PROCESAMIENTO DIGITAL DE SEÑALES
|
|
|
- Natalia Carrizo Hernández
- hace 8 años
- Vistas:
Transcripción
1 PROCESAMIENTO DIGITAL DE SEÑALES TEMA : FUNDAMENTOS DE SISTEMAS DE TIEMPO DISCRETO. Señales y Sistemas de Tiempo Discreto Se itroducirá coceptos de señales y sistemas de tiempo discreto. Para ello se detallará u úmero importate de señales características de sistemas discretos y sus propiedades. Se efocará el estudio a los sistemas lieales e ivariates e el tiempo, por la simplicidad de su aálisis e implemetació. Se defiirá los coceptos de liealidad, causalidad, e ivariacia e el tiempo Se podrá especial éfasis a la represetació de señales y sistemas. Para describir los sistemas de tiempo discreto se utilizará diferetes métodos: Tablas de Valores, Ecuacioes de Diferecias, Trasformada Z y Covolució. Por su importacia e DSP, se efatizará la represetació de las señales y sistemas por medio de ecuacioes de diferecias y trasformada Z. Señales de Tiempo Cotiuo y de Tiempo Discreto Las señales se clasifica de ua maera amplia e señales aalógicas y señales discretas. Ua señal aalógica será deotada por ft, ua fució del tiempo, e la cual la variable t puede represetar ua catidad física, pero para uestros fies supodremos que represeta al tiempo e segudos. Ua señal discreta se deota por k, e la cual la variable k es valuada etera y represeta los istates discretos del tiempo. E cosecuecia es tambié llamada señal discreta e el tiempo, la cual es ua secuecia de úmeros, y será deotada por algua de las siguietes otacioes: k = {k} = {, -, 0,, } Dode la flecha hacia arriba idica el muestreo e t=0. Diferetes maeras de deotar la fució discreta fkt, fk, f k, ft k co k = 0,,, 3, úmero etero Supogamos ua señal de tiempo cotiuo ft y ecesitamos discretizarla. Para ello debemos tomar muestras de la señal por ejemplo co ua llave o CAD, co u período de muestreo T, que a uestros fies será costate o ecesariamete es así, e casos particulares el periodo de muestreo T puede ser variable. La iversa del periodo T es la frecuecia de muestreo f s : Señal de TC Frecuecia de muestreo f s = /T ω s =πf s CAD T Señal de TD
2 a Fució aalógica ft Ǝ v t>0 b Fució discreta muestreo de ft Para defiir fució e a, podemos teer: ft La gráfica Para defiir la fució b, podemos teer: fk La gráfica 3 la tabla de valores Toda la iformació de la gráfica b está coteida e la tabla de valores. La tabla os permite teer u paorama geeral del comportamieto del sistema, y es permaete. Por ejemplo, ua computadora es u STD, o más bie, u cojuto de STDs. Tiempo de muestreo: Es el tiempo que trascurre etre u eveto y el siguiete de a, de a 3, etc. Procesamieto e tiempo real: Es cuado el sistema puede realizar todo el proceso u operació, ates de que comiece de uevo, es decir hace todo durate el período de muestreo. Si o es así es u sistema de tiempo diferido. U sistema digital es u sistema de tiempo discreto, pero o todo STD es u sistema digital. U sistema digital se llama tambié u STD cuatizado. E este caso, para cada período se defie además ua amplitud.
3 Señal de TD de eergía fiita: Es uma señal de tiempo discreto que verifica que k 0 k Supogamos uma señal que varíe segú la ley coocida: k = a k {a k } = a 0, a, a,..., a k,... Esta puede ser ua señal de TD de eergía fiita 0 a k lim si a a a a La codició es que sea a < Señales especiales: Pulso y Escaló {ukt} = {,,,,,,,... } Escaló {δkt} = {, 0, 0, 0, 0, 0, 0,... } Impulso δ 0 Delta Kröecker o bie = { 0, 0, 0,...,, 0, 0, 0,...} Impulso δ Γ = δ k Γ Γ 3
4 SEÑALES CONTINUAS Y DISCRETAS Las señales está clasificadas de maera amplia, e señales cotiuas o aalógicas y señales discretas. Señales Cotiuas: Ua señal aalógica será deotada por a t e la cual la variable t puede represetar ua catidad física; e particular para osotros será el tiempo e segudos. Señales Discretas: Ua señal discreta será deotada por, e la cual la variable es u valor etero y represeta los istates discretos e el tiempo. E cosecuecia, es tambié llamada ua señal discreta e el tiempo. Represetació de las señales de tiempo discreto: E geeral represetamos las secuecias discretas e la forma: = {} = {..., -, 0,,... } La represetació computacioal requiere e geeral de ua secuecia fiita, co ua referecia de tiempo. = {} = {..., -, 0,,... } dode la flecha hacia arriba idica el muestreo e t=0. O bie: = {..., -, 0,,...} el valor etre parétesis idica el muestreo e t=0. E Matlab podemos represetar ua secuecia de duració fiita por u vector fila de valores apropiados. Si embargo, tal vector o tedrá la iformació acerca del muestreo e la posició. Por lo tato ua represetació correcta de requerirá dos vectores: uo para y otro para. Por ejemplo, ua secuecia: = {,, -, 0,, 4, 3, 7 }, ó = {,, -, 0,, 4, 3, 7 } puede ser represetada e Matlab por: = {-3, -, -, 0,,, 3, 4 } ; ={,, -, 0,, 4, 3, 7} E geeral usaremos la represetació del vector sólo cuado la iformació de la posició de muestreo o sea requerida, o cuado tal iformació sea trivial esto es cuado la secuecia comiece e =0. Ua secuecia de duració ifiita arbitraria o puede ser represetada e Matlab debido a las limitacioes de memoria fiita. Atributo de las señales de tiempo discreto Las señales de tiempo discreto so sucesioes de úmeros. Los sistemas de tiempo discreto trabaja sobre sucesioes de úmeros. Es decir: { k } = { 0,,,... k,... } 0 4
5 Tipos de secuecias: E Procesamieto Digital de Señales utilizamos varias secuecias elemetales para propósitos de aálisis. A cotiuació se da sus defiicioes y represetacioes e Matlab:. Secuecia Impulso uitario fució Kröeker, = 0 = = {... 0, 0,, 0, 0,... } 0, 0 E Matlab la fució zeros,n geera u vector fila de N ceros, el cual puede usarse para implemetar sobre u itervalo fiito. Para implemetar:, = 0-0 = = {... 0, 0,, 0, 0,... }, 0, 0 sobre el itervalo 0, usamos la fució de Matlab impseq. Secuecia Escaló uitario, 0 u = = {... 0, 0,,,,... } 0, 0 E Matlab la fució oes,n geera u vector fila de N uos, el cual puede usarse para implemetar u sobre u itervalo fiito. u Para implemetar, 0 u- 0 = = {... 0, 0,,,,... }, 0, 0 sobre el itervalo 0, utilizamos la fució de Matlab stepseq. 3. Secuecia epoecial valuada real = a ; a R E Matlab se requiere u operador arreglo.^ para implemetar ua secuecia epoecial real. Por ejemplo, para geerar: = 0.9, co 0 0, ecesitamos el siguiete script de Matlab: >> = [0 : 0]; = 0.9.^ 4. Secuecia epoecial valuada compleja u = e +jo ; dode es llamado ateuació, y o es al frecuecia e radiaes
6 E Matlab se usa ua fució ep para geerar secuecias epoeciales. Por ejemplo, para geerar: = ep [, j3 ], co 0 0, Necesitamos el siguiete script de Matlab: >> = [0:0]; = ep+3j*; 5. Secuecia siusoidal = cos o + ; dode es la fase e radiaes. E Matlab se usa la fució cos o si para geerar secuecias seoidales. Por ejemplo, para geerar = 3 cos0. +/3+ se0.5, co 0 0, ecesitamos u script de Matlab: >> = [0:0]; =3*cos0.*pi*+pi/3+*si0.5*p*; 6. Secuecia radom Muchas secuecias prácticas o puede ser descriptas por epresioes matemáticas como las ateriores. Este es el caso de las secuecias radom o estocásticas y está caracterizadas por parámetros de las fucioes desidad de probabilidad asociadas ó sus mometos estadísticos. E Matlab se dispoibles de dos tipos de secuecias pseudo-radom: La fució rad,n geera ua secuecia radom de logitud N cuyos elemetos está uiformemete distribuidos e el itervalo [0,] La fució rad,n geera ua secuecia radom gaussiaa de logitud N co media 0 y variaza. Otras secuecias radom puede ser geeradas usado trasformacioes de las fucioes ateriores. 6
7 GUIA DE FUNCIONES PARA TRABAJOS PRÁCTICOS CON Matlab Resume de alguas secuecias útiles y operacioes y su correspodiete fució e Matlab. Impulso uitario fució Kröeker Fució e Matlab, = 0 = = {... 0, 0,, 0, 0,... } impseq 0, 0 O, e geeral, = 0-0 = = {... 0, 0,, 0, 0,... } E u itervalo 0 0, 0 Lo que computacioalmete es más secillo represetar. Escaló uitario, 0 u = = {... 0, 0,,,,... } stepseq 0, 0 Y computacioalmete, 0 u- 0 = = {... 0, 0,,,,... } 0, 0 E u itervalo Epoecial real = a, ; a R 4. Epoecial compleja = e σ+jo, dode σ es el parámetro de ateuació y es la frecuecia e radiaes. 5. Siusoidal = cos o + θ, dode θ es la fase e radiaes. 6. Aleatoria E geeral o puede ser epresadas directamete por ua epresió matemática cerrada. Se describe por su fució desidad de probabilidades o mometos estadísticos. 7
8 Computacioalmete dos tipos de secuecias aleatorias so útiles: a de distribució uiforme y Gaussiaa. E geeral está caracterizadas por su media y variaza. 7. Periódica = + N el meor N que satisface la aterior se deomia período fudametal. Usaremos para deotar ua secuecia periódica. Ua secuecia de este tipo se ilustra e el ejemplo.. Operacioes sobre secuecias Fució e Matlab. Suma de señales sigadd { } + { }= { + } E particular, la úica restricció para sumarlas como vectores, es que tega igual logitud. Ver ejemplo.. Multiplicació de señales sigmult { }.{ }= {. } E particular, la úica restricció para el producto muestra a muestra, como vectores, es que tega igual logitud. Ver ejemplo. 3. Escalamieto {}= { } dode es u escalar 4. Desplazamieto sigshift y = { k} Haciedo m = k, etoces = m + k, de dode ym + k = { m} por lo que esta operació o produce igú efecto sobre el vector Ver ejemplo. 5. Reversió Holdig sigfold y = {- } Cada muestra es reflejada alrededor de = 0 8
9 9 6. Sumatoria de muestras... y 7. Producto de muestras... y 8. Señal eergía * dode el símbolo * deota el complejo cojugado 9. Señal potecia 0 N k N P
Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG
Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas
Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)
Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos
Señales y sistemas discretos (1) Transformada Z. Definiciones
Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
Señales en Tiempo Discreto
Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales
Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20
Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
Tema 8 Límite de Funciones. Continuidad
Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
Medidas de Tendencia Central
1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida
Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas
Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales
Qué es la estadística?
Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma
Teorema del Muestreo
Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso
1. QUÉ ES LA ESTADÍSTICA?
1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular
Análisis en el Dominio del Tiempo para Sistemas Discretos
OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos
Tema 4. Estimación de parámetros
Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................
4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.
Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la
INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.
INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad
DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:
DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució
Práctica 7 CONTRASTES DE HIPÓTESIS
Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua
Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1
Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO RODRÍGUEZ ([email protected]) ALEJANDRO SANABRIA
Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:
Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.
Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios
Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua
Capítulo 2. Operadores
Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática
LAS SUCESIONES Y SU TENDENCIA AL INFINITO
LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció
Aplicaciones del cálculo integral vectorial a la física
Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua [email protected] Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el
UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior
UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que
Los números complejos
Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y
CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos
Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS
Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes
PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14
GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.
Importancia de las medidas de tendencia central.
UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació
LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En
LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)
APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.
APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de
Sucesiones de números reales
Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54
2.- ESPACIOS VECTORIALES. MATRICES.
2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces
TEMA 5: INTERPOLACIÓN
5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x
OPERACIONES ALGEBRAICAS FUNDAMENTALES
MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6
Medidas de Tendencia Central
EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los
CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA
CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
Probabilidad y estadística
Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
Números naturales, enteros y racionales
Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de
c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5
Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores
Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx
.7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )
1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)
1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción
CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada
Análisis de datos en los estudios epidemiológicos II
Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices
DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)
Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico
El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.
Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,
Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.
1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,
5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras
Problemas de Introducción al Procesado digital de Señales. Boletín 1.
Problemas de Itroducció al Procesado digital de Señales. Boletí. Se tiee la señal aalógica t e segudos t se 5 π t + cos 5 π t se 5 π t se muestrea co ua frecuecia de 5 H. Determia la señal obteida al hacer
UNEFA C.I.N.U. Matemáticas
RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el
Transformaciones Lineales
Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,
Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.
ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).
Estadística Descriptiva
Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se
Probabilidad FENÓMENOS ALEATORIOS
Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El
con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,
Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes
A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.
. POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes
2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5
Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES
MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
MEDIDAS DE DISPERSIÓN.
MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está
ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar
ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}
ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)
RADICALES. Una raíz de índice n es una operación matemática que se define de la siguiente forma:
Aputes de Matemáticas para º de E.S.O. RADICALES Qué es ua raíz de ídice? Ua raíz de ídice es ua operació matemática que se defie de la siguiete forma: a = b a= b Esto se lee como: la raíz eésima de u
Teoría de la conmutación. Álgebra de Boole
Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales
INTERÉS SIMPLE COMO FUNCIÓN LINEAL.
INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por
ORGANIZACIÓN DE LOS DATOS.
ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar
INTEGRALES DE RIEMANN
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-
Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:
Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema
Técnicas para problemas de desigualdades
Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,
Tema 1. Estadística Descriptiva
Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes
14. Técnicas de simulación mediante el método de Montecarlo
4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio
26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,
ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).
ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
Sistemas de Segundo Orden
Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra
( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7
LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.
Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)
Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio
