Si dos rectas coplanares no se cortan diremos que son paralelas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Si dos rectas coplanares no se cortan diremos que son paralelas."

Transcripción

1 - 1 - pítulo I: plelismo y pependiculidd Definición de ects plels Si dos ects coplnes no se cotn diemos que son plels xiom de Euclides Si dos ects coplnes ( y ) son cotds po un tece () fomndo ángulos colteles intenos (α y β) que sumn menos que un llno, ls dos ects se cotn en el semiplno que tiene po ode l tece y contiene los ángulos que sumn menos que un llno α β Osevción: es inmedito que si α + β > un ángulo llno, entonces ls ects se cotn en el semiplno opuesto oolio: si α y β un ángulo llno, ls ects son plels Demostción: como un ángulo llno mide 180º, esciimos α + β 180º α 180º-α α β 180º- β β α + β (180º - α) + (180º - β) 360º - (α + β) 180º omo en mos semiplnos de ode se d l mism situción (los ángulos colteles intenos sumn 180º), dee ocui lo mismo con ls ects y en mos semiplnos Hy sólo dos posiiliddes: 1) y se cotn En este cso, hy un punto de intesección en cd semiplno y concluimos que y tienen dos puntos en común, po lo tnto son l mism ect SUDO, pues en ese cso no hí ángulos colteles intenos 2) y no se cotn No hy ot posiilidd lógic, po lo tnto ceptmos que se cumple omo y son ects coplnes que no se cotn, po inición esultn y plels ecípoco del coolio: // α + β 180º El esultdo de l sum de α y β dee cumpli un y sólo un de ests tes posiiliddes: 1) α + β < 180º SUDO, pues y se cotín en el semiplno que contiene α y β 2) α + β > 180º SUDO, pues y se cotín en el semiplno que no contiene α y β 3) α + β 180º No hy ot posiilidd, po lo tnto ceptmos que se cumple

2 Teoem: Dos ects plels cotds po un secnte fomn ángulos ltenos intenos que son igules Demostción: // coolio Euclides (3) + (6) 180º (3) (6) 180º (6) 180º (3) dycente dycente (5) (4) (1) (2) (4) (3) (8) (5) (6) (7) Teoem: Los ángulos opuestos po el vétice son igules Demostción: cgo del lumno Teoem: Dos ects plels cotds po un secnte fomn ángulos ltenos extenos igules Demostción: (2) opuestos po el vétice (4) ltenos intenos (6) opuestos po el vétice (8) Teoem: Dos ects plels cotds po un secnte fomn ángulos coespondientes igules Demostción: cgo del lumno Teoem ecípoco: Si dos ects genen ángulos ltenos igules, ls ects son plels Demostción: L s ects y genen los ángulos ltenos intenos igules α α y β son ángulos colteles intenos tles que β180º-α α α + β α (180º - α) 180º o el ecípoco del coolio de Euclides, // α Ejecicio: enuncie y demueste los teoems ecípocos coespondientes los ángulos ltenos intenos y los ángulos coespondientes Te oem del plelismo de lyfi Est poposición suele pesentse como xiom en muchos cusos de chilleto Si sustituimos el xiom de Euclides po el de lyfi, podímos conveti en teoem el de Euclides undo dos poposiciones son tles que, tomds como xioms un en sustitución de l ot en un cuepo teóico, pemiten demost el mismo conjunto de teoems (y po extensión, l mism geometí) se dice que son xioms equivlentes ecomendmos en este punto l lectu del mteil Los elementos de Euclides (cpítulo 4 del lio de Michel enkopf, Mthemtics - n ppecition)

3 Teoem: o un punto exteio un ect ps un plel, y sólo un Demostción: Osevemos que este teoem dice dos coss: 1º) existe un plel l ect po el punto, y 2º) est plel es únic onsideemos un ect y un punto que no petenece ell 1º) Encontemos un plel po Se q un ect po secnte con en Tcemos ho l ect h secnte con q po tl que se fomen ángulos colteles inteioes que sumen 180º o el coolio de Euclides esultn h // po 2º) o el sudo, suponemos que existe un segund plel s l ect po, s h q h // hs + q 180º h // s Teoem: (popiedd tnsitiv del plelismo) // t s // t Demostción o el sudo, suponemos que no es plel t t Se t Esto contdice el teoem de lyfi pues hy dos plels s po s oncluimos que y t no se cotn, y po lo tnto son plels q s < hs s + q < 180º entonces s cot, lo cul signific que s s no es plel, contdiciendo nuesto supuesto oncluimos que no existe ot ect plel po h Teoem: en un mismo plno, si un ect cot ot, entonces cot un plel l ot { } '//,, ' coplnes ' {} Demostción o el sudo, si no cot es // omo //, po l popiedd tnsitiv del plelismo es //, contdiciendo l hipótesis oncluimos que cot Si quitmos l condición de que ls ects sen coplnes, sigue siendo válido el teoem? Teoem (del ángulo exteno): cd ángulo exteno de un tiángulo es igul l sum de los ángulos intenos no dycentes Demostción: Tzmos po un ect h plel, h descomponiendo sí el ángulo exteno tl que exteno x + y eo y po coespondientes y x x po ltenos intenos y Luego, exteno + nálogmente se pue p los otos ángulos extenos del

4 - 4 - oolio: cd ángulo exteno de un tiángulo es myo que culquie de los ángulos intenos no dycentes Teoem (de l sum de los ángulos intenos de un tiángulo): en todo tiángulo l sum de los ángulos intenos es igul un ángulo llno Demostción: En l mism figu vemos que: + + y + x + 180º Teoem: dos ects coplnes pependicules un tece son plels ente sí Demostción: es consecuenci inmedit del ecípoco del coolio de Euclides plicción: este teoem pemite justific un conocido pocedimiento p tz con egl y escud l ect plel ot dd po un punto exteio ddo, como se ve en l figu // Teoem: po un punto exteio ps un sol pependicul un ect dd Demostción: este teoem fim dos coss, 1º) Existe un pependicul l ect po el punto exteio (se demostá cundo se estudie l simetí xil), y 2º) Est pependicul es únic po esto último po el sudo, supongmos que hy dos pependicules s y t l ect po el punto Se fom un tiángulo donde los ángulos inteioes sumn más de 180º, lo que contdice un teoem nteio oncluimos que l pependicul es únic s t 90º 90º ué ocue si quitmos de l hipótesis l condición de que el punto se exteio l ect? lelogmos Vmos d cuto iniciones distints de plelogmo y demostemos que son equivlentes Esto signific, po ejemplo, que l inición () implic l inición () y ecípocmente Dds cuto iniciones, tendímos que hce doce demostciones:,, D,, D, D (ecuede que const de dos demostciones, y ) Un fom más páctic de esolve el polem consiste en demost ls siguientes elciones ente ls poposiciones: D, poque sí sólo tenemos que hce cuto demostciones po, po ejemplo, que D, veímos en pime lug que D (pues D) y luego que D (pues D ) Nuests iniciones de plelogmo son: () cudiláteos con sus dos pes de ldos opuestos plelos () cudiláteos con un p de ldos opuestos igules y plelos

5 - 5 - () cudiláteos con sus dos pes de ldos opuestos espectivmente igules (D) cudiláteos cuys digonles se cotn en sus espectivos puntos medios Demostciones Se el plelogmo S tl que // S y // S Si tzmos l digonl tenemos que: ltenos intenos S ldo común ltenos intenos S citeio L Δ ΔS S y S S //S //S // S S Se el plelogmo S tl que // S Y S Si tzmos l digonl tenemos: ldo común S S D citeio LL Δ ΔS // S S S Se el plelogmo S tl que S y S onsideemos ls digonles y S que se cotn en O S citeio LLL S Δ ΔS S O ldo común nálogmente pomos que O SO (hcelo) Entonces, O O SO SO S citeio L ΔO O O ΔOS O SO O O S S S S SO pm pm S O S S O pm de digonles D Se el plelogmo S tl que y S se cotn en su punto medio O O O O O OS opuestos po el vétice OS citeio LL ΔO ΔOS O SO S O S ecípoco ltenos intenos // S nálogmente pomos que // S (hcelo) ls digonles se // S Luego, cotn en su pm // S Ejecicio: () demueste que un cudiláteo con sus ángulo opuestos espectivmente igules es un plelogmo, () demueste que el segmento detemindo po los puntos medios de dos ldos opuestos de un plelogmo es igul y plelo los otos ldos opuestos ( este segmento se le llm plel medi del plelogmo)

6 - 6 - Teoems de l plel medi en un tiángulo Teoem diecto: tiángulo MN // M pm MN 1 2 N pm M N M Demostción Se M tl que N es el punto medio del segmento MM ( cómo constuye M?) omo ls digonles del cudiláteo MM se cotn en su punto medio N, es un plelogmo (po l inición (D)) Entonces, M M MM' MN M // M' M // M' MM' plelogmo MM'// MN// demás, MM' 2MN MN 1 2 l segmento MN se le llm plel medi del Hy otos dos segmentos que tmién son plels medis del mismo tiángulo? tiángulo M pm M N h Teoem ecípoco: N pm h // po M? h {} N Demostción Supongmos que K es el punto medio del segmento, K N o el teoem diecto semos que MK // po M o hipótesis, h // po M o lyfi, l plel po M es únic Entonces, MK h K MK h N K N pm Ejecicios: (1) Diuje tes tiángulos esclenos (cutángulo, ectángulo y otusángulo) y tce ls tes plels medis de cd uno uee que cd tiángulo qued dividido en cuto tiángulos igules (2) Tce un tpecio escleno D M es el pm y N es el pmd uee () que MN es plel ls ses, y () que l medid de MN es l semisum de ls medids de ls ses del tpecio (pevimente enuncie fomlmente como teoem) Tpecio: cudiláteo con un solo p de ldos opuestos plelos, llmdos ses esolución del ejecicio (2) de plel medi M N Se / N pm ls digonles del D se cotn en su punto medio D es un plelogmo ls digonles del 'D // po D lyfi D 'D se cotn 'D D, es deci que los D // po D en su pm puntos, D y están linedos MN // ' Luego, el segmento MN es plel medi en el tiángulo MN 1 2 ' omo MN //, esult MN // D y MN // y MN 1 (D D') (D + ) Teoem de Thles onsidee dos ects coplnes y fij ides, supongmos // Soe se tomn los puntos, y, de modo que, consecutivos Se tzn: un ect secnte y y que ps po, un ect // po y un ect c // po Sen,, c Demostemos que ' ' ' ' c

7 - 7 - // ' ' ' ' plelogmo ' ' x // y nálogmente, ' ' ' ' ' ' o hipótesis x Si ls ects y son secntes, se tzn y ects plels po, y Fommos los plelogmos y y z po l inición () concluimos que: '' ' ' y '' ' ' Demueste el lecto que los tiángulos y son igules '' '' tnsitiv Luego, ' ' '' ' ' ' ' ' ' '' odemos geneliz este esultdo en el siguiente Teoem: Si tes o más ects plels son cotds po dos tnsvesles, segmentos igules en un de ésts coesponden segmentos igules en l ot Definición: Sen cuto segmentos cuys medids son,, c y d Decimos que c fomn un popoción si están en l elción d Ejecicio N M x Tce segmento Diuje un semiect x que fome un ángulo gudo Tome un segmento itio soe l semiect y tnspótelo pti de tes veces consecutivs soe x, deteminndo sí los puntos, y Un el punto con o y tce ls plels que cotn l segmento en M y N según figu Demueste que el segmento h queddo dividido en tes segmentos igules N, MN y N Teoem (de Thles): Si tes o más plels son cotds po dos tnsvesles, dos segmentos culesquie de un de ésts son popocionles los dos segmentos coespondientes de l ot ////c, t t' Demostción t y t' tnsvesles O'' {} O, t {}, c t {} { } { } { } ' ' O', t' ', c t' ' Hemos l pue p el cso pticul en que exist un segmento de medid x contenido un cntidd ente de veces en el segmento O y en el segmento, po ejemplo, m veces en O y n veces en O mx m Entonces, nx n o los puntos de división que esultn en los segmentos O y l dividilos según el segmento x, se tzn plels ls ects, y c que deteminn soe l tnsvesl t segmentos z que son igules ente sí (po el teoem nteio) unque no tienen po qué se igules x O

8 - 8 - omo el segmento x está contenido m veces en el O y n veces en el es inmedito que z está contenido m veces en el O u n veces en el O'' mz m Entonces, ' ' nz n oncluimos que O O'' ' ' Teoem de Thles plicdo los tiángulos,, no linedos h // h Demostción {}, h {} k i h j Si tzmos j // h po, po el teoem de Thles se cumple que Si tzmos i // po / i tenemos // ' ' plelogmo ' '// Si tzmos k // po po el teoem de Thles se cumple que ' Sustituyendo ' po llegmos l tesis Teoem (ecípoco de Thles): si soe dos ects coplnes hy dos segmentos consecutivos que se pueden pone en coespondenci y que cumpln que son popocionles, y demás dos de ls ects deteminds po extemos coespondientes son plels, entonces l ot ect detemind po extemos coespondientes tmién es plel quells, ' ects coplnes,,, ', ', ' ' '// ' ' ', '// ' ' ' Demostción o hipótesis, ' ' ' ' Se h // po h { } ' ' ' ' o el teoem diecto, Entonces, ' '' ' '' o el xiom de tnspote de segmento, hy un único punto en l semiect opuest que cumple que ' ' ' oncluimos que Luego, h // esponsles: of Mí del osio uintns of lejndo sto

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nome: Cuso: Fec: Se m ug geomético conjunto de todos os puntos que cumpen un detemind popiedd geométic. EJEMPLO Cuá es e ug geomético de os puntos

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico iujo de Pimeo de chilleto: uto: Rmón del Águil olán PRIMER UNI. Mteiles fundmentles empledos en iujo Técnico ontenido: Lápices, plntills, compses, etc. onocimiento de sopotes Técnics de odo Uso coecto

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espcio 1. Elementos básicos en el espcio ibuj mno lzd un punto, un ect, un omboide y un cubo. P I E N S A Y A L U L A Rect Punto Romboide ubo né clculist 489,6 : 7,5 = 65,28; R = 0 1 2 Escibe

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundi) TEMA 5 PRODUCTO ESCALAR DE VECTORES. PRODUCTO VECTORIAL Y PRODUCTO MIXTO. APLICACIONES A LA RESOLUCION DE PROBLEMAS FISICOS Y GEOMETRICOS.. Poducto escl. Popieddes...Nom

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

Así, si la medida del arco AB es r, entonces:

Así, si la medida del arco AB es r, entonces: INSTITUTO EDUAIONAL ARAGUA MARAAY VMOL GUIA DE MATEMATIA, s. TRIGONOMETRÍA Nº Medid de Ángulos: (Siste Rdián y Sexgesil) B O α A Not: En est guí cundo se define l edid del ángulo centl α se lá indistintente

Más detalles

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4)

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4) José Guzmán Tem Tigonometí pg. nº sevciones: ) Los ejecicios esueltos te los tienes que pende muy ien, poque los de los eámenes seán pecidos ) Los ejecicios que tu hgs, en cs y en los eámenes, tienen que

Más detalles

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A SEMN 6 IRUNFERENI. En un tiángulo ectángulo cuyos ángulos gudos miden 7 y 5. lcule l elción ente ls medids indio y el cicundio. ) /5 ) /5 )/0 D) /5 E) /7 Indio R = icundio Dto: + b + c = 4. R =.. : Teoem

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 0 TALLER Nº: SEMESTRE EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA RESEÑA HISTÓRICA Pitágos. (isl de Smos, ctul Geci, h. 57.C.- h. 97.C.)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

ELEMENTOS DE CÁLCULO VECTORIAL

ELEMENTOS DE CÁLCULO VECTORIAL ELEMENTOS DE CÁLCULO VECTORIAL SUMARIO: 1.1.- Mgnitudes vectoiles 1.2.- Vectoes: definiciones 1.3.- Clses de vectoes 1.4.- Adición de vectoes 1.5.- Multiplicción po un númeo el 1.6.- Popieddes 1.7.- Consecuencis

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

POSICIONES DEL PUNTO:

POSICIONES DEL PUNTO: OSCONES DEL UNTO: 1 elementos diédico A) UNTOS EN LOS CUADANTES (segundo cudnte) V (pime cudnte) A B C (tece cudnte) D V (cuto cudnte) - unto situdo en el pime cudnte (A): Cot +, lejmiento + - unto situdo

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

ELEMENTOS DE GEOMETRÍA DEL ESPACIO CURSO 2015

ELEMENTOS DE GEOMETRÍA DEL ESPACIO CURSO 2015 ELEMENTS DE GEMETRÍ DEL ESPCI CURS 2015 Pof.Segio Weinege 6to MD.Mt IV PSICINES RELTIVS DE DS RECTS: 1) PRLELS: // y coplne y = Ф o = 2) SECNTES(SE CRTN): y ecnte ={P} P 3) SE CRUZN (N CPLNRES) y e cuzn

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

Mira bien las figuras PÁGINA 15

Mira bien las figuras PÁGINA 15 PÁGIN 5 Pág. Hll el áe de l pte sombed. l 0 cm El áe que buscmos es el doble de l que está coloed en est figu: l 0 cm 5 cm 5 cm Clculmos pimeo el ldo del cuddo inteio: Ldo 5 +5 50 5 cm CÍRCULO π 5 5π CUDRDO

Más detalles

Matemáticas II Unidad 4 Geometría

Matemáticas II Unidad 4 Geometría Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Supefiie pln limitd po tes segmentos o ldos que se otn dos dos en tes véties. NOENLTUR: Los véties se nomn on lets minúsuls y los ldos on lets myúsuls emplendo l mism let que el vétie opuesto.

Más detalles

Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado.

Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado. 12 Figus geométics L geometí de los egipcios y de los bbilonios fue, sobe todo, páctic. Sin embgo, l ctitud de los giegos fue muy distint: desligon el estudio de ls figus geométics y de sus popieddes de

Más detalles

LA RECTA EN EL PLANO

LA RECTA EN EL PLANO FACULTAD DE CIENCIAS EXACTAS INGENIERIA Y AGRIMENSURA U.N.R. LA RECTA EN EL PLANO E INECUACIONES LINEALES EN DOS VARIABLES CATEDRA ALGEBRA Y GEOMETRIA I 9 RICARDO SAGRISTA PATRICIA CO MONICA DEL SASTRE

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE.

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE. 1. ELEMENTOS ÁSICOS DE L GEOMETRÍ. 1.1. EL UNTO. Definición. El punto no tiene ptes ni medid ni fom. No tiene dimensiones. Todos los elementos y figus de l geometí están fomdos po puntos. El punto tiene

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene:

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene: Julio 8 Exmen de Electomgnetismo Solución Poblem ) El sistem puede se visto como dos cpcitoes en plelo, donde cd cpcidd es de l fom C i ε i i /d i. Entonces se obtiene: ( ε ε ) L ε L ε L + C C + C + 4d

Más detalles

Resolución de Problemas: Trapajo Práctico nº 4

Resolución de Problemas: Trapajo Práctico nº 4 Resolución e Poblems: Tpjo Páctico nº 4 Poblem 2: En el cento e un cubo e 1cm e lo se coloc un cg puntul Q5mC. Cuánto vle el flujo eléctico tvés e un c? Y si l cg se ubic en un vétice el cubo? P clcul

Más detalles

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10 1 Repesent el plno que definen l ect R y el punto. 2 Repesent el plno que definen ls ects y s que se cotn en A 3 Hll ls tzs del plno que definen ls ects y s 4 Hll el punto A del plno de cot 16 y lejmiento

Más detalles

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad TRIGNMETRÍ. ÁNGULS igen: Positivos: tido ntihoio. Negtivos: tido hoio. + MEDID DE ÁNGULS Sistem segesiml Sistem entesiml Rdines SISTEM SEXGESIML. Unidd: El gdo segesiml (º. ángulo ompleto 60º º ángulo

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas.

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas. puntes geometía: Constucciones básicas º ESO LINE: Es una sucesión infinita de puntos. ueden se lineas cuvas o líneas ectas. LINE CUR. Es una sucesión infinita de puntos en difeentes diecciones. LINE RECT.

Más detalles

Curso MATERIA: MATEMÁTICAS II (Fase general)

Curso MATERIA: MATEMÁTICAS II (Fase general) Cuso 9- MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El lumno contest los cuto ejecicios de un de l dos opciones ( o B) que se le oecen. Nunc deeá contest unos ejecicios de un opción

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

La energía eléctrica y el potencial eléctrico

La energía eléctrica y el potencial eléctrico L enegí eléctic y el potencil eléctico Leyes de l fuez eléctosttic y gvitcionl Q Q F 2 ˆ 2 2 2 4πε 0 2 Atctiv o epulsiv / 2 muy fuete m m F G 2 ˆ 2 2 2 Siempe tctiv / 2 muy déil 2 Tnto l fuez gvitcionl

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

CURVAS TÉCNICAS Óvalo, ovoide, espiral y voluta. Trazado como aplicación de tangencias TEMA9. Objetivos y orientaciones metodológicas. 1.

CURVAS TÉCNICAS Óvalo, ovoide, espiral y voluta. Trazado como aplicación de tangencias TEMA9. Objetivos y orientaciones metodológicas. 1. URS ÉNIS Óvlo, ovoide, espil y volut. zdo omo pliión de tngenis jetivos y oientiones metodológis E9 IUJ GEÉRI Se tt de un unidd temáti ot y senill. El lumno pendeá, l menos, un poedimiento de onstuión

Más detalles

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO.

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO. LOQUE :GEOMETRI NLITIC EN EL PLNO. Lección : Vectoes..-El conjunto R El conjunto R está fomdo po dupls del tipo (,) donde, son númeos eles. Dos elementos de R son igules si tienen igul su pime segund componentes.

Más detalles

1. SUPERFICIE PRISMÁTICA Y PRISMA

1. SUPERFICIE PRISMÁTICA Y PRISMA 1. SUPERFICIE PRISMÁTICA Y PRISMA. SUPERFICIE PIRAMIDAL Y PIRÁMIDE. CUERPOS REDONDOS. 4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemin áes de supeficies. Detemin volúmenes de sólidos. 1 1. SUPERFICIE PRISMÁTICA

Más detalles

Física. g u a y F R. Entonces : tg

Física. g u a y F R. Entonces : tg Físic g u y. Clcul l istnci el equiliio ente ls os esfes e l figu, e ms m, cgos con q coulomios, si se supone que el ángulo con l veticl es muy pequeño, y los hilos que los sujetn no tienen ms. SOLUCIÓN:

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

NOCIONES DE TRIGONOMETRÍA

NOCIONES DE TRIGONOMETRÍA Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Síntesis Física 2º Bach. Campo Magnético. M - 1

Síntesis Física 2º Bach. Campo Magnético. M - 1 Síntesis Físic º ch. Cmpo Mgnético. M - 1 CAMPO MAGNÉTCO. ntoducción. Se obsev expeimentlmente que un imán ce un zon de influenci su lededo que se mnifiest po l oientción que dquieen ls limdus de hieo

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo Univesidd de Chile Fcultd de Ciencis Deptmento de Físic Electomgnetismo Pue 1 de Cáted Pofeso: José Rogn C. 15 de Ail del 2005 Ayudntes: Mí Tees Ced G. Gemán Vs S. 1. Un distiución de cg esféicmente simétic

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002 FUNDAMENTS FÍSCS DE LA NFMÁTCA TECE EJECC GUP 1P de Myo de 00 Cuestiones 1. ) Enunci el teoem de Ampèe. ) Aplic el teoem de Ampèe p clcul el cmpo mgnético cedo po un conducto ectilíneo indefinido, en un

Más detalles

( x ) ( x 2 4 ) = x 2

( x ) ( x 2 4 ) = x 2 9. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. Luges geométios y ángulos IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles de un pentágono egul?

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

10. Teoremas de Thales y Pitágoras

10. Teoremas de Thales y Pitágoras 140 SOLUCIONRIO 10. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. LUGRES GEOMÉTRICOS Y ÁNGULOS IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

VARIEDADES LINEALES. Por Javier de Montoliu Siscar, Dr. Ing. Ind. 2ª Edición. Enero 1997.

VARIEDADES LINEALES. Por Javier de Montoliu Siscar, Dr. Ing. Ind. 2ª Edición. Enero 1997. VARIEDADES LINEALES Po Jvie de Montoliu Sisc, D. Ing. Ind. ª Edición. Eneo 997. TABLA DE CONTENIDO TABLA DE CONTENIDO... I VARIEDADES LINEALES... A.- PREAMBULO.... B.- GENERALIDADES.... 3.- Definición

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROBLEMAS RESUELTOS DE INDUCTANCIA MUTUA Y AUTOINDUCTANCIA

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROBLEMAS RESUELTOS DE INDUCTANCIA MUTUA Y AUTOINDUCTANCIA UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

Ángulos. Ángulos y sus elementos. 1. Marca en los dibujos los elementos de cada ángulo. 2. Completa con las letras que corresponden a cada ángulo.

Ángulos. Ángulos y sus elementos. 1. Marca en los dibujos los elementos de cada ángulo. 2. Completa con las letras que corresponden a cada ángulo. Módulo 1 Ángulos Ángulos y sus elementos 1. Mrc en los dibujos los elementos de cd ángulo.. Vértice c. Ldos e. Ldos b. Ldos d. Vértice f. Vértice 2. omplet con ls letrs que corresponden cd ángulo.. c.

Más detalles

Determinación de Estructuras: Difracción de ondas por cristales: Ley de Bragg. 2d sen θ = n λ

Determinación de Estructuras: Difracción de ondas por cristales: Ley de Bragg. 2d sen θ = n λ Deteminción de Estuctus: Difcción de onds po cistles: Ley de Bgg. d sen θ n λ Análisis de Fouie: L densidd electónic es invinte bo un tnslción de ed: n ( T) n ( ) o en un dimensión n ( x ) n (x ) Desollo

Más detalles

EXAMEN DE MATEMATICAS II. Apellidos: Nombre:

EXAMEN DE MATEMATICAS II. Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO Apellidos: Nobe: Instucciones: Cuso: º Gupo: A Dí: CURSO 56 ) Dución: HORA y MINUTOS. b) Debes elegi ente eliz únicente los cuto ejecicios de l Opción A o bien únicente

Más detalles

4. Definición: Convergencia uniforme de una sucesión de funciones

4. Definición: Convergencia uniforme de una sucesión de funciones 1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

SOLUCIONARIO. Examen UNI 2017 I Matemática S S. Prohibida su venta

SOLUCIONARIO. Examen UNI 2017 I Matemática S S. Prohibida su venta Pegunt 0 Sen los conjuntos {bcdef () / ls cifs son consecutivs y cecientes, >0} {bcdef () / ls cifs son consecutivs y dececientes} Hlle el númeo de elementos de. ) 8 ) 9 ) ) E) Elementos de b c d e f ()

Más detalles

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI:

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI: AMPLAÓN D FÍSA LTOMAGNTSMO TMPO: ho Septieme 6 Nome: DN: Teoí ( puntos). () Fomule l ley de Guss en el vcío, tnto en su fom integl como difeencil. A pti de est ley justifique po qué ls línes del cmpo eléctico

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

Existe un subconjunto de R, denotado R + Y cuyos elementos son llamados números reales positivos, que satisface los siguientes axiomas:

Existe un subconjunto de R, denotado R + Y cuyos elementos son llamados números reales positivos, que satisface los siguientes axiomas: División: Pr, E R, * O, -;-, ḇ o /. (que se lee " dividido " o " sore ") denot l número.( - 1). Not: -;- no está definido cundo = O. ORDEN ENR Existe un suconjunto de R, denotdo R + Y cuyos elementos son

Más detalles

Figura 1 Figura 2. Figura 3. a 12V

Figura 1 Figura 2. Figura 3. a 12V Exmen de Repción, Pof. José Cácees. Nombe: CI: Fech: 1. Cuto cgs puntules idéntics (= +10 µc) se loclizn sobe un ectángulo como se muest en l figu 1, con L=60cm y =15cm. Clcule el cmpo eléctico neto y

Más detalles

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES.

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTEEDENTES DE ELETIIDD Y dfghjklcvbnmqwetuiopsdfghjkl MGNETISMO

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tem FUNDAMENTOS PROPIEDADES ALGEBRAICAS DE LOS NÚMEROS REALES R.- Qué conjuntos epesentn N, Z, Q, R? R.- Qué elementos se encuentn en los conjuntos A = { m Z m

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es info@academiaup.es Univesidad de licante FIGURS

Más detalles