LA TRANSFORMADA DE LAPLACE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA TRANSFORMADA DE LAPLACE"

Transcripción

1 Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada de fucioe báica 2.4 Propiedade de la raformada de aplace 2.5 a fució de raferecia 2.6 Polo y cero 2.7 a raformada ivera 2.8 Teorema del valor fial e iicial Algo obre Pierre Simo, Marqué de aplace CSD-Tema 2: a raformada de aplace - 2

2 2. Iroducció: De dóde veimo... Por lo que hemo vio aeriormee, o parece fácil el eudio de lo feómeo raiorio de circuio de u orde uperior a 2 Icluo e lo de orde 2, el eudio e complica i omeemo a eo circuio a eñale de exciació compleja Hace fala ua herramiea que implifique y iemaice el eudio del comporamieo raiorio de circuio y oro iema diámico CSD-Tema 2: a raformada de aplace - 3 y a dóde vamo Ea herramiea e llama Traformada de aplace: coviere ec. difereciale e algebraica Domiio del iempo Domiio de la frecuecia Problema de ecuacioe difereciale co valor iicial Tra. de aplace Problema de ecuacioe algebraica Difícil Muy fácil Solució del problema de ecuacioe difereciale co valor iicial - Tra. ivera de aplace Solució problema algebraico CSD-Tema 2: a raformada de aplace - 4

3 2.2 Defiició Traformada uilaeral de aplace { } F ( ) = f () = f () e d [] [ - ] E ua iegral impropia: de a Coverge e la fucioe que repreea magiude fíica (la que o ierea) E uilaeral No ierea la evolució de la fució para iempo poiivo CSD-Tema 2: a raformada de aplace Traformada de fucioe báica Ecaló uiario u () Traformada fucioale E ua fució que permie ecribir la expreió maemáica de fucioe fiia e el iempo u () = < u () = > Codició iicial u ( - )= u () Valor iicial u ( + )= CSD-Tema 2: a raformada de aplace - 6

4 Traformada de fucioe báica (2) Ecaló u () Se puede combiar a a 2 u (-a) u (a-) = - u (-a) u ()-u (-2) 2 3 f()=2 u () - 4(-) u (-) + + 4(-3) u (-3) - 2(-4) u (-4) CSD-Tema 2: a raformada de aplace - 7 Traformada de fucioe báica (3) Ecaló u () Su raformada: { } + u () = u () e d = e d = e = = + CSD-Tema 2: a raformada de aplace - 8

5 Traformada de fucioe báica (4) Expoecial: e a { () } a a e u e e d + = = a ( a ) = e + d = + + CSD-Tema 2: a raformada de aplace - 9 Traformada de fucioe báica (5) jω Expoecial compleja: e = co( ω) j e( ω) ω { () } {( co( ω ) e( ω )) ( )} j jω e u e e d + = = ( + jω ) = e d = + jω = = jω + ω ω j u = j ω + ω { co( ω) } j{ e( ω) } CSD-Tema 2: a raformada de aplace -

6 Traformada de fucioe báica (6) Rampa: { ()} u e d + = = = e e d = + + = + e 2 = + = 2 u dv= u v v du CSD-Tema 2: a raformada de aplace - Traformada de fucioe báica (7) Impulo uiario δ (): ( Dela de Dirac ) E úil porque... No permie defiir la derivada e la dicoiuidad Hay algua eñale reale que e aproxima a ella Tiee la iguiee propiedade: Su duració e ula Tiee ua ampliud ifiia Su área e δ () k δ () d k δ () ; = = CSD-Tema 2: a raformada de aplace - 2

7 Traformada de fucioe báica (8) Impulo δ () Cómo e fabrica? f () df ( ) d /(2ε) ε ε ε Área = ε δ () = lim f '() ε CSD-Tema 2: a raformada de aplace - 3 Traformada de fucioe báica (9) Impulo δ () Propiedad de muereo (o deja paar ada excepo el valor e a) f δ a d = f a Su raformada { } () ( ) ( ) δ () = δ () e d = δ () d = Traformada de derivada uceiva d δ ( ) = d + CSD-Tema 2: a raformada de aplace - 4

8 Traformada de fucioe báica (y) Ora a e u( ) a e e( ω) u ( ) a e co( ω) u ( ) 2 ( + a) ω 2 2 ( + a) + ω + a 2 2 ( + a) + ω CSD-Tema 2: a raformada de aplace Propiedade de la raformada iealidad { } Traformada operacioale k f ( ) + k f ( ) = k F( ) + k F ( ) Produco!!! Derivada { } f () f () F( ) F ( ) 2 2 df () = F() f () d Difereciació e el domiio del iempo Operació algebraica e el domiio de la frecuecia CSD-Tema 2: a raformada de aplace - 6

9 Demoració de la derivada df () Derivada = F() f () d df () df () = e d = d u dv= u v v du d ] = e f() + f() e d = = f( ) + F( ) Expreió geeral: = d d d d f() 2 df() d f() F () f() CSD-Tema 2: a raformada de aplace - 7 Propiedade de la raformada (2) Iegració { f( x) dx } = F() Reardo { } a f( a) u ( a) = e F( ) ; a> Tralació e frecuecia a { } e f() = F( + a) Cambio de ecala f( a ) = F ; a> a a { } CSD-Tema 2: a raformada de aplace - 8

10 Propiedade de la raformada (3) Ora raformacioe f () F() df() f() d d F() f() ( ) d f() F( d ) CSD-Tema 2: a raformada de aplace - 9 Propiedade de la raformada (y4) Covolució: g() f() = g( v) f( v) dv { g() v f( v) dv} = F( ) G( ) Ea propiedad iee mucha aplicacioe e igeiería CSD-Tema 2: a raformada de aplace - 2

11 Repuea al impulo y covolució Sea u iema TI (ieal Ivariae e el Tiempo) co ua eñal de erada x() y ua eñal de alida y () = Sx [ ()]. Sx [ ( ) + x2( )] = Sx [ ( )] + Sx [ 2( )] Sa [ x ( )] = a Sx [ ( )] ieal y ( T) = Sx [ ( T)] Ivariae e el iempo Se deomia repuea al impulo a la repuea del iema cuado la erada e el impulo uiario, pariedo de codicioe iiciale ula. CSD-Tema 2: a raformada de aplace - 2 Repuea al impulo y covolució (2) a repuea al impulo uele deoare por h(), y u raformada de aplace por H() Si coocemo h(), podremo obeer la repuea del iema TI ae cualquier ora erada: y () = hv ( ) x ( vdv ) = h () x () hp:// CSD-Tema 2: a raformada de aplace - 22

12 Repuea al impulo y covolució (3) Coidéree como eñal de erada u pulo D k e el iae k como el iguiee: k k D k k Cuado, eoce k a alida erá: h = h( ) k k D ( ) k δ k Siema ivariae k CSD-Tema 2: a raformada de aplace - 23 Repuea al impulo y covolució (4) Cualquier eñal de erada e puede aproximar como la uma de u re de eo pulo, poderado por el valor de la eñal: =+ x() x( ) D k = k k k k Para cada uo de lo umado, e poible ecorar la alida: x ( k) k D x( k) k h( k ) k CSD-Tema 2: a raformada de aplace - 24

13 Repuea al impulo y covolució (y5) Aplicado el pricipio de uperpoició, la eñal de alida oal, erá la uma de la alida de cada uo de lo érmio del umaorio: =+ y () x ( ) h ( ) k = k k k k E el límie, el umaorio e coviere e iegral: k + y () = xv ( ) h ( v ) dv = xv ( ) h ( v ) dv = x () h () CSD-Tema 2: a raformada de aplace - 25 Ejemplo de aplicació I = C (codicioe iiciale ula) R v() aperura del ierrupor v () dv () i = ; + v( ) d+ i ( ) + C = I u ( ) R d V() V() + + C V() v() I R = CSD-Tema 2: a raformada de aplace - 26

14 Ejemplo de aplicació (2) I = C R v() (codicioe iiciale ula) V ( ) + + C = R I I V ( ) = + + C R Se implifica la reolució de ecuacioe difereciale Qué habría que hacer ahora? raformada ivera... CSD-Tema 2: a raformada de aplace Fució de raferecia o modelo maemáico de lo iema que empleamo geeralmee decribe la ifluecia de ua eñal de erada x() obre ora eñal de alida y() mediae ua EDO de orde : x () iema y () 2 2 m dy () d y () d y () dx () d x () d x () αy () + α + α2 + + α 2 = βx () + β + β2 + + β 2 m m d d d d d d (upoiedo codicioe iiciale ula) A () i= Y() A() = X() B() m B() i = α i = β i= i i CSD-Tema 2: a raformada de aplace - 28

15 Fució de raferecia (y2) Y() A() = X() B() B () Y() = X() = F() X() A () F( ) Salida = F.de raferecia Erada CSD-Tema 2: a raformada de aplace - 29 Ejemplo de Fució de Traferecia I V ( ) = + + C R Y() = V() X() = I F () = + + C R CSD-Tema 2: a raformada de aplace - 3

16 2.6 Polo y cero Hemo vio que la fució de raferecia e puede exprear como u cociee de do poliomio. Tao el umerador como el deomiador e puede exprear como produco de moomio que repreea la raíce. B () ( z)( z2) ( zm) F () = = k A() ( p )( p ) ( p ) 2 i = zi F( ) = "cero" i = p F( ) = "polo" i CSD-Tema 2: a raformada de aplace Traformada ivera de aplace Queremo raformar ua fució e e ua σ+ jω fució e - () = { ()} = ( ) Aplicamo la defiició? σ jω x X X e d iegral e el plao complejo Uff! o mejor ería implificar de algua forma la fucioe e de maera que obuviéemo fucioe co airaformada coocida Por ejemplo, i que: y() =.2 e Y() = +.2, abemo por abla CSD-Tema 2: a raformada de aplace - 32

17 Traformada ivera de aplace (2) Qué forma iee la fucioe de la que queremo hallar u raformada ivera? Para circuio lieale de parámero cocerado e ivariae e el iempo e cumple que: So racioale: e puede exprear e fució de cociee de poliomio m N () b m + b + + b+ b Y() = F() X() = = D () a + a + + a+ a m m CSD-Tema 2: a raformada de aplace - 33 Traformada ivera de aplace (3) a fució racioal e puede ecribir ambié... ( z )( z ) ( z ) ( )( ) ( ) 2 m Y() = k p p 2 p El objeivo e reducir la fució a fraccioe parciale, por ejemplo, del ipo: R R2 R3 R4 Y () = ( + ) ( + ) { } = ( ) Y() R R e Re R e u () Cero Polo CSD-Tema 2: a raformada de aplace - 34

18 Traformada ivera de aplace (y4) El procedimieo a eguir para fucioe propia (>m) e el iguiee: a) Ideificar la raíce del deomiador: lo polo. b) Calcular lo reiduo de la fraccioe parciale Raíce diia: polo imple Raíce repeida: polo múliple c) Obeer la ivera a parir de la abla CSD-Tema 2: a raformada de aplace - 35 Expaió e fraccioe parciale Si odo lo polo o diio, la decompoició e fraccioe imple reula muy ecilla: R Y()= i p Dode lo reiduo e puede calcular como: i i ( ) Ri = Y() pi = pi o polo complejo va por pare cojugado, reulado reiduo ambié complejo y cojugado ere í. CSD-Tema 2: a raformada de aplace - 36

19 Polo múliple U polo de muliplicidad k da lugar a k umado, reulado: Dode: R = ( k j) R k j j= i! ( p ) j k ( () ( i ) ) k j d Y p j k j d = pi CSD-Tema 2: a raformada de aplace - 37 Oro méodo de obeció de reiduo De forma complemearia, e puede uilizar oro méodo: Paricularizar para diio valore de, obeiedo x ecuacioe co x icógia Dearrollar la expaió e f.p., reduciedo al mimo deomiador, e ideificar érmio a érmio lo umeradore. CSD-Tema 2: a raformada de aplace - 38

20 Fucioe racioale impropia E el cao e que el umerador ea de grado mayor o igual que el deomiador (m ), Y() e ua fució impropia. Eoce: Primero hay que efecuar la diviió de lo poliomio. El reulado e puede airaformar El reo, parido por el deomiador, e ua fució racioal propia: expaió e fraccioe parciale Co ello reula que y() coiee impulo y derivada de impulo. CSD-Tema 2: a raformada de aplace - 39 Traformacioe ivera báica U polo real p = -a da lugar a ua expoecial de coae de iempo τ = /a: Re ϕ R = a R e = ( + a) ( + a jb) ( + a+ jb) R e U par de polo complejo p = -a ± jb da lugar a ua expoecial de coae de iempo τ = /a por ua eoidal de pulació b: τ ϕ Re a + = 2Re co + ( b ϕ ) CSD-Tema 2: a raformada de aplace - 4

21 Traformacioe ivera báica (y2) o polo múliple da lugar a érmio emejae a lo de lo polo imple, pero muliplicado por poecia del iempo: R R = ( ) ( )! e j + a j j j j a CSD-Tema 2: a raformada de aplace - 4 o polo y la forma de repuea o polo de Y() deermia la fucioe emporale preee e y(): o reiduo ifluye e la ampliude y e lo defae. CSD-Tema 2: a raformada de aplace - 42

22 2.8 Teorema del valor fial e iicial Teorema del valor iicial y fial Permie relacioar el valor de f() e = y e co la raformada F() lim + f ( ) = lim F( ) lim f ( ) = lim F( ) Codicioe: T. Valor iicial: f() o puede coeer fucioe impulo T. Valor fial: o polo de F() iee que ear e el emiplao izq. del plao excepo u polo de primer orde e el orige. Eo equivale a que f() iee que eder a u valor para (e cao corario el eorema del valor fial proporcioa el valor medio de régime permaee) CSD-Tema 2: a raformada de aplace - 43 Demoració de lo eorema Valor iicial Valor fial df () lim ( F ( ) f( )) = lim e d = d + df () df () = d + d + d = d + = f( ) f( ) lim F ( ) = lim f( ) + df () lim ( F ( ) f( )) = lim e d = d df () d f ( ) f ( = = ) d lim F ( ) = lim f( ) CSD-Tema 2: a raformada de aplace - 44

23 Algo obre Pierre Simo de aplace 749 (Beaumo-e-Auge) (Parí) Coocido pricipalmee por u rabajo e aroomía y e la eoría de la probabilidade Tiee ora mucha aporacioe Maemáica Fíica y Química "El Uivero e exprea mediae el leguaje de la maemáica" CSD-Tema 2: a raformada de aplace - 45 Algo obre Pierre Simo de aplace (y2) a aécdoa aplace fue miiro del ierior co Napoleó ólo 6 emaa Eo e lo que dijo Napoleó de él: Geómera de primer rago, aplace o ardó e morare como u admiirador má que mediocre: dede u primer rabajo uvimo que recoocer que o habíamo equivocado. aplace o aacaba igua cueió dede el puo de via acerado: bucaba uileza por oda pare, ólo eía idea problemáica y fialmee llevaba el epíriu de lo "ifiiamee pequeño" [e decir, ifiieimale] haa la admiiració. CSD-Tema 2: a raformada de aplace - 46

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE A.4. TEORÍA DE CIRCUITOS I CAPÍTUO RESOUCIÓN DE CIRCUITOS APICANDO TRANSFORMADA DE APACE Cáedra de Teoría de Circuio I Edició 03 RESOUCION DE CIRCUITOS APICANDO TRANSFORMADA DE APACE.. Iroducció El cálculo

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO Igeiería de iema Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO 3. Repuea Temporal de Siema e Tiempo Coiuo Sea u iema coiuo cuya repuea y( ) ae ua erada u ( ) e objeo de eudio, repreeado

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

SISTEMAS DE SEGUNDO ORDEN

SISTEMAS DE SEGUNDO ORDEN DEPARTAMENTO DE INGENIERÍA MECÁNICA FACULTAD DE CIENCAS EXACTAS Y TECNOLOGIA CÁTEDRA: SISTEMAS DE CONTROL (PLAN 004) DOCENTE: Prof. Ig. Mec. Marco A. Golao ANÁLISIS DE RESPUESTAS TRANSITORIAS SISTEMAS

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

1. Análisis de respuesta transitoria 2. Análisis de respuesta permanente 3. Análisis en el dominio de la frecuencia. 4.

1. Análisis de respuesta transitoria 2. Análisis de respuesta permanente 3. Análisis en el dominio de la frecuencia. 4. Tema 4 Repuea raioria y permaee. Eabilidad. Aálii de repuea raioria. Aálii de repuea permaee 3. Aálii e el domiio de la frecuecia. 4. Eabilidad Tema 4 Repuea raioria y permaee. Eabilidad Erada Ecaló RESPUESTA

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

Álgebra De los Diagramas de Bloques y Comportamiento en el Dominio del tiempo

Álgebra De los Diagramas de Bloques y Comportamiento en el Dominio del tiempo Álgebra De lo Diagrama e Bloque y Comporamieo e el Domiio el iempo Coeio: Álgebra e lo iagrama e bloque, repuea raioria e iema LI e Primer, Seguo y ore uperior Parámero e Comporamieo e el omio el iempo

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal Colecció Baca Ceral y Sociedad BANCO CENTRAL DE VENEZUELA Coideracioe meodológica para la evaluació de la oeibilidad y vulerabilidad fical Elizabeh Ochoa Lizbeh Seija Harold Zavarce Serie Documeo de Trabajo

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

Respuesta temporal de sistemas

Respuesta temporal de sistemas 4 Repuea emporal de iema OBJETIVOS PALABRAS CLAVE Y TEMAS Análii de la repuea ranioria y eacionaria Siema de primer orden Siema de egundo orden Siema de orden uperior Nocione de eabilidad Polo y cero en

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

Control de un proceso en bucle cerrado:

Control de un proceso en bucle cerrado: 0/0/0 0/0/0 Corol de u proceso e bucle cerrado: PC e Corolador v Proceso M Medida Para poder aplicar el corolador adecuado ecesiamos saber cómo se compora el proceso a lo largo del iempo. Cualquier proceso

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso UNIVERSIDAD NACIONAL AUÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULAD DE ECONOMÍA ECONOMERIA Proceso Esocásico Mro. Horacio Caalá Aloso Proceso esocásico Defiició.- U Proceso Esocásico (PE es ua secuecia

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado Sisemas y Señales I Ecuacioes de Esado Auor: Dr. Jua Carlos Gómez Variables de Esado Defiició: Las Variables de Esado so variables ieras del sisema, cuyo coocimieo para odo iempo, juo co el coocimieo de

Más detalles

Apuntes Sistemas Lineales Dinámicos - 543 214

Apuntes Sistemas Lineales Dinámicos - 543 214 Uiversidad de Cocepció Faculad de Igeiería Depo. de Igeiería Elécrica Apues Sisemas Lieales Diámicos - 543 4. f () = si(5) f (kt) = f (kt) f () = si() kt -..5..5. 4 ava edició Prof. José R. Espioza C.

Más detalles

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt UNIDAD 3 Traformada de aplace 3. Defiicioe a traformada de aplace de ua fució f ( t ), repreetada co el ímbolo, e la operació memática defiida mediate la iguiete itegral impropia: { lim b t e dt b Por

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Resolución numérica de problemas de valor inicial (versión preliminar)

Resolución numérica de problemas de valor inicial (versión preliminar) (versió prelimiar) Cocepos iiciales.- Sea la ecuació diferecial de primer orde co las codició iicial x = f(,x) x( 0 ) = x 0 Para resolverla uméricamee será ecesario previamee comprobar si hay solució y

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo Aálii de Serie de Tiempo Noe que dada la erucura de difereciar la fució de veroimiliud e mu complicado por ao difícil de opimizar. eo cao e aplica méodo umérico co eimadore iiciale dado e la eimació prelimiar.

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Análisis de Procesos Dinámicos

Análisis de Procesos Dinámicos Aáii de Proeo Diámio d d d d, i i i, u Euaió de eado eera Si e iema e ivariae e e iempo, u,, u Dearroado e erie de Taor, u, u u u u, u, u, u Depreiado o érmio de orde uperior obeemo ua euaió de eado iea,

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

Automá ca. Apéndice:TransformadadeLaplace. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Apéndice:TransformadadeLaplace. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Auomáca Apédic:Tafomadadaplac JoéRamólaaGacía EhGozálzSaabia DámaoFádzPéz CaloToFo MaíaSadaRoblaGómz DpaamodTcologíaElcóica IgiíadSimayAuomáca Apédic: Tafomada d aplac Apédic Tafomada d aplac A.. INTRODUCCIÓN

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

Material didáctico. Bibliografía básica. Aula global

Material didáctico. Bibliografía básica.   Aula global Fracisco J. Gozález, UC3M Maerial didácico Bibliografía básica Señales y Sisemas Ala V. Oppeheim, Ala S. Willsky, S. Hamid Nawab, ª edició (998) Preice Hall; ISBN: 97897764 Circuios Elécricos, James W.

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

TEMA IV INTEGRALES INDEFINIDAS

TEMA IV INTEGRALES INDEFINIDAS Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física MAEMÁICAS Posgrado e Naoecología Dr. Robero Pedro Duare Zamorao 16 Deparameo de Física EMARIO. Series de Fourier 1. Iroducció.. Desarrollo de Fourier. 3. Expasioes de Fourier de medio rago. Iroducció.

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

Tema 1: Transformada de Laplace. Contenidos Transformada de Laplace

Tema 1: Transformada de Laplace. Contenidos Transformada de Laplace Tema Traformada de aplace Traformada de aplace Traformada vera de aplace Coedo Grupo EDUMATICUS. Deparameo de Maemáca Aplcada. Uverdad de Málaga Amplacó de Cálculo 2/. Ecuela Polécca Superor Tema : Traformada

Más detalles

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores Capíulo Iroducció a la Elecróica de oecia. Iroducció a la Elecróica de oecia. Clasificació de los Coeridores Como su ombre lo idica su fució es coerir ua fuee de ua esió y frecuecia dada a ora de diferees

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemática Fiaciera Fracico Pérez Herádez Departameto de Fiaciació e Ivetigació de la Uiveridad Autóoma de Madrid Objetivo del curo: Profudizar e lo fudameto del cálculo fiaciero, eceario para u aplicació

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

CONVERSORES D/A Y A/D

CONVERSORES D/A Y A/D Uiversidad Nacioal de osario Faculad de iecias Exacas, Igeiería y Agrimesura Escuela de Igeiería Elecróica eparameo de Elecróica ELETÓNIA III ONVESOES /A Y A/ Federico Miyara A / 11010110 00001011 11000110

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

11 Análisis en el dominio de la

11 Análisis en el dominio de la Aálii e el domiio de la frecuecia Para el etudio de la repueta diámica de lo itema ate ua excitació extera e ha empleado, hata ahora, do método. El primero e realizaba e el domiio del tiempo a travé de

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS

PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS ONTIFICIA UNIVERSIDAD CATÓLICA DE UERTO RICO DEARTAMENTO DE FÍSICAMATEMÁTICAS Nombre: Fecha: Sec. Eame Fial MAT. 98 Núm. I. Seleccioe la repuea correca: (3 puo cada uo) Cao: Sea Z {0 0 3 3 4 4 5 6 7 7

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Análisis de Sistemas en el Dominio del Tiempo

Análisis de Sistemas en el Dominio del Tiempo em 3 Aálii de Siem e el Domiio del iempo Gijó - Ferero 5 Idice 4.. Aálii de lo iem 4.. pue impuliol 4.3. pue u ecló 4.4. pue u eñl culquier 4.5. Eilidd 4.6. Crierio de eilidd de Rouh 4.7. Siem de primer

Más detalles

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM)

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM) Aálisis de flujos e lámia libre y su ieracció co sólidos y esrucuras por el méodo de parículas y elemeos fiios (PFEM) E. Oñae B. Suárez F. Salazar R. Morá M.A. Celiguea S. Laorre Publicació CIMNE Nº-365,

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS V.- CONDICIÓN DE CONTONO ISOTÉMICA EN SÓIDOS INFINITOS V.1.- CONDUCCIÓN TANSITOIA EN PACA INFINITA CON CONDICIÓN DE CONTO- NO ISOTÉMICA a coducció a ravés de ua placa plaa de espesor fiio e la direcció

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales Univeridad Diego Porale Primer Semere 007 Faculad de Ingeniería Iniuo de Ciencia Báica Aignaura: Ecuacione Diferenciale Laboraorio Nº 8 Reolución de ecuacione diferenciale uando ranformada de Laplace Aplicacione

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL OSCILACIONES AMORTIGUADAS. PENDULO DE POHL.- INTRODUCCION TEÓRICA El Pédulo de Pohl de la figura permie esudiar las oscilacioes libres, amoriguadas y forzadas de baja frecuecia producidas mediae u pédulo

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Análisis de Sistemas Lineales Estacionarios en el dominio. Transformado de Laplace. Juan Carlos Gómez

Análisis de Sistemas Lineales Estacionarios en el dominio. Transformado de Laplace. Juan Carlos Gómez Aálii de Siea ieale Eacioario e el doiio Traforado de aplace Jua Carlo Góez Itroducció Coo vio e lo capítulo ateriore el aálii de la repuea a etrada arbitraria de Siea ieale Eacioario (SE e Tiepo Cotiuo

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Decimocuarta clase. Respuesta al impulso y convolución

Decimocuarta clase. Respuesta al impulso y convolución Uiversidad Disrial Fracisco José de Caldas - Aálisis de Señales y Sisemas - Marco A. Alzae Decimocuara clase. Respuesa al impulso y covolució E esa clase repasamos y esedemos la clase 3, ya que se raó

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Precálculo Quinta edición Matemáticas para el cálculo

Precálculo Quinta edición Matemáticas para el cálculo Precálculo Quia edició Maemáicas para el cálculo Límies JAMES STEWART, LOTHAR REDLIN, SALEEMWATSON Pag. 88-94 . Cocepo iuiivo de ie de ua fució. Limies Esquema del capiulo E ese capiulo se esudia la idea

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Diseño y desarrollo de un Software para el análisis y procesamiento de señales de voz

Diseño y desarrollo de un Software para el análisis y procesamiento de señales de voz Diseño y desarrollo de u Sofware para el aálisis y procesamieo de señales de voz. Laforcada *, D. Miloe, C. Maríez,. Rufier Laboraorio de Ciberéica, Deparameo de Bioigeiería, Faculad de Igeiería, Uiversidad

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

Sistemas lineales invariantes

Sistemas lineales invariantes Siema lineale invariane Inroducción Un iema lineal invariane e repreena uualmene mediane un bloque en el que e mueran ano la exciación como la repuea (figura ): Exciación x() Siema lineal invariane Repuea

Más detalles