LÍMITES DE FUNCIONES
|
|
|
- Estefania Lara Soler
- hace 9 años
- Vistas:
Transcripción
1 LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not sí:, es decir: < muy próimos Los correspondientes vlores de y cundo : y 9 99 Observ que se proimn muchísimo se not: y En este cso se escribe que: Se lee: Límite de por l izquierd de es Si tom vlores próimos, distintos de y myores que ej.:,,, etc..., se not sí:, es decir: muy > Los correspondientes vlores de y cundo : y próimos
2 Observ que se proimn cd vez más se not: y En este cso se escribe que: Se lee: Límite de por l derech de es. A y se le llmn límites lterles de por l izquierd y derech de respectivmente. Ejemplo : Dds ls unciones: Cuys gráics respectivs son: Observmos: g g h h h k k k En los tres csos se escribe que: g h k Y se lee que el límite de l unción es en el punto. En generl: Si y es un unción cuy gráic es: Se escribe: m y ' m Si y es un unción cuy gráic es: Se tiene que: m ó m > < > < si si k si si si h si si g
3 A m y m se les llm: límites lterles de por l izquierd y por l derech de respectivmente. Si mbos números reles son igules m m, dicho número rel m se le llm: límite de en el punto. Observción.- Es importnte señlr que pr deinir el límite de un unción en un punto, no necesitmos pr nd el vlor de l unción y en el propio punto, es decir, sino que sólo nos interes el comportmiento de dich unción en los lrededores de vlores próimos pero menores o myores que. Cálculo del límite de lgebricmente. El cálculo del límite de usndo l órmul de l unción se hce de l siguiente orm: Ejemplo : si < si > como < y como > Ejemplo : k como si si no se entre dierenci izq. y dch de Y en este cso no serí necesrio buscr por seprdo los límites lterles, y que l epresión lgebric de tnto por su izquierd pr < como por su derech pr > es l mism. IDEA INTUITIVA DE LÍMITES INFINITOS. ASÍNTOTAS VERTICALES Ejemplo : Consideremos l unción: de R { } D y cuy gráic es:
4 Si, los correspondientes vlores de y: y Se hcen cd vez más grndes en vlor bsoluto y son negtivos se not y Se escribe: Se lee: Límite de por l izquierd de es Si, los correspondientes vlores de y: y Se hcen cd vez más grndes sin ningún tope rel se not y Se escribe: Se lee: Límite de por l derech de es Ejemplo : Tomemos g de g R { } D y gráic opuest de : Observmos: g y g Ejemplo : Tomemos h h
5 Observmos: h h h Se escribe: h Se lee: Límite de h en el punto es Ejemplo : Se k k opuest de h Observmos: k k k Se lee: Límite de k en el punto es En todos los csos se dice que l rect de ecución es un síntot verticl. En generl: Se escribe: ± Y:. Se dice que el límite de en o los lterles es ± es un A.V. de y ± Deinición de A.V. 5
6 Algebricmente: El cálculo del límite de usndo l órmul se hce sí: Ejemplo : R por Cundo sle en el denomindor: su signiicdo en el cálculo de límites es denomindor tiende denomindor. L tendenci del denomindor puede ser: - Por vlores positivos denomindor:,,, si es que - Por vlores negtivos denomindor: -, -, -, si es que Por eso cundo sle en el denomindor, se clculn los límites lterles:.. '9,'99,... ',',... Con lo cul podemos conocer l posición reltiv de y con respecto su síntot verticl En generl si l clculr: sle con l es A.V. de. l Bsándonos en ello, ls síntots verticles de un unción y se obtienen entre los vlores que nuln l denomindor y no nuln el numerdor. Pr clculr ls A.V. de un unción : Denomindor Despejmos :, b, c,... y sustituimos, b, c,.. en el numerdor. Si en dichos vlores el numerdor es,, b, c,... son A.V. Si pr, el numerdor se hce, veremos lo que ps más delnte. IDEA INTUITIVA DE LÍMITES EN EL INFINITO. ASÍNTOTAS HORIZONTALES. RAMAS PARABÓLICAS Ejemplo : de R Tomemos D y gráic: Observ: 6
7 A medid que tom vlores que se representn más l izquierd sobre el eje de bsciss,,,, que se not, ls ordends, y correspondientes, tienden ; que se not: y. y 98 8 y Se escribe: Se lee: Límite de cundo tiende es. Ejemplo : Tomemos hor g con g R D y gráic: Observ que: A medid que tom vlores cd vez myores, que se representn cd vez más l derech sobre el eje de bsciss,,,, y se not, sus ordends y correspondientes se proimn cd vez más : y 98 y Se escribe: g. Y se lee: Límite de g cundo tiende es. Ejemplo : Se h con h R { } Observmos que: D y gráic: h y h. En todos los csos se dice que l rect de ecución y es un síntot horizontl A.H. de h.
8 En generl: Si y es un unción cuy gráic se comport de l orm: Se escribe: Y: b R ó b R ó b R ± y b es A.H. de y b R Deinición A.H. o Algebricmente: El cálculo de los límites en el ininito prenderemos hcerlo cundo se estudien ls propieddes del cálculo de límites. Ejemplo : Dds ls unciones: y de dominio R y gráics: g Observmos: g g En todos los csos se trt de límites ininitos en el ininito: ± Cundo l gráic no se proim ningun rect oblicu y se cumple que ± ± ±, se dice que y tiene un rm prbólic. Por l derech si 8
9 ± coss. En generl: y por l izquierd si ±, y por mbos ldos si ocurren ls dos y tiene un R.P. ± Deinición de R.P o y Grá no se proim ningun rect ASÍNTOTAS OBLICUAS.- Pr lguns unciones ocurre que cundo ó proimrse un rect oblicu, llmd síntot oblicu de l unción:, se observ que su gráic tiende L rect y m n con m es síntot oblicu de y [ m n ] o Como se observ en l gráic si ó AP. El método generl pr clculr ls síntots oblicus de un unción es el siguiente: Si l clculr ls A.H de puede que se un nº rel o un ecución: Y si l clculr el y m n,siendo y, obtenemos: ±, clculmos o o, que ±. Si este último es rel, l unción y tiene un A.O. de m y n [ m] o o, sle un ±, entonces l unción y tiene un R.P. o En resumen: Si ± : se clcul: ± m R AO.. clcul : n ± R. P ±. 9
10 PROPIEDADES INDETERMINACIONES. ± g ± g ± l ± ± ± ±. g g ± ± ± k k con k constnte ± ± ± ± l Regl de los signos pr el producto y l ± ± ± Regl de los signos pr el producto. g ± ± g ± l ± ± l ± Regl de los signo pr el cociente l l R incluido l ± ± Regl de los signos pr el cociente l R incluido l l. ± g ± g ± n n ± ± l si l > l si l < l si l > si < l < l si l > si < l < Entre ls propieddes nteriores ltn los siguientes csos, en los que no hy ningun regl ij:
11 . ± ±.. ±. 5. ± 6.. En estos csos se trt de indeterminciones. Cundo l clculr el límite de l unción prece un indeterminción, hy que evitrl usndo estrtegis de cálculo que dependerán de l orm que teng l epresión lgebric de l unción y del tipo de indeterminción que nos hy slido. CÁLCULO ALGEBRAICO DE LÍMITES: Tendremos en cuent demás de ls propieddes nteriores: k k siendo k constnte. ± P P P ± ± siendo P un polinomio. dependiendo del signo del coeiciente principl y del grdo de P Indeterminción ± ± Si es rcionl P P y Q polinomios. En todos los csos, pr evitr l indeterminción, se divide ± Q numerdor y denomindor por l de myor grdo del denomindor. Ejemplo : Ejemplo : 5 5 Ejemplo : 5
12 Si es irrcionl: Se evit dividiendo numerdor y denomindor entre l de myor grdo del denomindor igul que si uese rcionl. Si el denomindor tiene ríz, se dividen entre l ríz de es potenci de. Ejemplo: Indeterminción: Si es rcionl: Q P Q P. Como P P es divisible por Teorem del resto. Lo mismo ocurre con Q. Pr evitr este tipo de indeterminción dividimos numerdor y denomindor por., ctorizándolos primero pr que se más cómodo hcer dich división. Ejemplo: indeterminción Dividimos numerdor y denomindor entre ctorizándolos primero pr que se más cómodo hcer dich división: : Si es irrcionl: Ejemplo: indeterminción que se evit multiplicndo numerdor y denomindor por el conjugdo de donde prece l ríz y posteriormente dividiendo por, en nuestro ejemplo por.
13 Indeterminción: Si es rcionl: Ejemplo :, se evit l indeterminción operndo rzones lgebrics y trnsormndo l epresión en un cociente de polinomios: Qued otr indeterminción que se evit dividiendo numerdor y denomindor por : 6 : Ejemplo :, se evit l indeterminción, como en el cso nterior, relizndo l operción y trnsormndo l rest en un sol rzón lgebric. 6 6 Indeterminción que se evit dividiendo por l de myor eponente del denomindor, en nuestro cso dividimos por : Si es irrcionl:
14 Si hy cociente se divide por l de myor eponente del denomindor con su ríz, en Ejemplo : cso de que le ecte lgun ríz., pr quitr l indeterminción se divide numerdor y denomindor entre : Ejemplo : denomindor por, pr quitr indeterminción se divide numerdor y Si no hy cociente sino sólo un rest de ríces, l indeterminción se evit Ejemplo : multiplicndo y dividiendo por el conjugdo: dividimos por el conjugdo: Indeterminción. Pr evitrl multiplicmos y Indeterminción que se evit dividiendo por l de myor eponente del denomindor, en nuestro cso
15 EJERCICIOS RESUELTOS DEL CÁLCULO DE LAS ASÍNTOTAS DE UNA FUNCIÓN.- Clcul rzondmente tods ls síntots de ls siguientes unciones: Ejercicio. A.V: Clculmos los vlores de que nuln l denomindor: que son ls posibles A.V. de l unción. Comprobmos si lo son o no, clculndo los límites en estos puntos: R ± es un A. V. Y l posición reltiv de l gráic de l unción respecto de se estudi clculndo los límites lterles: ' ' : R y D Luego: no es un A. V. En, hy un discontinuidd evitble A.H: ± ± ± ± y es A. H por l dch y por l izqd Y pr sber l posición reltiv de l R Grá respecto de l síntot: y : Comprció n con y Posición de con respecto A.H. ' ' ' 98 '98 No puede hber A.O.: Pues l unción tiene un A.H. por encim de l A.H >. <. por debjo de l A.H 5
16 Ejercicio. g A.V: Clculmos el vlor de que nul l denomindor, que es: posible A.V Comprobmos si lo es o no, clculndo el límite en ese punto: R ± g es un síntot verticl Y l posición reltiv de l gráic de l unción respecto de se estudi clculndo los límites lterles: g g '9 ' g ± A.H: ± ± ± ± ± no tiene síntots horizontles ± R A.O.: y m n Con m y n R, Que se clculn de l orm siguiente: m n g ± ± ± ± ± ± ± g m ± ± ± ± ± R n R m ± Luego l unción posee un síntot oblicu de ecución: y Si queremos conocer l posición reltiv de l Grá respecto de l A.O.: ' g A.O. ± ± y Comprció n g con y A.O. por encim de l A.O. 99' 99 g g por debjo de l A.O. 6
17 Ejercicio. h A.V: No tiene A.V., pues el denomindor es el y no se puede nulr. A.H: Clculmos el h ± ± R No hy A.H. A.O.: y m n Con m y n R, Que se clculn de l orm siguiente: m ± h ± ± ± R R Pr: m n Y l síntot oblicu tiene de ecución: Pr: m y n Y l síntot oblicu tiene de ecución: Como vemos tiene dos A.O. : Y l posición reltiv de l Grá h respecto de ells: ' 99 ' 99 y Por l dch : y Por l izqd : y h A.O. y Comprció nh con y A.O. h por debjo de l A.O 99. h por debjo de l A.O 99.
18 Ejercicio. k si < si A.V: Clculmos los vlores de que nuln los denomindores: que son ls posibles A.V. de l unción. Comprobmos si lo son o no, clculndo los límites en estos puntos: k k R es A. V. R ± k es A.V. Y l posición reltiv de l gráic de l unción respecto de se estudi clculndo los límites lterles: k k A.H: Clculmos el k ± '9 ' L posición reltiv de l Grá k respecto de ells: A. H. por l dch : y A. H. por l izqd : y k Comprció nk con A. H Posición de k con respecto A.H. ' ' ' ' < k por encim de l A.H >. k. por debjo de l A.H Observción: El estudio de l posición reltiv de l Grá de cd unción respecto de sus síntots no es riguroso, en cunto que dmos un solo vlor ó - que no tiene por qué 8
19 ser en vlor bsoluto suicientemente lto. Pero en l myorí de ls unciones que trbjremos en el curso, nos suele yudr y dr un ide clr de cómo se posicion l gráic de l unción. En culquier cso, podemos prescindir de dicho estudio y sustituirlo por l utilizción del resto de ls propieddes que teng l gráic de l unción, encjándols hst hcer un esbozo correcto de l gráic pedid. 9
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de
LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
LÍMITES CONCEPTO INTUITIVO DE LÍMITE
Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos
Ecuaciones de 1 er y 2º grado
Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado
56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si
el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES
el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,
TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1
TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
Módulo 12 La División
Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción
Funciones trascendentes
Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
REPASO DE ECUACIONES (4º ESO)
TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.
Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;
Multiplicar y dividir radicales
Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número
a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.
1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.
Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.
TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo
Manual de teoría: Álgebra Matemática Bachillerato
Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:
Módulo 14 Multiplicación de expresiones algebraicas. Exponentes
Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
OPERACIONES CON RADICALES
OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,
1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.
Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD
Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )
Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0
a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn
TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.
Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie
CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción
Los Números Racionales
Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS
Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto
Números. Subclases dentro de los reales. Lectura sugerida
Lectur sugerid Selección 1: Subclses dentro de los reles. Nturles. Enteros. Rcionles. Irrcionles. Operciones. Un comentrio y vris clrciones. Vlor bsoluto y signo. Enteros. Sum de enteros. Producto de enteros.
Números Naturales. Los números enteros
Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr
MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO. 5.- ANÁLISIS (1ª PARTE).- Límites, Continuidad, Derivadas y aplicaciones.
MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- ANÁLISIS ª PARTE.- Límites, Continuidd, Derivds y plicciones..- MODELO DE PRUEBA Conceptos de unción continu en un punto y derivd de un unción
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:
UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente
NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.
NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
Ecuación de la circunferencia de centro el origen C(0, 0) y de
CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd
LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE
1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA
. DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN
Matemática DETERMINANTES. Introducción:
Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.
TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:
I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes
