CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016"

Transcripción

1 Presenta: M.E.M. Enrique Arenas Sánchez 21 de septiembre de 2016

2 Definición de Campo Escalar. Se llama campo escalar a una función que asocia a cada punto del dominio de una función un valor escalar. Ejemplo: f: R 2 R f x, y = x 2 + y 2 T: R 3 R T x, y, z = 100 x 2 y 2 z 2

3 Definición de Campo Vectorial. Se llama campo vectorial a una función que asocia a cada punto del dominio de la función un vector. Ejemplo: Cuando el campo vectorial r representa un vector de posición r t r: R R 2 = t 2 i + (t 2 t)j r: R R 3 r t = t 2 i + (t 2 t)j + 2tk r: R 2 R 3 r s, t = st 2 i + (t 2 s)j +s 2 k r u, v r u, v, w r: R 2 R 2 = u 2 i + (u 2 v)j r: R 3 R 3 = u 2 i + (u 2 w)j + vwk Curva en el plano Curva en el espacio Una superficie Un sistema de referencia curvilineo bidimensional Un sistema de referencia curvilineo tridimensional

4 Cuando el campo vectorial no representa un vector de posición puede representar v t v: R R 2 = t 2 i + (t 2 t)j + t 2 k a: R R 3 a t = 2t i + (2t 1)j + 2tk N: R 2 R 3 N s, t = st 2 i + (t 2 s)j +s 2 k F x, y, z F: R 3 R 3 xi yj zk = GMm (x 2 + y 2 + z 2 ) 3 2 E: R 3 R 3 E x, y, z = q xi + yj + zk 4πε 0 (x 2 + y 2 + z 2 ) 3 2 El campo de velocidades de una partícula que se mueve a lo largo una curva plana El campo de aceleraciones de una partícula que se mueve sobre una curva El campo de vectores normales a una superficie El campo gravitacional de la tierra El campo eléctrico generado por una carga eléctrica puntual positiva localizada en el origen

5 Derivada de un campo vectorial. Sea el campo vectorial r t que representa a los vectores de posición de una curva.

6 La derivada de una función r t se define como: (t) r t + t r (t) = lim t 0 t

7 Mediante la definición, obtener la derivada de la función r t = f 1 t i + f 2 t j + f 3 t k se incrementa la variable independiente r t + t = f 1 t + t i + f 2 t + t j + f 3 t + t k se obtienen el incremento de la función r = r t + t r t r t + t r t = (f 1 t + t f 1 t )i + (f 2 t + t f 2 t )j + (f 3 t + t f 3 t )k se multiplica por 1 t r t r t + t = t r t r t + t r t t = (f 1 t + t f 1 t )i + (f 2 t + t f 2 t )j + (f 3 t + t f 3 t )k t

8 r t + t r t t = (f 1 t + t f 1 t )i + (f 2 t + t f 2 t )j + (f 3 t + t f 3 t )k t r t = f 1 t + t t f 1 t i + f 2 t + t f 2 t t j + f 3 t + t f 3 t t k se calcula el límite cuando t 0 r lim t 0 t = lim f 1 t + t t 0 t f 1 t i + lim t 0 f 2 t + t f 2 t t j + lim t 0 f 3 t + t f 3 t t k finalmente se tiene = df 1 i + df 2 j + df 3 k

9 Ejemplo: Obtener la derivada de la función r t = 3t + 2 i + t 3 + t j + 2t 2 1 k = 3i + 3t2 + 1 j + 4tk Como el resultado de derivar una función vectorial es un nueva función vectorial, entonces es posible obtener nuevamente su derivada para así obtener la segunda derivada de r t, es decir d 2 r 2 = d = 6tj + 4k Cuando la función vectorial representa el vector de posición de una partícula y la variable independiente representa el tiempo entonces: = v velocidad de la partícula y d 2 r 2 = a aceleración de la partícula. Al módulo de la velocidad v = se le llama rapidez de la partícula.

10 Propiedades de la derivada de un campo vectorial

11 Si r t es un vector de módulo constante, demostrar que r t y vectores perpendiculares. como r(t) 2 = r t r t r t = C 2 son dos r t y el vector r(t) es de módulo constante se tienen que al derivar r t r t = C 2 se tiene d ( r t r t ) = d (C2 ) = 0 por lo que d r t r t = d lo cual implica que los vectores r t y t r t r t = 2 t r t + r t t r t = 0 t r t = 0 = 0 son vectores perpendiculares.

12 Fórmulas de Frenet-Serret = κn dn = τ B κt db = τ N T : vector tangente unitario N : vector normal unitario T N = B B : vector binormal unitario κ: curvatura κ = τ: torsión τ = db ρ = 1 : radio de curvatura κ σ = 1 τ : radio de torsión Porqué s?

13 Plano normal (Rojo), vector perpendicular T, paralelo a N y a B Plano rectificante (verde), vector perpendicular N, paralelo a B y a T Plano osculador (azul), vector perpendicular B, paralelo a T y a N

14 Demostrar que = kn como T es un vector unitario, T T = 1, T = 0 es decir, es perpendicular a T, si decimos que N es un vector unitario en la dirección de donde κ = = κn entonces

15 Demostrar que db = τn Por definición B = T N y al derivar el vector B se tiene db dn = T + N como = kn simplificando se llega a de donde se tiene que db = T dn + kn N db dn = T multiplicando escalarmente ambos miembros de la ecuación por el vector T T db por lo que se tiene que los vectores T y db = T T dn T db = 0 son perpendiculares.

16 además, como B B = 1, B db Ya que db por lo tanto donde CAMPOS VECTORIALES = 0 es decir, db es perpendicular tanto a T como a B entonces db El signo (-) de la expresión db torsión τ debe ser positiva aunque los vectores db = τn se debe a que cuando la curva es dextrógira su N = 1 κ db = τn db = τ = 1 db τ es perpendicular a, B y es paralelo a N tengan sentidos opuestos.

17 Demostrar dn = τb κt como B = T N entonces N = B T, al obtener dn dn = db T + B se tiene además pero db = τn dn y = κn = τn T + B κn -B = N T y -T = B N dn = τb κt

18 Ahora surge la pregunta cómo derivar con respecto de la longitud de arco s de una curva si lo común es que la curva esté expresada como función de una variable arbitraria t? Recordemos de los antecedentes de cálculo integral que el diferencial de arco de x = x(t) una curva C de ecuaciones paramétricas C: y = y(t) está dada por z = z(t) = dx 2 + dy 2 + dz además, como la ecuación vectorial de la curva C es r t = x t i + y t j + z t k = dx dy dz i + j + k = dx 2 + dy 2 + dz 2 2 entonces = y =

19 Sea las funciones r = r t y t = t s al hacer la composición r t t(s) se tiene r s = r t t(s) al derivar aplicando la regla de la cadena se tiene s t = por el teorema de la derivada de la función inversa = 1 entonces s = 1 = = t 1

20 Modo de cálculo de los vectores T, N y = T = = B de la curvatura κ y de la torsión τ T = T = = = κn de donde N = y κ =

21 ya que T tiene la misma dirección que B = T N entonces B tená la misma dirección que, N la misma dirección que d T es decir y B = T N ó B = finalmente, como db db = = db db db = τn τ = db donde τ > 0 τ < 0 si db < 0 si db > 0

22 Ejemplo: Calcular los vectores tangente, normal y binormal unitarios, la curvatura y la torsión de la curva de ecuación r t = 3 cos t i + 3sen t j + 4tk. Como T = se tiene que = 3 sen t i + 3cos t j + 4k = 9sen 2 t + 9cos 2 t + 16 = 5 por lo tanto T = 3 5 sen t i cos t j k como N = derivando se tiene d T d T = 3 cos t i 3sen t j = 9sen 2 t + 9cos 2 t = 3 N = = cos t i 3sen t j = cos t i sen t j N = cos t i sen t j

23 el vector binormal esta dado por B = T N i j k B = 3 5 sen(t) 3 5 cos (t) 4 5 cos (t) sen(t) 0 B = 4 5 sen t i 4 5 cos t j k la curvatura es κ = = 3 5 para obtener la torsión se calcula d B =4 cos t i + 4 db sen t j de donde 5 5 entonces τ = al calcular d T db = = 4 25 = 4 5 d B = 3 cos t i 3sen t j 4 cos t i sen t j = Por lo tanto τ > 0 y τ = 4 25

24 v = CAMPOS VECTORIALES APLICACIÓN A LA MECÁNICA Demostrar que la aceleración a de una partícula que se mueve por una curva r (t) esta dada por a = dv v2 T + N donde T es el vector tangente a r (t), N es el vector tangente ρ unitario, ρ es el radio de curvatura y v = a = a = d vt de la expresión que = T = vt d v = d vt = = dv T + v = v = vκn al sustituir se obtiene a = dv a = dv T + v(vκn) T + v2 ρ N = κn se tiene la rapidez de la partícula. a T = dv T a N = v2 ρ N=v2 κ N

25 a = dv T + v2 κn T = v v a T = comp vect a v = a N = a a T v a v v v como v a = v a sen(θ) y v 2 κ = a sen(θ) κ = a sen(θ) v 2 κ = = = a v 2 v a v a v a v 3 Por otro lado, ya que v y a son paralelos al plano osculador, entonces son perpendiculares al vector B B = v a v a N = v ( v a) v ( v a) τ = v a da v a 2

26 EJEMPLO: Dada la curva en el espacio x = t, y = t 2, z = 2 3 t3. Calcular a) la curvatura κ b) la torsión τ c) la ecuación del plano osculador en el punto donde t = 1 a) la ecuación vectorial de la curva el r t = ti + t 2 j t3 k y para calcular lo que se pide bastará con obtener r, r y r como κ = r r = v a v 3 i j k 1 2t 2t t r = i + 2tj + 2t 2 k r = 2j + 4tk r = 4k = 8t 2 4t 2 i 4t j + 2k = 4t 2 i 4tj + 2k r r = 16t t = 2 4t 4 + 4t r = 4t 4 + 4t κ = 2 4t4 + 4t ( 4t 4 + 4t 2 + 1) 3 = 2 4t 4 + 4t = 2 2t

27 b) τ = v a da v a 2 τ = (4t2 i 4tj + 2k) 4k 2 4t 4 + 4t 2 2 = t = 2 2t c) Como el plano osculador tiene por vector normal al vector binormal entonces r 1 = i + j + 2 k 3 r r = 4i 4j + 2k t=1 y es 2i 2j + k Por lo tanto la ecuación del plano osculador es 2, 2,1 x 1, y 1, z 2 3 = 0 2x 2y + z = 2 3

28 POR SU ATENCIÓN, GRACIAS

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS

Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

UNIVERSIDAD AUTÓNOMA DE SANTO DOMINGO Primada de América FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE SANTO DOMINGO Primada de América FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICAS CÁTEDRA: ELABORADO POR: FECHA : Mayo de 2006 ACTUALIZADO POR: MATEMÁTICAS AVANZADAS Prerequisito No. CRÉDITOS: MAT-155 03 No. HORAS TOTALES 64 TEÓRICAS 02 TEÓRICAS 32 PRACTICAS 02 PRACTICAS 32 FECHA :

Más detalles

siendo: donde: quedando

siendo: donde: quedando 1- CINEMATICA Preliminar de matemáticas. Derivadas. E.1 Halla la velocidad instantánea cuando la ecuación horaria viene dada por: a) x(t) = t 2 Siendo: 2t 2 + 4t t + 2 t 2 2t 2 2t 2 + 4t t + 2 t 2 2t 2

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO P.A.2012-I 1. INFORMACION GENERAL Nombre del curso

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

MATE1207 Primer parcial - Tema A MATE-1207

MATE1207 Primer parcial - Tema A MATE-1207 MATE7 Primer parcial - Tema A MATE7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

Dpto. Física y Mecánica. Operadores diferenciales

Dpto. Física y Mecánica. Operadores diferenciales Dpto. Física y Mecánica Operadores diferenciales Se denominan líneas coordenadas de un espacio euclídeo tridimensional a aquellas que se obtienen partiendo un punto dado P de coordenadas (q 1, q 2, q 3

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1 Geodesia Matemática. E. Calero Versión 1.0 31-01-2005 Madrid Parte II Geometría del elipsoide de revolución II-1 2.- GEOMETRÍA DEL ELIPSOIDE DE REVOLUCIÓN. ECUACIONES 2.1 Ecuaciones paramétricas 2.2 Ecuación

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN

MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN Ejercicio 1 Un campo de velocidades viene dado por MECÁNICA DE FUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOUCIÓN V = 4txi 2t 2 yj + 4xzk Es el flujo estacionario o no estacionario? Es bidimensional o tridimensional?

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

Funciones vectoriales 831

Funciones vectoriales 831 12Funciones vectoriales Se construye una rueda giratoria usando los principios básicos de una rueda de bicicleta. Cuando se está cerca de la parte de la rueda giratoria en movimiento, las fuerzas de rotación

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Unidades 5, 6 y 7:Cinemática

Unidades 5, 6 y 7:Cinemática Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidades 5, 6 y 7:Cinemática Universidad Politécnica de Madrid 28 de junio de 2010 2 5.1. Planificación

Más detalles

Ing ROBERTO MOLINA CUEVA FÍSICA 1

Ing ROBERTO MOLINA CUEVA FÍSICA 1 Ing ROBERTO MOLINA CUEVA FÍSICA 1 1 CINEMÁTICA Describe el movimiento ignorando los agentes que causan dicho fenómeno. Por ahora consideraremos el movimiento en una dimensión. (A lo largo de una línea

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

y = x x 0, 4 π 2 π π

y = x x 0, 4 π 2 π π UCV FIUCV CÁLCULO III (053) PRIMER PARCIAL (3333%) SECCIONES 01 Y 03 7/03/09 1 Una curva C está definida por y cos(x) x, y x x 0, x + y y,0 16 a Parametrice la curva C en sentido antihorario ( puntos)

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009 Cálculo III (05) Semestre -009 TEMA FUNCIONES VECTORIALES DE UNA VARIABLE REAL Semestre -009 Octubre 009 UCV FIUCV CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único fin, el

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie

4. Integrales de Línea. Áreas de Superficies e Integrales de Superficie NOTAS DE CLASE CÁLCULO III Doris Hinestroza Diego L. Hoyos 1 Índice general 1. Funciones Vectoriales 5 1.1. El Espacio R n............................ 5 1.2. Funciones Vectoriales........................

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia. CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1) Cinemática rotacional. 2) Dinámica rotacional. 3) Las leyes de Newton en sistemas de referencia

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ANALISIS VECTORIAL CARRERA: INGENIERÍA CIVIL NIVEL: SEGUNDO No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 4 SEMESTRE/AÑO ACADÉMICO: PRIMERO 2010-2011 CRÉDITOS PRÁCTICA: 0 PROFESOR:

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Tema 9. Funciones de varias variables.

Tema 9. Funciones de varias variables. Tema 9. Funciones de varias variables. 9.1 Introducción 9.2 Límite continuidad. 9.3 Derivadas parciales. Derivadas de orden superior. Teorema Schwart. 9.4 Diferencial. 9.5 Regla de la cadena. Derivación

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 1. Cinemática Índice 1. Introducción 3 2.

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL

CINEMÁTICA DEL PUNTO MATERIAL U I.- T : Cinemática del Punto Material 3 T E M A.- CINEMÁTICA DEL PUNTO MATERIAL SUMARIO:.1.- La Mecánica y sus partes..- Posición.3.- Velocidad.4.- Aceleración: componentes intrínsecas.5.- Movimiento

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

Geometría Diferencial

Geometría Diferencial 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Cinemática. Marco A. Merma Jara Versión:

Cinemática. Marco A. Merma Jara  Versión: Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento

Más detalles

Ejercicios resueltos.

Ejercicios resueltos. E.T.S. Arquitectura Curvas y super cies. Ejercicios resueltos.. Sea la curva intersección de la super cie z = xy con el cilindro parabólico y = x. Se pide: (a) En el punto P de coordenadas (0; 0; 0), obtener

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

RELACIÓN DE EXÁMENES DE GEOMETRÍA III

RELACIÓN DE EXÁMENES DE GEOMETRÍA III RELACIÓN DE EXÁMENES DE GEOMETRÍA III Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría III Licenciatura: Matemáticas

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS MATERIA O MODULO: Análisis Vectorial CARRERA: Ingeniería Civil NIVEL: Segundo No. CREDITOS: 4 CREDITOS TEORIA: 4 CREDITOS PRACTICA: 0 SEMESTRE / AÑO ACADEMICO: Primero 2008 2009 PROFESOR:

Más detalles

El espacio que es objeto de nuestra atención es el espacio puntual o euclídeo.

El espacio que es objeto de nuestra atención es el espacio puntual o euclídeo. Capítulo 4 CINEMÁTICA 4.1. Introducción La cinemática es la parte de la mecánica que estudia el movimiento de los cuerpos, sin atender a las causas que lo producen. De otra forma diremos que estudia la

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad.

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad. Potencial Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción El concepto de energía potencial

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I CÁLCULO VECTORIAL NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAB24.500908 HORAS TEORÍA: 4.5 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

Resumen del Tema 3: Cálculo Vectorial

Resumen del Tema 3: Cálculo Vectorial Resumen del Tema 3: Cálculo Vectorial Víctor Domínguez Guillem Huguet Diciembre 2008 I too fell that I have been thinking too much of late, but in a different way, my head running on divergent series,

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles