ) EJERCICIO 9 ) Efectú y simplific: 0 8 Rcionliz y simplific: ) EJERCICIO 0 ) Oper y simplific: 8 00 Rcionliz y simplific: 8
7 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 7 ) EJERCICIO ) Efectú y simplific: Rcionliz y simplific: 8 7 ) EJERCICIO Clcul y simplific : b Rcionliz y simplific : b EJERCICIO Oper y simplific : 7 b Rcionliz y simplific : b EJERCICIO Oper y simplific: 00 b Rcionliz y simplific:
8 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b 0 EJERCICIO : Clcul y simplific: ) 8 8 ) EJERCICIO : Oper y simplific: ) 7 7 ) EJERCICIO 7 : Clcul y simplific el resultdo: ) ) EJERCICIO 8 : Oper y simplific: ) )
9 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO 9 : Clcul y simplific: ) ) EJERCICIO 0 Simplific y etre los fctores que pueds fuer del rdicl: 9 I 7 0 II III b b Rcionliz y simplific : ) I II III b 9 b 0 b EJERCICIO : Epres como un solo rdicl: ) c) 7 7 ) c) EJERCICIO : Rcionliz y simplific: ) c) )
10 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 0 8 c) EJERCICIO : Rcionliz y simplific: ) c) ) c) EJERCICIO : Rcionliz y simplific: ) c) ) c) EJERCICIO : Rcionliz y simplific: ) 7 c) ) c) 8 7 7
11 Tem El número rel Ejercicios resueltos Mtemátics B º ESO APROXIMACIONES Y ERRORES EJERCICIO : Hll con yud de l clculdor, proimndo, cundo se necesrio, hst ls centésims: ) ) 7 8, 777 c) 7 c) 7,0 d),7 EJERCICIO 7 : Aproim cd un de ls siguientes cntiddes, dndo dos cifrs significtivs: I Hy 7 estudintes en un instituto. II Victori pes 8, kg. b Hll el error bsoluto y el error reltivo cometidos l hcer ls proimciones. I 7 estudintes cientos de estudintes Error bsoluto Vlor rel Vlor proimdo = estudintes 7 Error _ reltivo 0,078..., II 8, kg 8 kg Error bsoluto 8, 8 0, kg 0, Error _ reltivo, ,9.0 8, EJERCICIO 8 Aproim hst ls décims cd uno de los siguientes números: A,8 B 9,7 b Hll el error bsoluto y el error reltivo que se cometen l tomr ess proimciones. d) A,8,8 Error bsoluto Vlor rel Vlor proimdo =,8,8 0,0 0,0 Error _ reltivo 0,079...,8.0,8 B 9,7 9, Error bsoluto 9,7 9, 0,0 0,0 Error _ reltivo 0, ,.0 9,7 EJERCICIO 9 : D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer ls siguientes proimciones: L ltur de un edificio es de metros. b En un bibliotec hy miles de libros. El error bsoluto es menor que medi unidd del orden de l últim cifr significtiv:error bsoluto Un cot pr el error reltivo es: Error reltivo Vlor proimdo
12 Tem El número rel Ejercicios resueltos Mtemátics B º ESO Por tnto: ) Error bsoluto 0, metros Error bsoluto 00 libros Error _ reltivo 0, 0,08...,.0 00 Error _ reltivo 8, ,9.0 EJERCICIO 0 Epres con un número rzonble de cifrs significtivs cd un de ls siguientes cntiddes: I 8 ejemplres vendidos de un libro. II Hemos gstdo,8 en nuestrs vcciones. b Qué error bsoluto estmos cometiendo l considerr 9 miles de hbitntes como proimción de 9 8? Y error reltivo? I 8 ejemplres 8 cientos de ejemplres II,8 cientos de b Error bsoluto Vlor rel Vlor proimdo hbitntes 8 Error _ reltivo 8, , EJERCICIO : En un librerí se hn vendido 7 ejemplres de un determindo libro,, cd uno. ) Cuánto dinero se h recuddo en l vent? Aproim l cntidd obtenid dndo dos cifrs significtivs. Di cuál es el error bsoluto y cuál el error reltivo cometidos l hcer l proimción. ) 7, 7 0,9 7 decens de miles de Error bsoluto Vlor rel Vlor proimdo 7 0, ,9 0,9 Error _ reltivo,0...0,.0 70,9 NOTACIÓN CIENTÍFICA EJERCICIO Escribe en form deciml estos números: A, 0 B, 0 8 b Epres en notción científic ls siguientes cntiddes: C D 0, E A B 0, b C, 0 D 0 8 E 8, 0 EJERCICIO Al relizr con l clculdor l operción 0 hemos obtenido en l pntll lo siguiente: Epres en notción científic el número nterior. De cuánts cifrs es dicho número? b Aproim el resultdo nterior dndo tres cifrs significtivs. D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer l proimción.,089 0 Tiene cifrs
13 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b Aproimción,0 0 Error bsoluto 0 0 Error reltivo 0, <,.0 - Vlor proimdo,0 0 EJERCICIO Si clculmos 0 con l clculdor, obtenemos en pntll: Epres el número nterior en notción científic y en form deciml. b Aproim el resultdo nterior dndo dos cifrs significtivs. D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer l proimción. 9,7 0 7 Notción científic 0, Notción deciml b Aproimción 9, 0 7 Error bsoluto Error reltivo 0,00. <,7.0-7 Vlor proimdo 9, 0 EJERCICIO : Clcul, epresndo el resultdo en notción científic con tres cifrs significtivs: ) c) I) I) I),8 0 8, II), 0 7,8 0, 0 8, 0, , 0, 0 0 II), 0 9, 0 8, 0 0 II), 0 8,0 0 9, 0 7,8 0 8,0 9,8, 0 7, ) I) 7,09 0 7, II), 0 7,8 0, 0 8 0, , , 0,9 0 8,9 0 8, 0,80,,8 0 9,0 0 ) I),80 0, II), 0 9, 0 8, 0 0, 0 8, ,, 0 8 8, 0 8,8 0 0, , 0,0 8,, 0 8,7 0 ) I), 0, II), 0 8,0 0 9, 0 7, , 0 7, 0, 0 7,79 0 7,79 0 9, 0 9 EJERCICIO : Ddos los números: A, 0 8 B,0 0 7 C 0 9
14 Tem El número rel Ejercicios resueltos Mtemátics B º ESO Efectú ls siguientes operciones, dndo el resultdo en notción científic con dos cifrs significtivs: I) A B C II) A B C 8 7, 0,0 0,,0 0,79 0 ) I) 7, , II), 0 8, , 0 7, ,, ,8 0 7,8 0 9, 0 9 EJERCICIO 7 ) Hll, con yud de l clculdor, el resultdo de ests operciones en notción científic con tres 8, 7 0, 0 cifrs significtivs:, 0, 0 D un cot pr el error bsoluto y otr pr el error reltivo cometidos l dr el resultdo proimdo. ) (.7 EXP 8. EXP ) (. EXP. EXP ) Por tnto: Error bsoluto 0,7 0, 0, 0, 0 8,9 0 Error reltivo Error reltivo 0,00 Vlor rel Vlor proimdo EJERCICIO 8 ) Hll, con yud de l clculdor, dndo el resultdo en notción científic con tres cifrs 9 8, 8 0, 0 significtivs:, 0, 0 D un cot pr el error bsoluto y otr pr el error reltivo cometidos l dr el resultdo proimdo. ) (.8 EXP 9. EXP 8 ) (. EXP /. EXP / ) ,8 0, 0, 0, Por tnto: Error bsoluto 0 7, 0 Error reltivo Error reltivo 0,000. <, 0 - Vlor rel Vlor proimdo EJERCICIO 9 : L velocidd de l luz, en el vcío, es km/s. Cuántos metros recorre l luz en un dí?. Epres el resultdo en notción científic. 8 dí =00=8.00 s e 0 8,0 =,90 m. 0
15 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO 0 :Un determind bcteri mide.0 - m. Cuánts bcteris colocds en líne rect serín necesris pr cubrir metro de longitud? 0 =0, bcteris. EJERCICIO : El diámetro de l lun es de 00 Km., proimdmente, cuánto tiempo trdrí en dr un vuelt complet un stélite cuy órbit se encuentr 00 Km. de l superficie lunr, si su velocidd medi es de m./h? L LUNA= r = 90 =, 0 Km =, 0 7 m. t =, 0 v e 0, 0 hors = hors, 8 minutos y segundos proimdmente. EJERCICIO : Un virus se duplic cd minutos. Podrís decir cuántos virus hbrá l cbo de un hor?, y de un dí? Inicio: virus A los min. : = virus A los min.: = virus... A los 0 min. 0 =, virus EJERCICIO : Sbemos que un ño luz equivle 9,.0 Km. Si l distnci de l Tierr Andrómed son,.0 ños luz. Cuántos kilómetros son l distnci que nos sepr de Andrómed? 9, 0, 0, Km. CALCULADORA EJERCICIO : Hll, con yud de l clculdor:, 0, 0, b 7 (, EXP 8, EXP 7 ), EXP / Por tnto:, 0, 0, , 0 b 7. y ( ) Por tnto: 7,0 9 EJERCICIO : Utiliz l clculdor pr hllr el resultdo de ests operciones:, 0, 0, 0 0 b
16 Tem El número rel Ejercicios resueltos Mtemátics B º ESO (, EXP /, EXP / ), EXP Por tnto:, 0, 0, 0 0,0 0 8 b ( ) Por tnto: EJERCICIO : Hll, con yud de l clculdor:,,9 0, 0, b (,9 EXP 9, EXP 0 ), EXP /..078 Por tnto:,9 0, 0, 0 9 0, 0 b. /y.88.. Por tnto:, EJERCICIO 7 : Utiliz l clculdor pr obtener el resultdo de ests operciones:,0 0, (,0 EXP /, EXP 7 / ) EXP Por tnto:,0 0, ,0 0 b ( X ) Por tnto:,99 EJERCICIO 8 : Hll con yud de l clculdor:,8 0, 0, 0 b (,8 EXP, EXP ), EXP /... Por tnto:,8 0, 0, 0 b y.(..87., 0 Por tnto:,
17 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 7 CUESTIONES EJERCICIO 9 : Rzon si ls siguientes igulddes son verdders o flss: ) c) d) : 0 ) Flso, l epresión no puede ser reducid un único sumndo. c) Verddero. -(-) d) Flso, : = =. 0 Verddero, = =. EJERCICIO 0 : Rzon si ls siguientes igulddes son verdders o flss: b b ) b b b +b ) Flso, =. b b b d) Verddero, =. c) b b Flso. c) Verddero. b b d)
Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50
.0 INTRODUCCIÓN º.0. ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 8... ENTEROS (Z) - ENTEROS NEGATIVOS -; ; 8... Decimles exctos :0,; ;... FRACCIONARIOS.
NÚMEROS REALES 1º Bachillerato CC. SS.
Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles
Números Naturales. Los números enteros
Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:
TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
2 Números reales: la recta real
Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué
Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10:
Potencis Potenci Qué es un potenci? Relizr el siguiente cálculo : 7 Utilizndo solmente tres doses escribe tods ls epresiones numérics que se pueden formr con ellos. No vle usr otros signos. Cuál es el
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8
POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr
IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales
IES Cpellní º ESOB Deprtmento de Mtemátics Alumno: Efectú el cociente Ejercicios Tems y : Números Reles Potencis y Rdicles,,0, 0, psndo frcciones genertrices Represent en l rect rel, utilizndo el teorem
TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:
I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes
Tema 1: Números reales.
Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]
1. Utilizando las propiedades de las potencias simplifica las siguientes expresiones: c) 2. d) 0,001 e) 0, f) 0,
TEMA POTENCIAS, RADICALES A) POTENCIAS Y NOTACIÓN CIENTÍFICA.. Utilizndo ls propieddes de ls potencis simplific ls siguientes expresiones: ) ) ) ) c) 0 e) f) g) h) 0) ) ) ). Expres con un potenci de se
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades
º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,
Ejercicios de números reales
Ejercicios de números reles Clsific los siguientes números como nturles, enteros, rcionles o reles:, Ejercicio nº.- Consider los siguientes números: 1,000000... 1,,1... Clsifíclos según sen nturles, enteros,
T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades:
T Números. Escribe en form de intervlos los números que verificn ests desigulddes y represéntlos: ) x < o x 6 x > y x < 6 x - y x > x < o x -. Escribe en form de inecuciones o sistems de inecuciones e
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
1. Números reales. Resuelve BACHILLERATO. Página 25
. Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin A l F B d C. Demuestr que los triángulos ABF EBD son semejntes (es decir, demuestr que sus ángulos
4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES
º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE
SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21
TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,
PENDIENTE MATEMÁTICAS DE 2º ESO CUADERNILLO I
PENDIENTE MATEMÁTICAS DE º ESO CUADERNILLO I Fech de entreg de enero Fech del primer emen de enero NOMBRE CURSO Bloques temáticos Criterios de evlución Ejercicios.- Números enteros. I, II Del l.- Sistem
Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9
Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
1. Números reales. Resuelve BACHILLERATO. Página 29
. Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin 9 A l F B d C. Demuestr que los triángulos ABF y EBD son semejntes (es decir, demuestr que sus ángulos
1Soluciones a los ejercicios y problemas
Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción
LITERATURA Y MATEMÁTICAS. El código Da Vinci
Números reles SOLUCIONARIO Números reles LITERATURA Y MATEMÁTICAS El código D Vinci El profesor Lngdon se sintió un vez más en Hrvrd, de nuevo en su clse de «Simbolismo en el Arte», escribiendo su número
1. NÚMEROS RACIONALES
IES Jun Grcí Vldemor Deprtmento de Mtemátics 4º ESO Mtemátics B. NÚMEROS RACIONALES Desde l prición de ls socieddes humns los números desempeñn un ppel fundmentl pr ordenr y contr los elementos de un conjunto.
Departamento de Matemática
Deprtmento de Mtemátic Trjo Práctico N : Tercer Año Números Reles Ddos los siguientes números clsificrlos en nturles, enteros, rcionles, irrcionles, reles o no reles. 9 7 ;, ; - ; e- ; + ; - ; ; 0,7 ;
Unidad 2. Fracciones y decimales
Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN
MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION
MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr
MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.
4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de
Potencias y radicales
C/ Frncisco Grcí Pvón, Tomelloso 00 (C. Rel) Teléfono Fx: 9 9 9 Potencis y rdicles 00 Simplific y clcul. z z... z x x... x () 0 veces 0 veces z 0 x 0 00 Escribe el inverso de los siguientes números como
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:
Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de
ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:
ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-
NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales
Indicdores NÚMEROS REALES Identific ls propieddes de los números reles, determinndo el vlor de verdd de proposiciones. Clcul el vlor de epresiones lgebrics usndo ls propieddes del vlor bsoluto. Evlú y
RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :
RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los
A modo de repaso. Preliminares
UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos
( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Ejercicios. Números enteros, fraccionarios e irracionales.
CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué
Matemáticas. José María Arias Cabezas Ildefonso Maza Sáez EDUCACIÓN SECUNDARIA OBLIGATORIA
S O L U C I O N A R I O Mtemátics José Mrí Aris Cbezs Ildefonso Mz Sáez EDUCACIÓN SECUNDARIA OBLIGATORIA B Dirección del proyecto editoril Antonio Díz Autores José Mrí Aris Cbezs e Ildefonso Mz Sáez Coordinción
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo
Operaciones. a a a a Ejercicios y Problemas de Matemáticas de 1º a 3º de ESO. 3.
74 Ejercicios y Problems de Mtemátics de 1º 3º de ESO 3. Tercero de ESO 3.1. Números, medids y operciones 3.1.1. Operciones 1. Reduce ls expresiones siguientes un sol potenci: ) 3 6 - -1 5-3 -3 3-3 3 3
a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.
1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens
TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:
TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0
Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.
Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos
Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.
Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Ejercicios Tema 1 El número real Matemáticas I 1º Bach. 1
Ejercicios Tema El número real Matemáticas I º Bach. TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN GRÁFICA DE NÚMEROS REALES EJERCICIO : Clasifica los siguientes números como 0 π ; ;,...; ; 6; ; ;,
1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:
Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
Ejercicios Tema 1 El número real Matemáticas CCSSI 1º Bach. 1
Ejercicios Tema El número real Matemáticas CCSSI º Bach. TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN GRÁFICA DE NÚMEROS REALES EJERCICIO : Clasifica los siguientes números como 0 π ; ;,...; ; 6;
LA FUNCIÓN LOGARÍTMICA
LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo
NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.
NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20
Unidd Lección. Eponentes Rcionles Rdicles /0/0 Prof. José G. Rodríguez Ahumd de 0 Actividd. Ejercicios de práctic: o Sección 7. Rices Rdicles; Ver ejemplos,,, ; relizr prolems impres del l 8 de ls págins
EXPONENTES Y RADICALES
. UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción
Potencias y radicales
CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5
LECCIÓN : FRACCIONES.- QUÉ ES UNA FRACCIÓN? UNA FRACCIÓN ES...... L epresión un prte un cntidd enter. Términos un frcción: DENOMINADOR: Es el número que se coloc bjo l r frcción e indic el número totl
MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.
IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:
IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO
6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento
Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:
EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.
OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL
OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Identificación de propiedades de triángulos
Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn
Funciones Algebraicas
1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver
MATEMÁTICAS. TEORÍA y PROBLEMAS FOTOCOPIABLE 4º B de ESO. LibrosMareaVerde.tk
MATEMÁTICAS TEORÍA PROBLEMAS FOTOCOPIABLE º B de ESO. Números reles. Potencis ríces. Epresiones lgebrics. Polinomios 7. Ecuciones sistems. Inecuciones. Proporciones 9 7. Semejnz 8 8. Trigonometrí 9 9.
MATEMÁTICAS. TEORÍA y PROBLEMAS FOTOCOPIABLE 4º B de ESO. LibrosMareaVerde.tk
MATEMÁTICAS TEORÍA PROBLEMAS FOTOCOPIABLE º B de ESO. Números reles. Potencis ríces. Epresiones lgebrics. Polinomios 7. Ecuciones sistems. Inecuciones. Proporciones 9 7. Semejnz 8 8. Trigonometrí 9 9.
TEMA 1. LOS NÚMEROS REALES
TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest
