OPERACIONES CON RADICALES
|
|
|
- Patricia Salas Romero
- hace 9 años
- Vistas:
Transcripción
1 OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:, requiriéndose, demás, que 0. Si n es impr, sólo h un posile resultdo. A n se le llm índice de l ríz, l vlor, rdicndo. n es un número nturl distinto de 0 (n N*). Cundo n 1, desprece l operción ríz, quedándonos únicmente con el rdicndo. Pero con operciones cominds lo que emplemos siempre son rdicles. Un rdicl es un epresión del tipo n, donde son números reles. Y l ríz tiene únicmente el signo que se indique. Así: +, sí como. Si en lgún momento nos queremos referir un ríz de índice pr con sus dos signos, lo escriiremos epresmente:. OPERACIONES CON RADICALES Tods ls operciones que epresmos continución son consecuenci de ls fórmuls fundmentles de rdicles de potencis, si ien nosotros epresmos el método resultnte (no se está dndo l demostrción). Pr tods ells se requiere que en los rdicles sólo h productos o cocientes: si huier sumndos no se pueden trnsformr en productos (scndo fctor común), no podrímos hcer nd. 1. SIMPLIFICACIÓN DE RADICALES Procedimiento: Hllmos el mcd del índice de todos los eponentes del rdicndo. Dividimos cd uno de ellos el índice entre el mcd. 8 1 Ejemplo: 1 Sólo h productos cocientes, luego podemos operr. 1 está elevdo 1, pero podemos ponerlo en form de potenci: (normlmente uscmos que l se se un número primo). Luego: entre ) 8 1 ) 1 ; ) 1 ; c) ; d) 8 (mcd(1,,8,) dividimos el índice cd eponente. AMPLIFICAR RADICALES Procedimiento: Inverso l nterior; se multiplicn el índice cd uno de los eponentes por el mismo número. Ejemplo: 9 (hemos multiplicdo por índice eponentes) IES Fernndo de Herrer Prof. R. Mohigefer Págin 1 de
2 Todos los ejemplos de l operción nterior, leídos l revés (de derech izquierd, es decir, del resultdo finl l comienzo) nos sirven de ejemplo de est operción. ) Poner con índice 8:. PRODUCTO Y COCIENTE DE RADICALES Procedimiento: Se escrien todos los rdicles que intervienen con el mismo índice. Si no lo tuviern, se mplificn, según lo epuesto ntes, de form que todos tengn como índice el mcm de los índices iniciles. Ejemplo: ) (mcm(,,)1 mplificmos todos los rdicles índice 1) ; ). EXTRACCIÓN DE FACTORES DEL RADICAL Procedimiento: Sólo se pueden etrer fctores o divisores, que tengn como eponente un vlor mor o igul que el índice de l ríz. (En el ejemplo que sigue, el no se puede etrer, pero sí, elevdo 9 que es mor que,, elevdo que es igul l índice). Pr l etrcción de un fctor de índice mor o igul que el índice: ) Si el eponente es múltiplo del índice de l ríz, el fctor sle de l ríz elevdo l eponente que tení dividido entre el índice de l ríz. (En el ejemplo, el eponente de es, múltiplo del índice de l ríz, tmién. Sle elevdo entre, o se, 1, se mntiene en el denomindor.) ) En cso contrrio (como le sucede l en el ejemplo), se sepr dicho fctor en producto de l mism se ( en el ejemplo) elevd l múltiplo del índice de l ríz más próimo, sin sorepsrlo, l eponente que tení dicho fctor (en el ejemplo, 9 es el múltiplo de más próimo 10 sin sorepsrlo) multiplicdo por l mism se elevd lo que flte hst el eponente que tení (En el ejemplo, lo que flt desde 9 hst 10 es 1. Por eso seprmos 10 9.) Al fctor que qued con eponente múltiplo del índice, se le plic el proceso eplicdo en el prtdo nterior. El otro fctor, permnece dentro de l ríz Ejemplo: ) 7 ; ) 1 ; c) 8 1 e) ; d) ;. INTRODUCCIÓN DE FACTORES EN EL RADICAL IES Fernndo de Herrer Prof. R. Mohigefer Págin de
3 Procedimiento: Se multiplicn los eponentes por el índice de l ríz. Ejemplo: 1 1 ). RAÍZ DE UNA RAÍZ Procedimiento: Si ls dos ríces, un conteniendo l otr, están consecutivs, sin ningún número que ls sepre, se multiplicn los índices. Ejemplo: (H un fctor que sepr los rdicles: lo introducimos dentro de l ríz interior, l de índice ) (siempre h que simplificr rcionlizr denomindores, que lo veremos más delnte) ) 81 ; ) RACIONALIZAR DENOMINADORES Consiste en cmir l epresión pr que no prezcn ríces en el denomindor. El procedimiento es diferente según los csos: Procedimiento cso 1: No h sums en el denomindor. Multiplicmos numerdor denomindor por un ríz del mismo índice que l del denomindor con fctores elevdos eponentes tles que l sumr con los eponentes originles resulte un múltiplo del índice. Ejemplo: ( 1 deemos multiplicrlo por pr que de un eponente múltiplo del indice de l ríz:. precis ser multiplicdo por 1 ) 1 ) ; ) ; c) ; d) IES Fernndo de Herrer Prof. R. Mohigefer Págin de Procedimiento cso : H un sum o diferenci en el denomindor ls ríces que intervienen en el denomindor son ríces cudrds. Se multiplic numerdor denomindor por el conjugdo del denomindor (si el denomindor es un sum, por l diferenci si es un diferenci, por l sum). Ejemplo: ( ( ) 7 ( 10 (el conjugdo de es ) ) ) ( 10 7 ) ( )
4 e) ; f) 8. POTENCIA FRACCIONARIA Procedimiento: Aplicr l definición p / q Ejemplos: 1/ 1 1 ; Poner con ep. frcc: 1 ) Poner sin eponente frccionrio ni negtivo: ( 1/ ) 1/ ) Poner con eponente frccionrio: q p cd fctor o divisor del rdicl SIMPLIFICACIÓN DE LA EXPRESIÓN FINAL H que: Simplificr ls ríces, conforme lo dicho en el prtdo 1 Etrer fctores de ls ríces Que ls ríces no contengn denomindores que los denomindores estén rcionlizdos. Evitr préntesis. Los eponentes deen ser positivos. 10. SUMA Y RESTA DE RADICALES Rdicles semejntes son los que, después de simplificdos, tienen el mismo índice rdicndo, pudiendo vrir únicmente en el coeficiente. Ej: son semejntes los cutro rdicles siguientes: ; ; 0 ; 18. Pr poder sumr o restr rdicles, tienen que ser semejntes. El procedimiento consiste en sumr o restr los coeficientes, dejndo l mism ríz. Ejemplos: 1) (10 no es un número primo, pero como es un operción que puede hcerse fácilmente, de memori, nos es útil porque como trjmos con ríces de índice, un número l cudrdo puede etrerse de l ríz) + 10 ( + 10) 7. L justificción de sumr restr los coeficientes l tenemos en que etremos l ríz como fctor común de los sumndos. ) (1 + ) + +. En este cso, no podemos hcer más, puesto que hemos termindo con dos rdicles no semejntes. ) ) 0 IES Fernndo de Herrer Prof. R. Mohigefer Págin de
5 Soluciones los ejercicios: 1) 1 (dividiendo índice eponentes entre ) 1) 1 ; mcd (1,1,)1 no se puede simplificr 1c) ; no podemos trnsformr el rdicndo en productos no se puede simplificr. 1 1d) 8 8 ) ) ) ) 7 ) (dividiendo índice eponentes entre ) (h que trnsformr en productos, pr poder hcer lgo; scmos fc- tor común) ( ) ( ) 1 c) d) ( 8 1 1) 17 e) ) 9 9 ) (etrendo fctores) 0. H otrs forms de hcerlo. ) 1 1 7) (con sumndos no se pueden plicr ls fórmuls fundmentles, que es lo que se sn tods ests operciones) ) 7c) IES Fernndo de Herrer Prof. R. Mohigefer Págin de
6 7d) 7e) 7 ( ) ( ) ( ) 9 1 (7 ) 7 que no se puede simplificr más. ( ) 9 7f) 9 1 8) ( 1/ ) 1/ 8) 10) 10) IES Fernndo de Herrer Prof. R. Mohigefer Págin de
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
EJERCICIOS DE RAÍCES
EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4.
Deprtmento de Mtemátics http://www.colegiovirgendegrci.org/eso/dmte.htm ARITMÉTICA: Rdicles. RADICALES... Ríz cudrd. Anlicemos los siguientes ejemplos: == es un potenci de se y exponente. El resultdo,,
Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20
Unidd Lección. Eponentes Rcionles Rdicles /0/0 Prof. José G. Rodríguez Ahumd de 0 Actividd. Ejercicios de práctic: o Sección 7. Rices Rdicles; Ver ejemplos,,, ; relizr prolems impres del l 8 de ls págins
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13
Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l
el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1
el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
Manual de teoría: Álgebra Matemática Bachillerato
Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
GUIA Nº: 7 PRODUCTOS NOTABLES
CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
Los números enteros y racionales
Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer
open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co
Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas Repaso de operaciones con números enteros
lsmtemtics.eu Pedro Cstro Orteg Repso de operciones con números enteros º ESO Cómo se sumn y se restn números enteros? Es más fácil verlo con lgunos ejemplos que explicrlo con plrs. Ejemplo 1: Ejemplo
1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:
Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre
TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not
el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1
el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:
TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333
Tller de Álger. Dr. Blnc M. Prr UIA Tijun 0. Números reles rect numéric. Números reles son todos los números que representmos en l rect numéric. A cd punto de l rect corresponde un número rel pr cd número
REPASO DE ECUACIONES (4º ESO)
TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO
6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
1. Cuales son los números naturales?
Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l
CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I
CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.
Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci
Factorización de polinomios. Sandra Schmidt Q. [email protected] Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. [email protected] Escuel
DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:
ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un
Los Números Racionales
Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.
LÍMITES CONCEPTO INTUITIVO DE LÍMITE
Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área
Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =
NÚMEROS REALES. 1. Clasificar los números decimales en periódicos y no periódicos o irracionales.
UNIDAD NÚMEROS REALES OBJETIVOS DIDÁCTICOS:. Clsificr los números decimles en periódicos y no periódicos o irrcionles.. (**) Operr con rdicles.. Simplificr epresiones rdicles.. (**) Rcionlizr epresiones
Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas.
Fctorizr un polinomio consiste en convertir un polinomio en un producto de epresiones lgebrics. Cso 1. Monomio como fctor común. Un polinomio tiene fctor común sí y sólo sí todos los términos del polinomio
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD
NÚMEROS RACIONALES ABSOLUTOS
NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,
Números Naturales. Los números enteros
Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números
LOS CONJUNTOS NUMÉRICOS
Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1
TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:
A modo de repaso. Preliminares
UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos
UNIDAD DIDÁCTICA 4: LOGARITMOS
Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES
CENTRO DE FORMACIÓN PROFESIONAL. REVILLAGIGEDO Jesuitas - Gijón JOSÉ MANUEL FERNÁNDEZ GARCÍA
CENTRO DE FORACIÓN PROFESIONAL REVILLAGIGEDO Jesuits - Gijón PRONTUARIO DE ATEÁTICAS PARA ELECTRÓNICOS Y ELÉCTRICOS JOSÉ ANUEL FERNÁNDEZ GARCÍA CÁLCULO NUÉRICO. Redondeo. Dependiendo de ls mgnitudes con
Potencias y radicales
CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet
CURSO PROPEDÉUTICO 2013 B
CURSO PROPEDÉUTICO 01 B INSTITUTO TECNOLÓGICO SUPERIOR DE ZAPOPAN Fís. Edgr I. Sánchez Rngel L.P. Alm Luz Rndeles Gómez M en C. Frncisco Jvier Villseñor Pérez Mtr. A. Lizette Gutiérrez Gutiérrez Profs.
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.
Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática
12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +
Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.
Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:
INSTITUTO VALLADOLID PREPARATORIA página 81
INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4
TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.
Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidd de Cádiz Deprtmento de Mtemátics MATEMÁTICAS pr estudintes de primer curso de fcultdes y escuels técnics Tem 1 Nociones mtemátics básics. Los números. Operciones Elbordo por l Profesor Doctor
Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}
NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que
Introducción. Objetivos de aprendizaje. Determinar las propiedades de las operaciones de números racionales
L rect numéric, un cmino l estudio de los números reles Deducción de propieddes en ls operciones de números rcionles Introducción 0,1 1/ / 0,0 Multiplic por Rest 0, 1/ /7 1/ Figur 1. Rulet Objetivos de
CURSO MATE 0066 Verano 2009 SOLUCIONES EJERCICIOS PROPUESTOS TEMA FRACCIONES ALGEBRAICAS. Como las fracciones algebraicas tienen el 2x
CURSO MATE 00 Verno 009 SOLUCIONES EJERCICIOS PROPUESTOS TEMA FRACCIONES ALGEBRAICAS Como ls frcciones lgerics tienen el mismo denomindor, este se unific + + + + ( ) + ( ) + Se eliminn los réntesis teniendo
REGLAS DE LOS PRODUCTOS NOTABLES
UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd
Simplificación de Fracciones Algebraicas
www.mtebrunc.com Prof. Wldo Márquez González Frcciones Algebrics Simplificción de Frcciones Algebrics Un frcción lgebric es el cociente indicdo de dos expresiones lgebrics. Así, es un frcción b lgebric
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
Respuesta: Con este resultado Anahí decide contratar a estos pintores.
Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
