Integración múltiple
|
|
|
- Victoria Suárez Gil
- hace 8 años
- Vistas:
Transcripción
1 Integración múltiple IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna Índice 1. Introducción 1 2. Integrales múltiples 1 3. Caso particular: la integral triple 2 4. Algunos ejemplos 4 CÁLCULO INTEGRAL VECTORIAL OCW-ULL 211/12
2
3 INTEGRACIÓN MÚLTIPLE 1/6 1. Introducción Ya indicamos con anterioridad que la teoría desarrollada para integrales dobles es susceptible de ser generalizada a dimensiones superiores. Puesto que el proceso y los resultados que se obtienen son completamente análogos a los ya estudiados en el caso bidimensional, nos limitaremos a resumir los puntos principales. 2. Integrales múltiples upongamos que f es un campo escalar definido y acotado en un conjunto R p (p N, p 3). La integral de f sobre, llamada integral p-múltiple o, simplemente, integral múltiple si no hay ambigüedad sobre p, se denota por f, ó f (x 1,...x p ) dx 1 dx p, o bien f (x) dx, donde x = (x 1,...,x p ) (x i R; i N, 1 i p). i a = (a 1,...,a p ) R p y b = (b 1,...,b p ) R p, llamamos intervalo cerrado (respectivamente, abierto) p-dimensional al conjunto [a,b] = p i=1 [a i,b i ] (respectivamente, ]a,b[= p i=1 ]a i,b i [). El proceso de definición de la integral comienza con funciones escalonadas definidas en un intervalo cerrado p-dimensional [a, b]. i P i es una partición de [a i,b i ] (i N, 1 i p), el producto cartesiano P = p i=1 P i será una partición de [a,b]. Una función f definida en [a,b] se dice escalonada si toma un valor constante c k en cada uno de los subintervalos abiertos Q k determinados por una cierta partición P de [a,b]. La integral p-múltiple de una tal f viene dada por la fórmula [a,b] f = c k Q k ; k aquí, Q k denota el volumen de Q k (producto de las longitudes de sus lados), y la suma se extiende al conjunto de estos subintervalos. Una vez definida la integral múltiple de funciones escalonadas es posible definirla para funciones f más generales cuyo dominio sean intervalos. i existe un único número real I tal que s I [a,b] t [a,b] cualesquiera sean las funciones escalonadas s, t que satisfacen s f t en [a,b], entonces se dice que f es integrable en [a,b] y que I es la integral p-múltiple de f en [a,b]: I = f. [a,b] CÁLCULO INTEGRAL VECTORIAL OCW-ULL 211/12
4 2/6 I. MARRERO Al igual que ocurría en el caso bidimensional, la integral existe si f es continua en [a,b], o si f es acotada en [a,b] y su conjunto de discontinuidades D tiene contenido p-dimensional nulo, esto es, si para cada ε >, existe una colección finita de intervalos p-dimensionales (abiertos o cerrados) que recubre D, tal que la suma de sus volúmenes no excede ε. Para definir la integral p-múltiple de una función acotada f sobre un conjunto acotado más general, consideramos una extensión f de f a un rectángulo cerrado R que contenga a y que sea nula fuera de, y definimos f = f. R Existen muchas fórmulas de integración iterada para las integrales p-múltiples. Por ejemplo, si Q es un intervalo k-dimensional y R un intervalo l-dimensional, entonces una integral (l + k)-múltiple sobre Q R es la iteración de una integral k-múltiple y otra l-múltiple: (l+k) f = Q R (k) Q [ ] (l) f dx 1 dx l dx l+1 dx l+k, R siempre que las integrales involucradas existan. eñalaremos, finalmente, que también es posible extender el concepto de medibilidad Jordan al caso p- dimensional y desarrollar una teoría de la integración en este contexto. El concepto de volumen puede ser generalizado a conjuntos p-medibles Jordan de tal manera que si es medible, su volumen V () es igual a la integral, extendida a, de la función constantemente igual a 1: V () = dx 1 dx p. 3. Caso particular: la integral triple Cuando p = 3 escribimos (x,y,z) en vez de (x 1,x 2,x 3 ) y denotamos la integral triple de f sobre por f ó f (x,y,z) dx dy dz. Algunas de estas integrales pueden calcularse mediante integrales iteradas de dimensión inferior. Por ejemplo, supongamos que = { (x,y,z) R 3 : (x,y) Q, ϕ 1 (x,y) z ϕ 2 (x,y) }, OCW-ULL 211/12 CÁLCULO INTEGRAL VECTORIAL
5 INTEGRACIÓN MÚLTIPLE 3/6 z z=φ (x,y) 2 z=φ (x,y) 1 y x Q Figura 1. ólido OXY -proyectable. donde Q es la región plana obtenida proyectando sobre el plano OXY, y ϕ 1, ϕ 2 son funciones continuas en Q. Los conjuntos de este tipo, que llamaremos OXY -proyectables, están limitados por las dos superficies z = ϕ 1 (x,y) y z = ϕ 2 (x,y) ((x,y) Q) y posiblemente una porción de superficie cilíndrica cuya generatriz es una recta que se desplaza a lo largo de la frontera de Q, manteniéndose paralela al eje OZ (Figura 1). Cuando f es continua en el interior de vale la fórmula [ ϕ2 ] (x,y) f (x,y,z) dx dy dz = f (x,y,z) dz dx dy, Q ϕ 1 (x,y) que se acostumbra a escribir ϕ2 (x,y) f (x,y,z) dx dy dz = dx dy f (x,y,z) dz, Q ϕ 1 (x,y) y que reduce el cálculo a una integral doble sobre la proyección Q. Concretamente, si Q = { (x,y) R 2 : a x b, g(x) y h(x) }, donde g, h son funciones continuas (recinto de tipo I), entonces b h(x) ϕ2 (x,y) f (x,y,z) dx dy dz = dx dy f (x,y,z) dz. a g(x) ϕ 1 (x,y) CÁLCULO INTEGRAL VECTORIAL OCW-ULL 211/12
6 4/6 I. MARRERO En particular, el volumen de viene dado por la expresión, ya obtenida, b h(x) V () = dx dy dz = [ϕ 2 (x,y) ϕ 1 (x,y)] dx dy = dx [ϕ 2 (x,y) ϕ 1 (x,y)] dy, Q a g(x) según la cual V () se calcula integrando sobre la proyección Q la «tapa» de menos su «fondo». Fórmulas análogas a las anteriores valen para sólidos OXZ-proyectables y OY Z-proyectables, en las que los ejes OY y OX desempeñan el papel del eje OZ y la proyección Q se sitúa en los planos OXZ y OY Z, respectivamente. La mayoría de los sólidos tridimensionales que consideraremos en lo sucesivo son proyectables en, al menos, uno de los tres planos coordenados, o bien pueden descomponerse en un número finito de sólidos de alguno de estos tres tipos. 4. Algunos ejemplos Ejemplo 4.1. Calcular y dx dy dz, donde es el sólido limitado por el paraboloide hiperbólico z = xy, el cilindro y = 2x y los planos x+y = 4, y =, z =. REOLUCIÓN. La proyección de sobre el plano OXY es el recinto D del primer cuadrante limitado por y = 2x, x + y = 4 e y =. La «tapa» y el «fondo» de son las superficies z = xy y z =, respectivamente (Figura 2). Figura 2. ólido del Ejemplo 4.1. El único punto de intersección de las curvas y = 2x, x + y = 4 en el primer cuadrante es (2,2). Conside- OCW-ULL 211/12 CÁLCULO INTEGRAL VECTORIAL
7 INTEGRACIÓN MÚLTIPLE 5/6 Figura 3. ólido del Ejemplo 4.2. rando D como una región de tipo II, podemos escribir: y dx dy dz = = 1 2 D 2 xy 2 y dx dy dz = xy 2 dx dy = D ) y 2 ( 16 8y + y 2 y4 4 4 y y 2 dy x dx y 2 /2 [ 8y 3 dy = 3 y4 + y5 1 y7 56 ] 2 = El ejemplo queda resuelto. Ejemplo 4.2. Calcular z dx dy dz, siendo el dominio determinado por las condiciones: x, y, z, z 1 y 2, x + y 1. REOLUCIÓN. Nótese que es la región del primer octante cuya proyección en el plano OXY es el triángulo de vértices (,), (1,) y (,1), y cuya «tapa» está sobre el cilindro parabólico z = 1 y 2 (Figura 3). Por tanto, = = 1 2 = 1 2 z dx dy dz = x dx dx 1 x 1 y 2 dy z dz = (1 2y 2 + y 4 ) dy = 1 2 (1 x)2 (1 x)4 [ (1 x)6 3 1 x dx (1 y 2 ) 2 dy 1 ] 1 [(1 x) = (1 x)3 3 + ] (1 x)5 dx 5 CÁLCULO INTEGRAL VECTORIAL OCW-ULL 211/12
8 6/6 I. MARRERO es el valor pedido. OCW-ULL 211/12 CÁLCULO INTEGRAL VECTORIAL
Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.
Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables
+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.
Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann
Integrales dobles. Integrales dobles
Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
Integración sobre superficies
Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Parametrizaciones 1 2. Área de una superficie
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.
ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
Funciones integrables en R n
Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está
7. Cambio de variables en integrales triples.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales
Cálculo diferencial e integral 4
Cálculo diferencial e integral 4 http://academicos.fciencias.unam.mx/nataliajonard/calculo-4 menos que indiquemos lo contrario, R siempre denotará un rectángulo de la forma con a i < b i. R = [a 1, b 1
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
5. INTEGRALES MULTIPLES
5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones
Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.
Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,
Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}
Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil
1 / 12 Lectura 2 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Cambio de variables 2 / 12 Idea básica: en ocasiones, la utilización de variables apropiadas en lugar de
APLICACIONES DE LA INTEGRAL DEFINIDA
CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
Una operación interna: Suma Una operación externa: Multiplicación por un escalar
El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
Integrales Múltiples.
CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable
Volumen y conjuntos de medida cero
Capítulo 2 Volumen y conjuntos de medida cero En la recta real normalmente las funciones se integran sobre intervalos. En R n es deseable poder considerar integrales de funciones sobre conjuntos más complicados
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
Contenido 1. Integrales Dobles 2. Integrales Triples
Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
Análisis Matemático I: La integral de Riemann
Contents : La integral de Riemann Universidad de Murcia Curso 2006-2007 Contents 1 Definición de la integral y propiedades Objetivos Definición de la integral y propiedades Objetivos 1 Definir y entender
Integración doble Integrales dobles sobre regiones no rectangulares
Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 5
APUNTES DE GEOMETRÍA ANALÍTICA
CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.
La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo
1. Lección 9 - Continuidad y Derivabilidad
1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1
1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]
3. Cambio de variables en integrales dobles.
GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental
CAMPOS: CIRCULACIÓN Y FLUJO
AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que
Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A
Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Programa 1 Cálculo de volúmenes a partir de secciones
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
AMPLIACIÓN DE CÁLCULO
AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t
. [04] [EXT-A] Dados los puntos A(,0,-), B(,-4,-), C(5,4,-) y D(0,,4) a) Calcular el área del triángulo de vértices A, B y C. b) Calcular el volumen del tetraedro ABCD.. [04] [EXT-A] Dados los planos x-z-
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
sea paralela al plano
x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Sistemas de coordenadas
Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad
Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
Clase 10: Extremos condicionados y multiplicadores de Lagrange
Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función
TEMA 6 Ejercicios / 3
TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores
1. Construcción de la Integral
1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES
TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
LA INTEGRAL DEFINIDA IES MURILLO
LA INTEGRAL DEFINIDA IES MURILLO Un poco de Historia El concepto de integral definida surge para resolver el problema del área de figuras limitadas por arcos de curva. Algunos matemáticos que trabajaron
Lección 4. Integrales múltiples. 4. Superficies parametrizadas.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera
RESUMEN TEORIA MATEMATICAS 5
RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,
(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),
NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA
1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
son dos elementos de Rⁿ, definimos su suma, denotada por
1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO
. Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano
Integrales sobre superficies
Capítulo 12 Integrales sobre superficies En este capítulo estudiaremos la noción de área de superficies en R 3, y las integrales de campos escalares y vectoriales definidos sobre éstas. Una superficie
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área
CONJUNTOS TEORIA BASICA DE CONJUNTOS
Repasamos CONJUNTOS TEORIA BASICA DE CONJUNTOS Cualquier colección de objetos o individuos se denomina conjunto. El termino conjunto no tiene una definición matemática, sino que es un concepto primitivo.
4 Integrales de línea y de superficie
a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo
Unidad III: Curvas en R2 y ecuaciones paramétricas
Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una
TEMA 4. Geometría, cinemática y dinámica
TEMA 4. Geometría, cinemática y dinámica 76 Índice: Geometría, cinemática y dinámica Geometría oordenadas propias y del mundo Representación de la posición. Tipos de coordenadas Matrices de rotación Representación
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3
Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.
LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
INTEGRALES TRIPLES. 46. Dada la integral la integral de todas las formas posibles. f(x, y, z) dzdydx, dibujar la región de integración y escribir
INTEGALES TIPLES. 46. Dada la integral la integral de todas las formas posibles. f(,, ) ddd, dibujar la región de integración escribir Teniendo en cuenta la gráfica adjunta, si D 1, D 2 D 3 son las proecciones
