PRIMITIVA E INTEGRACIÓN INDEFINIDA
|
|
|
- Roberto Gil Gutiérrez
- hace 8 años
- Vistas:
Transcripción
1 Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució: f() Primiiva: F() se - cos Noa: Ua fució iee ifiias primiivas e e / L Ejemplo: fució: f() Primiiva: F() C INTEGRAL INDEFINIDA DE f() Llamamos iegral idefiida o simplemee iegral de f() al cojuo de odas sus primiivas y se deoa: f ()d = F() C.q. F () = f() Ejemplos: [] d = C [] se d = - cos C [] d = L C OPERACIONES CON INTEGRALES (Se cumple las mismas que e derivadas) [] k.f ()d = k f () d [] ( f g) ()d = f ()d ± f.g ()d f ()d. f f ()d [] ()d g g()d ± g() d [] ( ) [ ][ g() d]
2 Tema Cálculo de primiivas Maemáicas II º Bachillerao REGLAS DE INTEGRACIÓN FUNCIÓN INTEGRAL FUNCIÓN INTEGRAL k d k C d f ().f () d f () C C f () d C d f () C f () d C f () d f () f () C a d a f () f () f ().a d C a C La La e d e C f () f ().e d e f() C f () d L C d f () L f() C se d - cos C f ().se f() d - cos f() C cos d se C f ().cos f() d se f() C f () d = cos d = ag C cos f () [ ag ]d f (). [ ag f ()]d ag f() C f () d arcse C d f () arcse f() C f () d arcag C d f () arcag f() C Ejemplos: [] d = C [] d = [] d = [] d = C. C C = C /. [] d = C = C = C = C [] d = d. C = C =
3 Tema Cálculo de primiivas Maemáicas II º Bachillerao [7] se d = cos C L [8] cos -.e d = -se e C - [9] d = d = arcse C [0] d =.arcag C [] d = d L C = ( - ).cos d = se( ) C [] ( ) [] e d = [] d = - [] ag d = [] d =.e d = e C d = arcse C ( ) se d = L cos C cos d L C = MÉTODOS DE INTEGRACIÓN [] Imediaas o méodo de susiució (Cuado las dos fucioes iee relació, fució y derivada) Cambio f() = siedo f() la fució. Ejemplo: se.cos d = [ = se d = cos d] se = d = C = C [] Iegració por pares: Cuado las dos fucioes o iee relació. = vdu D(u.v) = du.v u dv udv = d(u.v) vdu udv d(u.v) udv = u.v v. du Teemos Necesiamos u Derivamos du dv -----Iegramos v = dv Cuál omamos como u? a) arcos o logarimos b) Poliomios c) Trigoomérica o epoeciales
4 Tema Cálculo de primiivas Maemáicas II º Bachillerao Ejemplos: [].e d u = du = d dv = e d v = = = dv e d e e d =.e e C = e C.e - ( ) [] Ld u = l du = d dv = d v = = = dv d l. -. d =.l - d =.l C =.(l ) C [] e. sed u = se du = cosd dv = e d v = dv = e d = e se.e - e.cos d e.cos d u = cos du = - sed dv = e d v = dv = e d = e =cos.e e sed e sed = se.e cos.e e sed e sed = e (se cos ) e e sed = (se cos ) C INTEGRALES CON RAÍCES Trasformar e sumas Poecias Raíces y arcos f '() d = f () f () C mcm de los ídices de las raices. Susiució: Lo de dero de la raíz = a b d b = ase f '() d = arcsef () C f ()
5 Tema Cálculo de primiivas Maemáicas II º Bachillerao [].. d = d C = d = C = C [] d = d C = [] d = d = ( ) d = arcse ( ) C d [] ( ) [ = d = d] d ( ) = d = arcag C =.arcag C [] d [ = se d = cosd] se.cos d = ( se )cos.d = cos d (Iegral rigoomérica) [] d 9 - Modo : Ver que es u arcoseo. Dividir umerador y deomiador por : / / / / d = d = d = d = arcse / C 9 - / (9 - ) / 9 - (/) - (/) Modo : [ = se d = cosd] 9 - d = 9 - (se) cos d = cos 9(- se d = ) cos d = 9cos cos d = cos d = C [ = se se = / = arcse / ] Sol: arcse / C
6 Tema Cálculo de primiivas Maemáicas II º Bachillerao INTEGRALES TRIGONOMÉTRICAS se.cos m. d m impar Cambio se = impar Cambio cos = m y pares Cambio ag = [ ag = cos cos = se = cos = - = d ( ag ) d = d d = ] Noa: Casos pariculares: se d ó cos d Recordar las fórmulas rigooméricas cos cos se = cos = [] cos se d = d = d cos d = cos d = se C [] cos.se d = d [cos = -se d = d d = se ] d cos.se d = cos.se. =.se.d = ( cos ) d = se 7 7 cos cos ( )d = d = C = C 7 7 [] cos d = [se = cos..d = d d = d cos ( )d = [] se.cos d d cos cos = d cos. = cos d = (cos ) d = ( se ) d = ( ) d = ] C = se.se se d [ ag = cos =, se =, d = ] d.. = d (Iegral racioal) ( ) C
7 Tema Cálculo de primiivas Maemáicas II º Bachillerao 7 P() INTEGRALES RACIONALES d Q() R() Caso I: Grado de P() Grado Q() Hacer la divisió C () d Q() Y grado de R() < grado Q() Caso II: Grado de P() < Grado Q() Facorizar el deomiador: Q() Caso II. : Todas las raíces de Q() so reales y simples: Q() = (-a).(-b).(-c) P() = A B C d Q() a b c d Los úmeros A, B y C se halla reduciedo a comú deomiador e igualado los umeradores. Modo : Igualado los coeficiees del mismo grado. Modo : Dado valores a la (a,b,c) y resolviedo el sisema. Solució: Logarimos Caso II. : Todas las raíces de Q() so reales, pero algua o simple:q()=(-a).(-b) P() A B C D ( ) d = d Q() a b b ( b) Los úmeros A, B y C se halla reduciedo a comú deomiador e igualado los umeradores. Modo : Igualado los coeficiees del mismo grado. Modo : Dado valores a la (a,b,cualquier oro) y resolviedo el sisema. Solució: Logarimos y Poecias Caso II. : Algua raíz de Q() o real: Q() = (-a).( ) P() A B C d = d (E el umerador u poliomio de u grado meos Q() a que e el deomiador) Los úmeros A, B y C se halla reduciedo a comú deomiador e igualado los umeradores. Modo : Igualado los coeficiees del mismo grado. Modo : Dado valores a la (a, cualquier oro) y resolviedo el sisema. Solució: Logarimos y arcoagees. Ejemplos:
8 Tema Cálculo de primiivas Maemáicas II º Bachillerao 8 [] 7 l C 8 d = d =. d = 0 7 [] d = 7 7 d = d 7 Facorizamos el deomiador: 7 = ().(-).() A B C = = 7 A( ).( ) B( ).( ) C( ).( ) 7 = A( ).( ) B( ).( ) C( ).( ) Modo : igualado coeficiees = A( ) B( ) C( ) = A B C - = -A B C Resolviedo el sisema (Gauss) A = ; B = ; C = = -A B C Modo : dado valores a = A( ).( ) B( ).( ) C( ).( ) = 9 = B.. B = 0/0 = = - = C.(-).(-) C = / = 7 = - = A(-). A = 0/- = - d = 7 7 d = L.L 7.L C
9 Tema Cálculo de primiivas Maemáicas II º Bachillerao 9 7 [] d Q() =.(-).() A B C D E F = d ( ) ( ) Operado obeemos : A =, B = -, C =, D =, E = -, F = 0 d = ( ) ( ) d d d ( ) d ( ) d = ( ) ( ) = L l. C = = L.l C [] d = d ( ) d = L arcag C [] d = d = d d = L. d = L. d =L 8 d = L d = L 8 arcag C ( ) / / d. d = L d = L arcag C = L arcag C [] d = d = d = d =
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla
LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir
PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,
Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS
Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes
Fracciones. Prof. Maria Peiró
Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales
Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:
PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el
SISTEMAS, MATRICES Y DETERMINANTES
.- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a
TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1
1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros
Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:
Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices
Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1
Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió
Fourier. Series de Fourier
Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier
duv = udv + vdu udv = uv vdu
I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración
GUÍA: INTEGRALES. Página 1 de 27
GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos
Seminario de problemas. Curso Hoja 9
Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.
( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7
LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.
Unidad 10: LÍMITES DE FUNCIONES
Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,
L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2
Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los
Circuitos Eléctricos II Series de Fourier
Circuios Elécricos II Series de Fourier Coeido. Fucioes Periódicas. Serie rigoomérica de Fourier 3. Compoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. Cálculo de los coeficiees
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA
INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una
Bloque 4. Cálculo Tema 2 límites Ejercicios resueltos
Bloque 4. Cálculo Tema límites Ejercicios resueltos 4.-1 Resolver los siguietes límites: 1 5 1 a) ; b) ; c) ; 1 1 5 5 h d) ; e) ; f) 0 44 h0 h 1 0 a) idetermiació de la forma 1. Para evitarla, 1 0 descompoemos
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
TEMA IV INTEGRALES INDEFINIDAS
Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució
SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X
SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació
LA INTEGRAL INDEFINIDA
Inegrales LA INTEGRAL INDEFINIDA Inegral indeinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la unción F (, es ácil hallar su derivada F (. El proceso inverso, enconrar F ( a parir de F ( se
1 EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de
Curso: 3 E.M. ALGEBRA 8
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,
Técnicas de Integración, preparado por: Gil Sandro Gómez
Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica
a) lim ; b) lim ; c) lim ; x h x d) lim ; e) lim ; f) lim
Ejercicios resueltos Bloque I. Fució real de variable real Tema Límites y Cotiuidad I.-1 Resolver los siguietes límites: 1 5 1 a) ; b) ; c) ; 1 5 1 5 h d) ; e) ; f) 0 44 h0 h 1 a) 1 1 idetermiació de la
Tema 5. DIAGONALIZACIÓN DE MATRICES
José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M
La Serie de Fourier Trigonométrica
La Serie de Fourier Trigoomérica Dr. Luis Javier Morales Medoza FIEC Uiversidad Veracruzaa Poza Rica Tuxpa Ídice 5.. Iroducció 5.. La serie rigoomérica de Fourier 5.3. Relació ere los coeiciees de Fourier
9.Método de integración por partes.-
Matemáticas de º de bachillerato página 6 Integral indefinida P P P Se trata de otro método que permite resolver cierto tipo de integrales. Veamos: Sea u() una función. Para abreviar la epresaremos por
Suma y resta de monomios Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal.
1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA.- ÁLGEBRA PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------
FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable
Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.
UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios
Tema 8 Límite de Funciones. Continuidad
Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)
10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B
0 EJERCICIOS de FRACCIONES ALGEBRAICAS º ESO opc. B. Utilizado idetidades otables, desarrollar las siguietes epresioes: () (-) ()(-) () (-5) () (-) ( (a- (-) (5) (-5) (-) (--) m) ( )( ) ) ( ) o) ( ). Razoar
CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:
ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:
Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...
Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -
SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04
SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric
5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)
5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de
Integral. F es primitiva de f F (x) = f(x)
o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.
UNEFA C.I.N.U. Matemáticas
RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
LA TRANSFORMADA DE LAPLACE
Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada
GUIA DE ESTUDIO Nro 1
MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro
La integral indefinida
Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto
Raices de Polinomios. Jorge Eduardo Ortiz Triviño
Raices de Poliomios Jorge Eduardo Ortiz Triviño [email protected] http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +
UNIVERSIDAD ANTONIO NARIÑO GUIA 1
UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar
Expresiones Algebraicas
Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,
Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier
Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas
1. CÁLCULO DE PRIMITIVAS
. CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.
INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E
UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES
CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO
PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O
PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de
INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES
INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h
Ejercicios Resueltos de Clasificación de Funciones
Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada
CURSO CONVOCATORIA:
PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como
Prácticas Matlab ( 1) Práctica 7. Objetivos
PRÁCTICA SERIES DE POTENCIAS Prácticas Matlab Práctica 7 Objetivos Estudiar la covergecia putual de ua serie de potecias. Estimar gráficamete el itervalo de covergecia de ua serie de potecias. Aproimar
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
B. Cálculo de primitivas.
50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición
4. VARIABLES ALEATORIAS Y SUS PROPIEDADES
4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus
UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES
DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : [email protected] url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes
con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,
Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes
EJERCICIOS DE RECURRENCIA
EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios
Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones
Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
1. Serie de Potencias
. Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada
Potencias, radicales y logaritmos
. Los úmeros egativos Potecias, radicales y logaritmos BLOQUE I: ARTIMÉTICA El tema comieza co el estudio de las potecias; éste se iicia co las potecias de expoete atural, se prosigue co las de expoete
