3- Equilibrio del Cuerpo Rígido (Sistemas Coplanares)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3- Equilibrio del Cuerpo Rígido (Sistemas Coplanares)"

Transcripción

1 3- Equilibrio del Cuerpo Rígido (Sistemas Coplanares) Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

2 Contenido 3. Equilibrio de cuerpos rígidos 3.1 Diagrama de cuerpo libre. 3.2 Equilibrio en el plano. Reacciones en apoyos y conexiones de una estructura bidimensional. 3.3 Reacciones estáticamente indeterminadas. Restricciones parciales en cuerpos rígidos. 3.4 Equilibrio de un cuerpo sometido a dos fuerzas. Equilibrio de un cuerpo sometido a tres fuerzas....

3 Equilibrio de Cuerpo Rígidos T1 P T2 W4 W3 Q W2 W1 Reduciendo las fuerzas externas a un sistema fuerza-par en O O

4 P Q T2 W4 W2 T1 W3 W1 Separando el C.R. del suelo º O

5 P Q T2 W4 W2 T1 W3 W1 El sistema estará en equilibrio sí: R*=0 y MR*=0 ΣFx=0, ΣFy=0, ΣFz=0 ΣMx=0, ΣMy=0, ΣMz=0 O

6 Qué aprenderemos en esta parte del curso? - Diagrama del cuerpo libre - Tipos de restricciones - La estructura está apoyada apropiadamente? - La estructura puede ser calculada mediante la estática? - Establecer las condiciones para que un estructura esté en equilibrio Equilibrio Coplanar Equilibrio no Coplanar

7 3.1 Diagrama de Cuerpo Libre (1) Identifique el C.R. separarlo del suelo, de las uniones, apoyos y de otros cuerpos (2) Identifique y dibuje todas las fuerzas externas Fuerzas aplicadas y reacciones Incluya el peso Si el C.R. está formado por varias partes no incluya las fuerzas que esas partes ejercen entre sí. Lo anterior, siempre que estudie el equilibrio del cuerpo rígido completo cable (3) Determine la magnitud y dirección de las acciones conocidas (Fuerzas y Momentos) (4) Identificar las fuerzas desconocidas (generalmente son las restricciones) (5) Verificar que el D.C.L tenga las dimensiones necesarias!dibuje el sistema de referencia!

8 3.2 Equilibrio Coplanar Tipologías de Reacciones (Restricciones) Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons.

9 Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons.

10 + torsion Spring Tomado de [Meriam & Kraige, 2002] Engineering Mechanics STATICS, fifht Edition, Jhon Wiley & Sons.

11 Simplified seismic analysis procedures for elevated tanks considering fluid structure soil Interaction (R. Livaoğlu a,,, A. Doğangün b, )

12 Propuesta de Diseño Nuevo Estadio de Barrancabermeja

13

14 Apoyo en puente San Francisco Oakland Bay

15 Apoyo en puente peatonal Metrolínea Estación Hormigueros

16 Roller Support Fuente:

17 Roller Support

18 Roller Support Fuente:

19 Elastomeric Support Puente de vía ferroviaria AHK11 Fuente:

20 Base Plates (Platinas Bases) Fuente:

21 Otros ejemplos de soportes [Hibbeler] [Beer}

22 Ejercicio 1 Dibuje el D.C.L de las siguientes estructuras.

23 Ejercicio 2 Dibuje el D.C.L de la viga ABC. Asuma pasadores sin fricción. D A B C P

24 Ejercicio 3 Dibuje el D.C.L de la viga ABC. Asuma pasadores sin fricción. P A B C

25 En qué dirección se asumen las reacciones? P P P w B A 10 m

26 Puedo resolver la estructura con lo aprendido en el curso de estática? La estructura es estable para cualquier valor de P, Q, R, S y W? P W Q R S

27 3.2.2 Ecuaciones de equilibrio C D A B C A B Significado Físico de las ecuaciones de Equilibrio vs Sistemas Linealmente Independendientes Tratar de buscar ecuaciones que tengan una sola incógnita: -Momento respecto a ejes - Momento respecto a puntos que están dentro de la línea de acción de la incógnita -Momento respecto a puntos de convergencia

28 Conjunto de ecuaciones INDEPENDIENTES (disponibles) 1. ΣFx=0, ΣFy=0, ΣMo=0 2. ΣFx =0, ΣFy =0, ΣMa=0 (x y y no son paralelos entre sí) R R y MR A R y y x x x ΣMa=0 MR=0 R a y R a x

29 3. ΣMa=0, ΣMb=0, ΣFy =0 R B ΣMa=0 ΣMb=0 y A R y condición del eje AB y del eje y? x x ΣFy =0 4. ΣMa=0, ΣMb=0, ΣMc=0 y C x A B a, b y c NO COLINEALES Si a, b y c son COLINEALES y A R x B C R puede ser diferente de cero (0)?

30 Para el caso de Fuerzas Concurrentes en O 5. ΣFx =0, ΣFy =0 6. ΣMa=0, ΣMb=0 R O O B y R x y x A 7. ΣFx =0, ΣMa=0 O y x A

31 Para el caso de Fuerzas Paralelas (aplicadas en dirección del Eje y) 8. ΣMa=0, ΣFy =0, y no paralela al eje x y MR A ΣMa=0 MR=0 x 9. ΣMa=0, ΣMb=0 B y x A Línea AB no paralela al eje x

32 3.2.3 Reacciones Estáticamente Indeterminadas y Restricciones Inadecuadas Analizar cada una de las siguientes estructuras P P P P Q Q Q Q W Q W Q Estructura Estáticamente Determinada Estructura Completamente Restringida Estructura Estáticamente Indeterminada (estructura hiperestática) Estructura Completamente Restringida

33 Q P Q Q Q W Q W Q Estructura Estáticamente Inestable Estructura Restringida Parcialmente Estructura Estáticamente Indeterminada Estructura Impropiamente Restringida* W Estructura Estáticamente Indeterminada Estructura Impropiamente Restringida* * También llamada Inestabilidad Geométrica

34 Q Q W W Q Un C.R. está impropiamente restringido siempre que los apoyos, aunque proporcionen un numero suficiente de reacciones, estén ubicados de tal forma que las reacciones son concurrentes o paralelas

35 Un C.R. está impropiamente restringido no sirve para nada? Q Q W W Q

36 Ejercicio 4-a Conexiones: rodillos, pasadores sin fricción, bielas lisas impropia, completa o parcialmente restringida? estáticamente determinada o indeterminada? se mantiene el equilibrio de la estructura? AB= 3m, BC= 2m, CD=2 m

37 Ejercicio 4-b

38 Ejercicio 5 Todas la estructuras presentadas son hiperestáticas. Describir al menos una modificación de los apoyos para cada caso que convierta en isostática la estructura correspondiente.

39 3.2.4 Cuerpos de 2 y 3 Fuerzas - Cuerpos de 2 Fuerzas P Mo Q Un C.R. sometido a fuerzas que actúan únicamente en dos puntos, es un cuerpo de dos fuerzas

40 - Cuerpos de 3 Fuerzas Un C.R. sometido a fuerzas que actúan únicamente en tres puntos, estará en equilibrio si las fuerzas convergen en un solo punto ó si son paralelas F A O B Q C P Excepción: cuando las fuerzas no se intersecan y son paralelas ΣMo=0

41 B P d F A O d C P ΣMo=0 ΣFx=0?

42 Ejercicio 6 Tomado de MIT OpenCourseWare, Civil and Environmental Engineering Solid Mechanics, Fall 2004

43 Ejercicio 7 Idealización de un puente levadizo Prop. Puente Laureano Gómez (Barranquilla, COL) Puente Levadizo en Galicia, ESP

44 O de etapas constructivas (Construcción Estación Terminal Trenes, Berlín) Fuente

45 Determine las reacciones en los apoyos de la armadura (que representa un estado constructivo). El apoyo en C, es de segundo orden (pasador sin fricción).

46 Ejercicio 8 Determine las reacciones en los apoyos de la barra rígida ABC. El elemento CD es un eslabón corto.

47 Ejercicio 8a

48 Ejercicio 8b

49 Ejercicio 9 La barra AB se somete a una fuerza P en el punto B. En el extremo A se encuentra un apoyo de segundo orden. En B se une a un resorte de constante K que pasa a través de una polea sin rozamiento. Cuando θ=0 (AB horizontal), el resorte no se encuentra esforzado. Hallar una expresión para θ, sabiendo que la barra AB se encuentra en equilibrio. L Ө A K B P

50 Ejercicio 9a

51 Ejercicio 10 La barra rígida ACB esta apoyada en C mediante 1 apoyo de segundo orden. En los extremos A y B, se suspende de un cable que pasa por una polea sin rozamiento en D. Calcular la reacción en C y la tensión en el cable debido a la fuerza P=150 N. m m P m m

52 Ejercicio 11 Una barra uniforme AB, de longitud igual a 2R, y peso W, se apoya en el interior de un recipiente semi-esférico de radio R. Determine el ángulo teta correspondiente a la posición de equilibrio de la barra. Asuma que la superficie no tiene fricción. B A θ Hint: Teorema de Tales de Mileto

53 Segundo Teorema de Tales de Mileto Sea B un punto de la circunferencia de diámetro AC, distinto de A y de C. Entonces el triángulo ABC, es un triángulo rectángulo.

54

55 Ejercicio 11a En la figura, del punto O cuelgan una esfera de radio r y peso G, por medio de un hilo de longitud b, y una barra uniforme de longitud 2a y peso W que se apoya contra la esfera. Determine el ángulo α de equilibrio que el hilo forma con la vertical.

56 Ejercicio 12 La barra AB soporta una fuerza de 200 N, se encuentra suspendida de un cable en el vértice B y apoyada en A. Calcular la tensión del cable y la reacción en A

57 Ejercicio 13 La viga horizontal está soportada por resortes en sus extremos. Si la rigidez del resorte situado en A es KA= 5kN/m, determine la rigidez requerida en el resorte ubicado en B de manera que si la viga es cargada con la fuerza de 800 N, permanezca en posición horizontal antes y después de la carga.

58 Ejercicio 14 Determine the angle α and the magnitudes of the reactions at A and B. Assume that 0 α 90 DO NOT USE EQUATIONS OF STATIC EQUILIBRIUM!

59 Ejercicio 14a

60 Estática- Equilibrio del Cuerpo Rígido Ejercicio 15 Los centros de gravedad del carro elevador (masa 50 kg) y de la caja (masa 120 kg) están en G1 y G2, respectivamente. El camión debe poder subir el escalón de 5 mm cuando la fuerza P de empuje es de 600 N. Encuentre el mínimo radio permisible para la rueda en A. Se volteará el carro para las cargas asumidas? (Medidas en mm) 375 P G2 G1 C A B

61 Ejercicio 15a Un ingeniero de seguridad desea realizar pruebas para conocer la carga máxima (WL) que puede levantarse mediante la máquina elevadora sin que ocurra vuelco. Con el fin de evitar accidentes que puedan afectar la integridad del ingeniero, la empresa lo contrató a usted para determinar dicha carga sin necesidad de que alguien se monte en la máquina. El peso del operador y de la máquina (WF) es de 600 kn.

62 Ejercicio 15b Una empresa fabricará ventiladores de piso. Los diseñadores industriales han propuesto dos opciones: un ventilador de 3 patas y otro de 4 patas. Ya que el futuro de la empresa depende del éxito de los ventiladores, el gerente lo ha contratado a usted para verificar la seguridad ante el volcamiento de ambas propuestas. h=82 cm. Para su análisis tenga en cuenta los siguientes datos: El peso combinado (motor, aspas, patas y paral) es: W3patas=87 N ; W4patas=90 N. Longitud de las patas, b=30 cm. Todas las patas tienen pequeños cauchos en sus extremos que evitan el deslizamiento (traslación) sobre la superficie. Cuando el ventilador está funcionando, las aspas ejercen una fuerza de empuje (T), la cual incrementa con la velocidad de las aspas. Desde el punto de vista de la seguridad al volcamiento, cuál de los dos ventiladores tendrá un mayor éxito en el mercado? Para cada caso, las patas están espaciadas igualmente

63

64 AD ES UN CABLE. DETERMINE LAS REACCIONES EN C Y LA TENSIÓN EN EL CABLE.

65 Ejercicio 16 La barra ABCD está doblada en forma de un arco circular de 4 pulgadas de rado y descansa sobre superficies sin fricción en A y D. Si el collarín colocado en B se puede mover libremente por la barra, determine a) el valor de θ para el cual la tensión en la cuerda OB es mínima, b) el valor correspondiente de la tensión, c) las reacciones en A y D

66 Ejercicio 17 El bloque C de peso 50 kn, descansa sobre la barra uniforme AB de peso 20 kn. El cable que \ conecta C con B pasa sobre una polea en D. Determine la magnitud de la fuerza que actúa entre el bloque y la barra.

67 Ejercicio 18 Una barra de longitud L y peso W, se une por uno de sus extremos a un collar en A y por el otro a una pequeña rueda en B, la cual gira libremente a lo largo de la superficie cilíndrica de radio R. Despreciando la fricción de la superficie, determine una expresión para el ángulo teta (Ɵ) que se cumpla cuando la barra esté en equilibrio

68 Ejercicio 19 Una barra uniforme AB de longitud l y peso W, se sostiene por dos cuerdas AC y BC de igual longitud. Demuestre que, para la posición de equilibrio, se cumple la siguiente expresión senθ = 2M o cot β 1 Wl

69 Ejercicio 20 La barra AB, de masa m y longitud L, se une a dos bloques en sus extremos, los cuales giran libremente por ranuras circulares. Si α = 45, determine: a) El valor máximo de L para que el que la barra se encuentra en equilibrio. b) Las reacciones en A y B. B A α

70 Ejercicio 21 Una barra delgada uniforme de longitud L y peso W, está balanceada sobre un vaso de diámetro interno D, de superficie lisa. Determine el ángulo θ correspondiente a la posición de equilibrio. Planta

71 Ejercicio 22 polea Dos esferas pesadas, unidas entre sí por una cuerda de peso y espesor despreciable, son colgadas de una polea sin fricción y de diámetro despreciable. La polea está sostenida por un eje en el extremo volado de una barra. Para la posición mostrada en la figura (con la esfera más grande por encima de la pequeña), el sistema se encuentra en equilibrio estático. Determine la tensión en la cuerda y la fuerza de contacto entre las esferas. Asuma que todas las superficies son lisas. 1 r 1 = 8 cm, r 2 = 6 cm w 1 = 161 kgf, w 2 = 91 kgf L cuerda (entre centros de esferas) = 34 cm 2 Nota: las esferas fueron perforadas diametralmente para que su centro de masa coincida con el centro geométrico.

3- Equilibrio del Cuerpo Rígido (Sistemas No Coplanares)

3- Equilibrio del Cuerpo Rígido (Sistemas No Coplanares) 3- Equilibrio del Cuerpo Rígido (Sistemas No Coplanares) Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 3. Equilibrio de cuerpos rígidos... 3.5 Reacciones en los apoyos y conexiones

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

5a- Armaduras. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

5a- Armaduras. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Puente Café Madrid- Vía Férrea Bucaramanga Puerto Wilches (Foto: Prof. Álvaro Viviescas) 5a- Armaduras Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 5. Análisis de Estructuras

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

5a- Armaduras. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil. GwU.

5a- Armaduras. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil.  GwU. Tokyo Gate Bridge http://en.structurae.de/photos/index.cfm?id=212764 5a- Armaduras Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil http://www.youtube.com/watch?v=96wytaqb GwU Contenido 5.

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I ESTATICA: EQUILIBRIO DE PARTICULAS Y CUERPOS RIGIDOS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PERÚ 2010

Más detalles

EQUILIBRIO DE LOS SISTEMAS DE FUERZAS

EQUILIBRIO DE LOS SISTEMAS DE FUERZAS Serie de Estática EQUILIRIO DE LOS SISTEMS DE FUERZS 1. Es el movimiento de la Tierra (considerando únicamente la rotación y la traslación) una manifestación del equilibrio del sistema de fuerzas externas

Más detalles

TALLER # 1 ESTÁTICA. Figura 1

TALLER # 1 ESTÁTICA. Figura 1 TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS ING. PAUL VISCAINO VALENCIA DOCENTE Esmeraldas - Ecuador Carrera de Ingeniería Mecánica 2017 Estática de los Cuerpos

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-1 Profesor Herbert Yépez Castillo Introducción 8.1 Tipos de Estructuras Armaduras Marcos Máquinas 8.2 Armadura Estabilidad y determinación estática externas Estabilidad y determinación estática

Más detalles

MECÁNICA II CURSO 2006/07

MECÁNICA II CURSO 2006/07 1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

5. ESTUDIO DEL EQUILIBRIO DE LOS CUERPOS

5. ESTUDIO DEL EQUILIBRIO DE LOS CUERPOS CDEMI DE ESÁIC DIVISIÓ DE CIECIS ÁSICS FCULD DE IGEIERÍ Serie de ejercicios de Estática 5. ESUDIO DEL EQUILIRIO DE LOS CUERPOS Contenido del tema: 5.1 Restricciones al movimiento de un cuerpo rígido. 5.2

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS CARRERA DE INGENIERIA MECANICA ING. PAUL VISCAINO VALENCIA DOCENTE EQUILIBRIO DE UNA PARTICULA Objetivos del

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

ESTÁTICA DE CUERPO RÍGIDO

ESTÁTICA DE CUERPO RÍGIDO ESTÁTICA DE CUERPO RÍGIDO 1) Un albañil de 75 kg camina sobre un tablón de 3 m de largo y 80 kg apoyado sobre dos vigas distantes 2 m, tal como indica la figura. Cuál es la máxima distancia x que puede

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 013-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

Universidad de los Andes Facultada de ingeniería Escuela Básica. Tema 4: Equilibrio de Cuerpos Rígidos. Prof. Nayive Jaramillo

Universidad de los Andes Facultada de ingeniería Escuela Básica. Tema 4: Equilibrio de Cuerpos Rígidos. Prof. Nayive Jaramillo Universidad de los Andes Facultada de ingeniería Escuela Básica Tema 4: Equilibrio de Cuerpos Rígidos Prof. Nayive Jaramillo Contenido: Equilibrio de Cuerpos Rígidos Tema Contenido objetivos Introduccion

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 01-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

CAPÍTULO III EQUILIBRIO DEL SÓLIDO RÍGIDO

CAPÍTULO III EQUILIBRIO DEL SÓLIDO RÍGIDO CPÍTULO III EQUILIRIO DEL SÓLIDO RÍGIDO El equilibrio de un sólido rígido se refiere a las condiciones que debe cumplir un sólido para estar en reposo de traslación de rotación, o bien, para moverse en

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM FUERZAS Y LEYES DE NEWTON Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM 1 FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo

Más detalles

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias 90 CAPíTULO 3 Equilibrio de una partícula PROBL EMAS 3-1. Determine las magnitudes de l 2 necesarias para que la partícula P esté en equilibrio. 3-3. Determine la magnitud el ángulo 8 de } necesarios para

Más detalles

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO 1. A) En cada uno de los cinco ejemplos siguientes se presenta en la ilustración de la izquierda el cuerpo a aislar, mientras que a la derecha se presenta

Más detalles

Taller estática. Figure 2: Figure 1:

Taller estática. Figure 2: Figure 1: Taller estática 1. Dos varillas de control están unidas en A a la palanca AB, como lo muestra la figura 1. Sabiendo que la fuerza en la varilla de la derecha es F 2 = 20 lb, determine a) la fuerza F 1,

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a juancjimenez@utp.edu.co o personalmente

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO GUÍ DE PROLEMS Nº 5: UERPO RÍGIDO PROLEM Nº 1: Un avión cuando aterriza apaga sus motores. El rotor de uno de los motores tiene una rapidez angular inicial de 2000 rad/s en el sentido de giro de las manecillas

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 3 para el curso Mecánica I. Pág. 1 de 9 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 3 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

Problemas de Estática y Dinámica ESTÁTICA (versión )

Problemas de Estática y Dinámica ESTÁTICA (versión ) Problemas de Estática y Dinámica ESTÁTICA (versión 081008) 1. El sistema de cables flexibles de la figura se utiliza para elevar un cuerpo de masa M. El sistema se halla en equilibrio en la posición indicada

Más detalles

TALLER N 2 - DINÁMICA DE LA PARTÍCULA

TALLER N 2 - DINÁMICA DE LA PARTÍCULA TALLER N 2 - DINÁMICA DE LA PARTÍCULA 1. 2. 3. 4. 5. 6. a) Muestre que el movimiento circular para una partícula donde experimenta una aceleración angular α constante y con condiciones iniciales t = 0

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

TALLER SOBRE EQUILIBRIO

TALLER SOBRE EQUILIBRIO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS - ESCUELA DE FÍSICA FÍSICA MECÁNICA (1000019) TALLER SOBRE EQUILIBRIO Preparado por: Diego Luis Aristizábal Ramírez y Roberto Restrepo

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 8: EJEMPLOS SOBRE ESTÁTICA DEL CUERPO RÍGIDO Diego Luis Aristizábal R., Roberto Restrepo A.,

Más detalles

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1 GUÍA DE EJERCICIOS Física Aplicada 2 CUERPO RIGIDO 1º cuatrimestre de 2012 1 Modelos en Física Modelos Sólidos Fluidos No se considera su extensión ni orientación Partícula Se considera su extensión y

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011 1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese

Más detalles

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura.

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. 1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. Solución: x C = 1,857 cm; yc= 3,857cm (medidas respecto a la esquina

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

ESTÁTICA DE ESTRUCTURAS Guía # 1

ESTÁTICA DE ESTRUCTURAS Guía # 1 ESTÁTI DE ESTRUTURS Guía # 1 1. Para las siguientes figuras 1, 2 3, determinar los centros de gravedad, respecto al eje correspondiente. igura 1 igura 2 igura 3 2. Descomponga la fuera de 120[kgf] en dos

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.-

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- Se dice que una fuerza es el efecto que puede ocasionar un cuerpo físico sobre otro, el cual este está compuesto de materia

Más detalles

34 35

34 35 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1. Dos fuerzas se aplican a una armella sujeta a una viga. Determine gráficamente la magnitud y la dirección de su resultante usando: a) La ley

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial)

ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 5: FUERZAS EN EL ESPACIO MOMENTO DE INERCIA 1) Se aplica una fuerza F a un punto de un cuerpo, tal como se indica en la fig. Determinar: a)

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Problemas. 1) 4.1. Dibuje un diagrama de cuerpo libre correspondiente a las situaciones ilustradas en la figura 4.19a y b. Descubra un punto donde actúen las fuerzas

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

FACULTAD DE INGENIERIA Y NEGOCIOS TECATE

FACULTAD DE INGENIERIA Y NEGOCIOS TECATE FACULTAD DE INGENIERIA Y NEGOCIOS TECATE 1. Realizar la conversión del momento dado en sistema ingles al sistema internacional. Si M 10 lb in convertirlo en N m a) b) c) d) 2. Identifique la fuerza resultante

Más detalles

PROBLEMAS DE MECÁNICA

PROBLEMAS DE MECÁNICA PROLEMS DE MECÁNIC CLCULO VECTORIL 1. Dados los vectores a = 12 i 5 j + 9 k y b = 3 i + 7 k, calcular: a) Su producto escalar a. b. Sol: 99 b) Su producto vectorial a x b. Sol: -35 i - 67 j + 15 k 2. Dados

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero. EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,

Más detalles

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD GUI DE PROLEMS PROPUESTOS Nº5: CUERPO RÍGIDO- ELSTICIDD Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas y/o torcas que actúan sobre el cuerpo o sistema

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA Recinto UNI Norte - Sede Regional Estelí

UNIVERSIDAD NACIONAL DE INGENIERIA Recinto UNI Norte - Sede Regional Estelí UNIVERSIDAD NACIONAL DE INGENIERIA Recinto UNI Norte - Sede Regional Estelí FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN Agosto 2009 Ing. Sergio Navarro Hudiel CONDICIONES DE EQUILIBRIO BASADO EN LA PRIMERA

Más detalles

4- Fuerzas Distribuidas

4- Fuerzas Distribuidas 4- Fuerzas Distribuidas Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 4. Fuerzas distributivas 4.1 Centro de gravedad de un cuerpo bidimensional. 4.2 Centroide de áreas y líneas.

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

GUÍA DE PROBLEMAS PROPUESTOS N 3: TRABAJO Y ENERGÍA

GUÍA DE PROBLEMAS PROPUESTOS N 3: TRABAJO Y ENERGÍA Premisa de Trabajo: GUÍA DE PROBLEMAS PROPUESTOS N 3: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio, la identificación

Más detalles

Cuáles son las componentes de la tercera

Cuáles son las componentes de la tercera Curso de Preparación Universitaria: Física Guía de Problemas N o 3: Dinámica: Leyes de Newton Problema 1: Tres fuerzas actúan sobre un objeto que se mueve en una línea recta con velocidad constante. Si

Más detalles

Semana 13 : Tema 10 Dinámica del movimiento rotacional

Semana 13 : Tema 10 Dinámica del movimiento rotacional Semana 3 : Tema 0 Dinámica del movimiento rotacional 0. Momento de una fuerza y aceleración angular 0. Rotación alrededor de un eje en movimiento 0.3 Trabajo y potencia en el movimiento rotacional Capítulo

Más detalles

Ejercicios Dinámica. R. Tovar.

Ejercicios Dinámica. R. Tovar. Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =

Más detalles

FÍSICA I UNIDADES Y VECTORES

FÍSICA I UNIDADES Y VECTORES Guía de Física I, Prof. J. Cáceres 1 /5 FÍSICA I UNIDADES Y VECTORES 1. Convierta el volumen 8,50 in 3 a m 3, recordando que 1 in = 2,54 cm. 2. Un terreno rectangular tiene 100 ft por 150 ft. Determine

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I 1. Calcular la aceleración (en m/s 2 ), si: m = 5 kg, F 1

Más detalles

EQUILIBRIO DE UNA PARTÍCULA, EL DIAGRAMA DE CUERPO LIBRE Y SISTEMAS DE FUERZAS COPLANARES

EQUILIBRIO DE UNA PARTÍCULA, EL DIAGRAMA DE CUERPO LIBRE Y SISTEMAS DE FUERZAS COPLANARES EQUILIBRIO DE UN PRTÍCUL, EL DIGRM DE CUERPO LIBRE Y SISTEMS DE FUERZS COPLNRES Objetivos del día de hoy: Los estudiantes serán capaces de: a) Dibujar diagramas de cuerpo libre (DCL), y, b) plicar las

Más detalles

C U R S O: FÍSICA MENCIÓN ESTÁTICA MATERIAL: FM-11. Centro de gravedad de un cuerpo (CG)

C U R S O: FÍSICA MENCIÓN ESTÁTICA MATERIAL: FM-11. Centro de gravedad de un cuerpo (CG) C U R S O: ÍSICA MENCIÓN MATERIAL: M-11 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como

Más detalles

Ejercicio D.C.L

Ejercicio D.C.L Ejercicio 4.18 El poste de teléfonos AB con peso W descansa en un agujero de 2L de profundidad. Si la fuerza de contacto entre el poste y el borde del agujero está limitada a P, Cuál es el máximo valor

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

UTN FACULTAD REGIONAL RECONQUISTA

UTN FACULTAD REGIONAL RECONQUISTA GUÍA DE TRABAJOS PRÁCTICOS Nº7 TEMA: SISTEMAS DE PARTÍCULAS 1. Cuatro objetos están situados a lo largo del eje y de la siguiente manera: un objeto de2 kg se ubica a +3m, un objeto de 3 kg está a +2,50

Más detalles

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139

Más detalles