UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt"

Transcripción

1 UNIDAD 3 Traformada de aplace 3. Defiicioe a traformada de aplace de ua fució f ( t ), repreetada co el ímbolo, e la operació memática defiida mediate la iguiete itegral impropia: { lim b t e dt b Por lo geeral, e acotumbra coiderar implícitamete el límite y implemete ecribir la fórmula como: { t e dt a traformada de aplace e u tipo de traformació itegral. Al evaluar la itegral, (que e realidad e ua variable compleja) e tra como cotate, y t deaparece al utituir lo límite de la itegral, por lo que la expreió memática reultate e ólo fució de. Por eta razó, e dice que e ha traformado la fució del tiempo (domiio de t ) al domiio de aplace (domiio de o frecuecia compleja). Ua de la otacioe habituale para la fucioe traformada e emplear la mima letra de la fució origial, pero mayúcula, para deigar la fució traformada; e decir, que F( ) e la traformada de. { f ( t) F( ) a traformada de aplace e ua operació lieal, por lo que cumple co la iguiete propiedad: { cf ( t) + cf ( t) + + cf ( t) { cf ( t) + { cf ( t) + + { cf ( t) c{ f( t) + c{ f( t) + + c { f( t) cf ( ) + cf ( ) + + cf ( t) c, c,, c o cotate y f ( t ), f ( t ),, f F ( ), F ( ),, F ( t ), repectivamete. dode t o fucioe cuya traformada o a traformada ivera, del domiio de aplace al domiio del tiempo, e repreeta co el ímbolo y etá defiida por la iguiete itegral impropia: γ+ ir { F( ) lim t R πi γir e F d dode γ e u valor real eleccioado de tal forma que todo lo todo lo polo de F( ) quede a la izquierda de la recta vertical que paa por γ. E ítei, la traformada de aplace y u traformada ivera repreeta u par de operacioe que permite paar ua fució del tiempo a ua fució de y vicevera: F( ) Prácticamete uca e emplea eta fórmula de iverió, io que e emplea tabla de traformada. REVISIÓN Págia 4-

2 3. Codicioe uficiete de exitecia Para que la traformada de aplace de ua fució f ( t ) exita, ba co que cumpla la iguiete codicioe:. Que f ( t ) ea cotiua por parte para t.. Que f ( t ) ea de orde expoecial, e decir que ea poible ecotrar cotate c y M ct tale que Me para cualquier t. 3.3 Traformada de aplace de fucioe báica Aplicado la fórmula itegral para la traformada de aplace, e puede verificar lo iguiete reultado: { { c { t 6 { t 3 4 { e t c REVISIÓN Págia 4- { t + 3 { e t { cot + Eta traformada e puede geeralizar y reumir e ua tabla de traformada de aplace, dode e lita e ua columa la fució del tiempo y e la otra columa u correpodiete traformada. Tabla má extea puede coultare e libro y formulario de memática. Ejemplo de ua tabla de traformada de aplace f ( t ) { f ( t)! t + e a e kt k + k co kt + k 3.4 Traformada de fucioe defiida por parte Si la fució f ( t ) defiida por parte, por ejemplo t < t t > t Etoce puede ecotrare la traformada de eta fució aplicado la fórmula itegral, eparado la itegral e do parte: t t t t { + e dt e dt e dt Eta idea e extiede directamete para fucioe defiida e má de do itervalo. t

3 3.5 Fució ecaló uitario a fució ecaló uitario, tambié llamada fució de Heaviide, etá defiida como: U ( ta), t < a, t a Eta fució ecaló puede empleare para activar o deactivar fucioe e cierto itervalo, por lo que puede empleare para repreetar ua fució defiida por parte como ua ola expreió memática. 3.6 Teorema de tralació 3.6. Primer teorema de tralació Ete teorema permite ecotrar la traformada de ua fució multiplicada por ua fució expoecial, etoce el primer teorema de tralació idica que: e. Si F( ) e la traformada de { e f ( t) { f ( t) F( ) F( a) a E decir, e cambia el expoecial por la codició de utituir a dode ea que aparezca e la traformada. Al aplicar el primer teorema de tralació a la traformada ivera e tiee que: a { F( a) e { F( ) e f ( t) E decir, e ua fució dode iempre aparezca a, e puede hacer el cambio a, y aparece ua fució expoecial e Segudo teorema de tralació F e la Ete teorema permite traformar fucioe dode aparezca la fució ecaló uitario. Si traformada de f ( t ), etoce el egudo teorema de tralació idica que: a a { f ( t a) ( t a) e U { f ( t) e F( ) E decir, la fució ecaló uitario e covierte e ua fució expoecial de y t a cambia a t. E importate otar que t iempre debe aparecer e la forma t a para poder aplicar ete teorema. Co repecto a la traformada ivera, el egudo teorema de tralació e exprea como: a { { t t au U e F F t a a t a E decir, que cuado e buque la traformada ivera de ua fució dode aparezca ua fució expoecial de, dicha fució expoecial e covierte a ua fució ecaló uitario co la codició de utituir t a dode ea que aparezca t e la traformada ivera. REVISIÓN Págia 4-3

4 3.7 Traformada de fucioe multiplicada por t o dividida etre t Si f ( t ) e ua fució cuya traformada e F( ), etoce la traformada de ua potecia etera poitiva de t etá dada por: multiplicada por dode e u etero poitivo. d d { t f ( t) ( ) F( ) Por otro lado, i la fució etá dividida etre t, etoce u traformada e: t F d Eta fórmula e cooce tambié como derivada de ua traformada e itegral de ua traformada, repectivamete. 3.8 Traformada de derivada Al aplicar la traformada de aplace para reolver ecuacioe difereciale, e eceario traformar la derivada de ua fució. Si F( ) e la traformada de f ( t ), etoce la traformada de la -éima e: derivada de dode f ( ), f ( ) evaluada e t. d f ( F ( ) f f f ) f dt,, f ( ) ( ) ( ) E particular, para la primera y eguda derivada, e tiee que: o lo valore de f y u primera derivada, repectivamete, 3.9 Traformada de itegrale df F dt f ( ) dt d f F f f Coiderado la itegral de ua fució, evaluada dede cero ha t, u traformada de aplace e: 3. Teorema de covolució Coidéree do fucioe f ( t ) y defiida mediate la iguiete itegral: t { f ( t) dt F g t. a covolució de f y g, que e repreeta como f * t f * g f τ g tτ dτ g, etá REVISIÓN Págia 4-4

5 a itegral de covolució tiee importate aplicacioe e memática e igeiería, icluyedo probabilidad y etadítica, aálii y proceamieto de imágee, aálii de circuito y de itema co ua ditribució co repecto al tiempo. a itegral de covolució e comutiva, por lo que f * g g* f. a traformada de aplace de ua covolució etá dada por: { f * g { f ( t) { g( t) F( ) G( ) E decir, la traformada de la covolució de do fucioe e igual al producto de la traformada de amba fucioe. 3. Traformada de ua fució periódica Ua fució periódica de periodo T e aquella que cumple co la codició f ( t T) f ( t) traformada de ua fució de ete tipo etá dada por la iguiete itegral: 3. Fució delta de Dirac e dt T e T t { a fució delta de Dirac, auque o e ua fució e el etido etricto, puede defiire como: co la propiedad adicioal de que b a, t t δ( t t ), t t ( ab) ( ab), t, δ( t t ) dt, t, E decir, que el reultado de la itegral e igual a uo i igual a cero i t o e ecuetra e ( ab, ). +. a t e ecuetra icluido e el itervalo (, ) ab y e a fució delta tambié e cooce como impulo uitario y uele aparecer al modelar memáticamete feómeo fíico e lo que hay u cambio repetio, como al golpear u objeto. Su traformada de aplace e: { δ( t t ) e t Comparado co el egudo teorema de tralació, e puede ver que lo problema que ivolucra la fució delta geeralmete produce reultado e lo que aparece la fució ecaló uitario. 3.3 Otra traformacioe itegrale 3 E geeral, e puede defiir ua traformació lieal como la operació memática defiida de forma geeral como: t (, ) F u t K t u dt 3 Eta ecció cotiee iformació que va má allá del temario oficial y e puede omitir i perjuicio del curo. REVISIÓN Págia 4-5

6 dode ua fució de ua variable t e covertida e otra fució de ua variable diferete u. a fució de do variable K( tu, ) e deomia úcleo (e iglé kerel) y e caracterítica de cada tipo de traformació itegral. Por coveiecia, e emplea algú ímbolo (por ejemplo para la traformada de aplace) para repreetar de forma compacta la defiició de la traformació itegral. a traformació ivera, cuado exite, etá defiida como: dode K ( ut), u K u, t f u du e el úcleo de la traformació ivera. u Exite mucha traformacioe itegrale, cada ua co aplicacioe e la olució de problema epecífico de cierta área del coocimieto. Aparte de la traformada de aplace, probablemete la má importate ea la traformada de Fourier. a iguiete tabla reume algua de la traformacioe itegrale má comue. Traformada Traformació directa Traformació ivera Fourier F( ω) Seoidal de Fourier F( ω) Coeoidal de Fourier F( ω) π i t { f ( t) e ω iωt F f ( t) dt F { π F ω e F ω dω π S { f ( t) e ( ω F t) f ( t) dt F { e π S F ω ωt F ω dω π C { f ( t) co( ω F t) f ( t) dt { co F C F ω ωt F ω dω π aplace t f F( ) ( t) e dt F( ) Melli { σ+ i t { f F( ) ( t) M t dt { M e F d π i σ i σ+ i { F t F d π i σ i Hakel F( k) f r { f ( r) H f ( r) Jν ( kt) rdr H { Jν F k F k kt kdk dode J ν e la fució de Beel del primer tipo de orde ν / Tabla de pare de traformada/traformada ivera para cada tipo de traformació puede coultare e libro de memática avazada. Relacioada co eta traformacioe itegrale, exite traformacioe dicreta (e decir, o cotiua) de gra importacia e ciecia e igeiería, detacádoe pricipalmete la traformada rápida de Fourier y la traformada zeta. REVISIÓN Págia 4-6

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 7. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DESCONOCIDA

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 7. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DESCONOCIDA ETADÍTICA (Q) 13 7. TET DE HIPÓTEI PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA DECONOCIDA ea X1,..., X ua muetra aleatoria de ua població Normal co media = µ y variaza = σ, N(µ,σ ). upogamo ahora

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza Módulo de Etadítica Tema 7 : Etimació paramétrica e Itervalo de cofiaza Etimació U etimador e ua catidad umérica calculada obre ua muetra y que eperamo que ea ua buea aproximació de cierta catidad co el

Más detalles

Análisis de Señales en Geofísica. 1 Clase Señales y Sistemas

Análisis de Señales en Geofísica. 1 Clase Señales y Sistemas Aálisis de Señales e Geofísica 1 Clase Señales y Sistemas Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Señales Defiició: Llamaremos señal a cualquier observable

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: Prueba de Hipótei (Do Muetra) Ete procedimieto prueba hipótei acerca de cualquiera de lo iguiete parámetro:. la diferecia etre la media μ y μ de do ditribucioe ormale.. el radio de la deviació etádar σ

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES TEMA : FUNDAMENTOS DE SISTEMAS DE TIEMPO DISCRETO. Señales y Sistemas de Tiempo Discreto Se itroducirá coceptos de señales y sistemas de tiempo discreto. Para ello se detallará

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN.

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN. PRAA 6: SSEA DE SEUENO. ONROL DE POSÓN. Aigatura: Sitema Lieale. º de geiería e Automática y Electróica ESDE. Departameto de Automática y Electróica uro 6-7 Práctica º 6: Sitema de Seguimieto. otrol de

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

1. Conceptos Generales

1. Conceptos Generales Cocepto Geerale Defiicioe báica Sitema: arreglo, cojuto o colecció de compoete relacioado de maera que cotituya u todo Sitema de cotrol: arreglo de compoete coectado de maera tal que el arreglo e pueda

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen: CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 0: PRUEBA DE CORRELACIÓN DE SPEARMAN. INTRODUCCIÒN: El coefciete de correlació de Spearma e ua

Más detalles

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B

Sistema. Asin. Im Re. tan 1. Im : parte imaginaria de G j Re : parte real de G j B TEORÍA DE CONTROL Tema 7. Aálii de la repueta e frecuecia Itroducció Se deomia repueta e frecuecia a la repueta e etado etable de u itema ujeto a ua eñal iuoidal de amplitud () fija pero a ua frecuecia

Más detalles

Medidas de dispersión

Medidas de dispersión MB000_MAA4L_Diperió Verió: Septiembre 0 Medida de diperió por Oliverio Ramírez La medida de tedecia cetral aalizada e la ituació aterior, dirige u iteré al comportamieto de lo dato e relació a u valor

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

Integral de una función

Integral de una función Itegral de ua fució Itegral de ua fució Los coceptos de primitiva e itegral idefiida La itegració de ua fució es el paso iverso a la derivació de ua fució. Para defiir correctamete la itegral de ua fució,

Más detalles

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones apítulo 7. Simetría Molecular ) Elemeto y operacioe de imetría.) Defiicioe Se puede obteer mucha iformació cualitativa de la fucioe de oda y propiedade moleculare (epectro, actividad óptica, ) a partir

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

MAZ-222. Máquinas Térmicas

MAZ-222. Máquinas Térmicas MAZ- Máuia érmica Cap. III SEGUNDA LEY DE LA ERMODINÁMICA.. SEGUNDA LEY DE LA ERMODINÁMICA Para la mejor compreió lo proceo termodiámico de u MCI e materializa e la traformació eergética del Calor e rabajo,

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS tructura de la Materia Grupo, Seetre 03- Prof. Iidoro García Cruz RCICIOS. La luz aarilla que eite ua lápara de odio tiee ua logitud de oda de 59. Calcular la frecuecia de eta radiació. Repueta: Sabeo

Más detalles

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia.

Práctica de Laboratorio. Respuesta de los Instrumentos de Medida ante Distintas Señales de Tensión y Frecuencia. Uiversidad Nacioal de Mar del lata. ráctica de Laboratorio ema: Respuesta de los Istrumetos de Medida ate Distitas Señales de esió y Frecuecia. Cátedra: Medidas Eléctricas I 3º año de la carrera de Igeiería

Más detalles

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver Págia de Sitema de cotrol 67- Verió 003 Tema Aálii de Repueta e Frecuecia Sub - tema Diagrama Logarítmico, Diagrama de Bode Volver La repueta de u itema, e etado etacioario, ate ua etrada iuoidal e la

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

APROXIMACIÓN DE FILTROS CAPÍTULO 2

APROXIMACIÓN DE FILTROS CAPÍTULO 2 APROXIMACIÓN DE FILTROS CAPÍTULO . Aproximacioes de Filtros E el capítulo se mecioaro los filtros ideales, e la realidad o se puede lograr ua aproximació ideal, por lo que los filtros reales sólo puede

Más detalles

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Capítulo III DITRIBUCIOE BIDIMEIOALE 3 Itroducció Etudiaremo do caracterítica de u mimo elemeto de la població (altura peo, do aigatura, logitud latitud) De forma geeral, i e etudia obre ua mima població

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE. Curso de Acústica Istituto de Física de la Facultad de Igeiería Uiversidad de la República. Motevideo - Uruguay UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1 .8 CRITERIOS DE COVERGECIA PARA SERIES (.8_CvR_T_6, Revisió: -9-6, C8, C9, C).8.. ITRODUCCIÓ. Forma geeral de ua serie: S = = a = a + a + a +...+ a Suma de térmios. Si es fiito, la suma (S ) tambié es

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC Laboratorio de Aálii de Circuito Práctica 8 Repueta traitoria de circuito RLC Objetivo Verificar experimetalmete el valor de reitecia que e eceita para que u circuito RLC e erie ea críticamete amortiuado,

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Capítulo II. Teoría de Filtros

Capítulo II. Teoría de Filtros apítulo II Teoría de Filtro apítulo II Teoría de Filtro E ete capítulo e preeta lo cocepto báico de lo cuale e debe teer coocimieto para eteder la teoría de lo filtro. Primero e da ua defiició de lo que

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Comparación de dos Muestras

Comparación de dos Muestras STATGRAPHICS Rev. 4/5/007 Comparació de do Muetra Reume El procedimieto de Comparació de do Muetra etá dieñado para comparar do muetra idepediete de dato de variable. La prueba o corrida para determiar

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1

P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1 Algebras de Boole Cojuto de partes. Dado u cojuto =,, podemos eumerar todos los subcojutos posibles de A, o dicho de otro modo todos los cojutos icluídos e A. Costruímos etoces u uevo cojuto co todos esos

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles