TEMA IV INTEGRALES INDEFINIDAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA IV INTEGRALES INDEFINIDAS"

Transcripción

1 Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució dada, es decir: F ( ) = ( ). E caso airmativo se dice que F( ) es ua ució PRIMITIVA de ( ) e el domiio D. Ejemplos es ua primitiva de. cos( ) es ua primitiva de se( ) L( ) es ua primitiva de.. Si F( ) es ua primitiva de ( ), cualquier ució de la orma F( ) ( = costate ) es tambié ua primitiva de ( ), pues: derivada F( ) = derivada( F( )) + derivada( ) = F ( ) + 0 = ( ). ( ) Al cojuto de todas las ucioes primitivas de ua ució dada se le llama INTEGRAL INDEFINIDA de ( ) y se emplea la otació: ( ) d= F( ) Por tato, para calcular la itegral ideiida de ua ució, basta coocer ua primitiva de la ució dada y sumarle ua costate arbitraria. Ejemplos. d =. L( ) d =. se( d ) = cos( ) 4. ed= e PROPIEDADES DE LA INTEGRAL INDEFINIDA [ ]. ( ) + g( ) d= ( ) d+ g( ) d. K ( ) d= K ( ) d Jua Puerma:

2 Tema IV-Itegrales Ideiidas INTEGRALES INMEDIATAS So aquellas itegrales que se calcula directamete a partir de la deiició de derivada. Las itegrales imediatas más secillas so: +. d = ; +. d = L. 4. e d e a d = + a = L( a) 5. se( d ) = cos( ) 6. cos( d ) = se( ) d = + 7. sec ( ) ta( ) 8. cosec ( ) cota( ) d = + 9. d = arcta( ) + 0. d = arcse( ) Jua Puerma:

3 Tema IV-Itegrales Ideiidas INTEGRAIÓN POR AMBIO DE VARIABLE (AJUSTE) Para aplicar esta técica de itegració es ecesario coocer la tabla aterior (tabla de itegrales imediatas) pero e lugar de para la ució ( ) =, para ua ució ( ) cualquiera. +. d = ; +. d = L. 4. = + e d e a a d = L( a) 5. se( ) d = cos( ) 6. cos( ) d = se( ) d = 7. sec ( ) ta( ) d = 8. cosec ( ) cota( ) 9. d = arcta( ) + 0. d = arcse( ) INTEGRAIÓN POR PARTES Sea dos ucioes derivables u y v. alculamos el producto u.v y la derivada: duv ( ) = duv + u dv despejamos u dv, y obteemos: u dv= d( u v) du v y por último itegramos los dos miembros teemos: que es la órmula de la itegració por partes. u dv= u v v du Este método es útil e los casos dode el itegrado se puede epresar como producto de ua ució por la derivada de otra. Jua Puerma:

4 Tema IV-Itegrales Ideiidas 4 REGLA DE ALPES ALPES " u" Nos orieta sobre a que ució llamaremos u A:arcos L:logaritmos P:poliomios E:epoeciales S:se,cos (trigoométricos que o sea arcos) INTEGRAIÓN DE FUNIONES RAIONALES Se trata de itegrales del tipo co coeicietes reales. Eiste dos tipos: (a) grad P( ) grad Q( ) (b) grad P( ) < grad Q( ) P ( ) d Q ( ) dode P ( ) y Q ( ) so dos poliomios e E el caso (a) basta co dividir los dos poliomios para pasar al caso (b). (a) Dividimos los dos poliomios: P ( ) Q ( ) ( ) R ( ) Se veriica que: P ( ) = Q ( ) ( ) + R ( ) co grad R( ) grad Q( ) P ( ) R ( ) lo tato la itegral quedará: d = ( ) d + d. Q ( ) Q ( ) < por La primera es la itegral de u poliomio y por tato imediata, la seguda es ua itegral del tipo (b). Todo se reduce a resolver las itegrales del tipo (b) que se presete. Veamos alguos casos. (b.) Q() tiee todas las raíces reales y distitas Si las raíces de Q() so α α α α la epresió = + + +,,,, P ( ) A A A Q ( ) α α α P ( ) Q ( ),,,, se descompoe e: dode A A A A so úmeros reales que hay que calcular, y por tato las itegrales que obteemos so todas imediatas del tipo logaritmo eperiao. (b.) Q() tiee todas las raíces reales auque alguas so múltiples Si las raíces de Q() so α, α, α,, α, β, β, β,, βm, dode las raíces α i so simples y las raíces β j so múltiples co multiplicidad p, p, p,, pj la epresió P ( ) Q ( ) se descompoe e: Jua Puerma:

5 Tema IV-Itegrales Ideiidas 5 P ( ) A A A B B = p p Q ( ) α α α ( β) ( β) Bp p p p ( β ) ( β ) ( β ) ( β ) A B so úmeros reales que hay que calcular, y por tato las dode,,, i j k itegrales que obteemos so todas imediatas del tipo logaritmo eperiao y del tipo potecial. Jua Puerma:

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO / LIC: JESÚS REYES HEROLES GUÍA PARA EL CURSO INTERSEMESTRAL Y PARA EL EXAMEN EXTRAORDINARIO

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

= 9 3 x (fig. 2.9.), se nota que para obligar a (9

= 9 3 x (fig. 2.9.), se nota que para obligar a (9 EJERCICIOS RESUELTOS DE LIMITES... Sobre límites de ucioes:. Usado la deiició de límite de ua ució, pruébese que: 9 6 Solució: Sea u úmero potivo cualquiera dado. Se debe allar u δ > tal que: δ 9 6 Para

Más detalles

DERIVADAS POR DEFINICION. lim. 1 = lim

DERIVADAS POR DEFINICION. lim. 1 = lim DERIVADAS POR DEFINICION Derivada de ua costate: f k f ( + ) f k k Derivada de : f f ( + ) f + Derivada de la raíz cuadrada de : f f ( + ) f + + + + * + + ( + + ) + + + ( + + ) Derivada de /: f + ( + )

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil.

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil. Medias Móviles Ua de las herramietas más utilizadas por los aalistas técicos es la llamada media móvil. La media móvil de u istrumeto fiaciero es simplemete el promedio de u úmero, predetermiado, de valores

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2 LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

9.Método de integración por partes.-

9.Método de integración por partes.- Matemáticas de º de bachillerato página 6 Integral indefinida P P P Se trata de otro método que permite resolver cierto tipo de integrales. Veamos: Sea u() una función. Para abreviar la epresaremos por

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA Proesora: María José Sáchez Quevedo FUNCIÓN DERIVADA. DERIVADA DE UNA FUNCIÓN EN UN PUNTO ( Siiicado eométrico). ECUACIÓN DE LA RECTA TANGENTE Y DE LA NORMAL A UNA CURVA EN UN PUNTO. FUNCIÓN DERIVADA 4.

Más detalles

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas

Más detalles

Series Numéricas Series de Potencias Polinomios de Taylor. Prof. Jorge Brisset

Series Numéricas Series de Potencias Polinomios de Taylor. Prof. Jorge Brisset Series Numéricas Series de Potecias Poliomios de Taylor Prof. Jorge Brisset I.P.A. 008 Ídice geeral. Series Numéricas 3.. De icioes y coceptos..................................... 3.. Propiedades de las

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

VII INTEGRALES TRIGONOMÉTRICAS

VII INTEGRALES TRIGONOMÉTRICAS VII INTEGRALES TRIGONOMÉTRICAS Diez fórmulas más habrán de agregarse al formulario actual de integrales del estudiante. Son seis correspondientes a las seis funciones trigonométricas seno, coseno, tangente,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

3.1. FUNCIÓN VECTORIAL 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.1. 3.3. DOMINIO DE UNA FUNCIÓN

3.1. FUNCIÓN VECTORIAL 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.1. 3.3. DOMINIO DE UNA FUNCIÓN .1. FUNCIÓN VECTORIAL.. GRAFICA DE UNA FUNCIÓN ESCALAR.1... DOMINIO DE UNA FUNCIÓN.. ESCALAR...4. CONJUNTO DE NIVEL.4..5. LIMITES DE FUNCIONES DE VARIAS VARIABLES.6. CONTINUIDAD.7. DERIVADA DE UNA FUNCIÓN

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

LA SORPRENDENTE SUCESIÓN DE FIBONACCI

LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci debe su ombre a Leoardo de Pisa (.70-.40), más coocido por Fiboacci (hijo de Boaccio). A pesar

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

TÉCNICAS DE INTEGRACIÓN

TÉCNICAS DE INTEGRACIÓN C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

Ejercicios Resueltos ADC / DAC

Ejercicios Resueltos ADC / DAC Curso: Equipos y Sistemas de Cotrol Digital Profesor: Felipe Páez M. Programa: Automatizació, espertio, 010 Problemas Resueltos: Ejercicios Resueltos ADC / DAC ersió 1.1 1. Se tiee u DAC ideal de 10 bits,

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles