Expresiones algebraicas (problemas)
|
|
|
- Guillermo Carrasco Castillo
- hace 8 años
- Vistas:
Transcripción
1 Expresiones algebraicas (problemas) 1. Sobre números (ecuaciones de 1 er y 2º grado) Números Expresión Números Expresión Diferencia Resta La mitad de un nº x/2 Producto Multiplicación Un tercio de un nº La 3 a parte x/3 Cociente, razón División La cuarta parte de un nº x/4 El doble de un nº dos veces 2x Las tres cuartas partes de un nº 3x/4 El triple de un nº tres veces 3x El cuadrado de un nº x 2 El cuádruple de un nº 4 veces 4x El cubo de un nº La 3 a potencia x Plantea en lenguaje algebraico (nº = x): a. La quinta parte de un nº -> b. Sietes veces un nº -> c. El quíntuple de un nº -> d. La mitad de un nº -> e. El doble de un nº -> f. El cuadrado de un nº -> g. El triple de un nº -> h. El cubo de un nº -> 1.2 Plantea en lenguaje algebraico (nº = x): a. A un nº le añadimos la mitad de otro -> b. El producto de un nº por el triple de ese nº -> c. Las tres séptimas partes de un nº -> d. Dos quintos de un nº -> 2. Sobre operaciones con/sin paréntesis (ec. de 1 er y 2º grado) Operaciones sin/con paréntesis Expresión Operaciones sin/con paréntesis Expresión El doble de un nº más tres 2x + 3 El cuadrado de un nº menos tres x 2-3 El doble la suma de un nº y tres 2(x+3) El cuadrado de la diferencia de un nº y tres (x 3) 2 Expresiones algebraicas (problemas) 1 8 v1.2
2 2.1 Plantea en lenguaje algebraico (nº = x): a. El triple de un nº menos dos -> b. El triple de la diferencia de un nº y 2 -> c. Cuatro veces un nº menos dos -> d. Cuatro veces la diferencia de dos y un nº -> e. El cuadrado de un nº más uno -> f. El cuadrado de la suma de un nº y uno -> 2.2 Plantea en lenguaje algebraico (nº = x): a. El triple de la resta de un nº y 5 -> b. El triple de un nº menos 5 -> c. La mitad de la diferencia de un nº y 3 -> d. La mitad de la diferencia de un nº y 3 -> 3. Sobre números especiales (ecuaciones de 1 er y 2º grado) Números especiales Expresión Números especiales Expresión Un nº x Dos n os consecutivos x, x+1 Un nº par 2x Dos n os consecutivos pares 2x, 2x+2 Un nº impar 2x+1 Dos n os consecutivos impares DIFICULTAD ALTA La diferencia de los cuadrados de dos números consecutivos 2x+1, 2x+3 (x+1) 2 x 2 (al mayor se le resta el menor) Expresiones algebraicas (problemas) 2 8 v1.2
3 3.1 Completa la tabla: EJEMPLO: Un nº x=1 x=2 X=3 Se cumple? Sí Un nº par Un nº impar Dos n os consecutivos: x, x+1 Dos n os consecutivos pares: 2x, 2x+2 Dos n os consecutivos impares: 2x+1, 2x Plantea en lenguaje algebraico (nº = x): a. Un nº -> b. Dos n os consecutivos -> c. Un nº par -> d. Dos n os consecutivos pares -> e. Un nº impar -> f. Dos nº consecutivos impares -> 3.3 Plantea en lenguaje algebraico (nº = x): a. La suma de los cuadrados de dos n os consecutivos impares -> b. El cuadrado de la suma de dos n os consecutivos impares -> c. La diferencia de los cuadrados de dos n os consecutivos pares -> d. El cuadrado de la diferencia de dos n os consecutivos pares -> e. El producto de dos n os consecutivos -> f. El producto de dos n os consecutivos pares -> g. La cuarta parte del cuadrado de un nº impar -> Expresiones algebraicas (problemas) 3 8 v1.2
4 4. Sobre partes (ecuaciones de 1 er grado) Planteamientos simples Expresión Planteamientos difíciles Expresión La quinta parte de mis ahorros Si ayer me gasté la quinta parte de mis ahorros y hoy 5 euros, me he gastado Si ayer me gasté la quinta parte de mis ahorros y hoy la tercera parte, me queda x 5 Si me gasto la quinta parte de mis ahorros, me queda x Si ayer me gasté la quinta parte de mis ahorros y hoy 5 euros, me queda x x 5 x 3 DIFICULTAD ALTA Si ayer me gasté la quinta parte de mis ahorros y hoy la tercera parte de lo que me quedaba, me queda x x 5 x x 5 5 x 1x x Plantea en lenguaje algebraico (un recorrido = x): a. He recorrido la mitad -> b. Si he recorrido la cuarta parte, me queda -> c. Si ayer recorrí las dos quintas partes y hoy 30 km, he recorrido -> d. Si ayer recorrí las dos quintas partes y hoy 30 km, me queda -> e. Si ayer recorrí las dos quintas partes y hoy la tercera parte, me queda -> f. Si ayer recorrí las dos quintas partes y hoy la tercera parte de lo que quedaba, me queda -> 4.2 Plantea en lenguaje algebraico (un trozo de tela = x): a. He cortado la tercera parte -> b. Si he cortado la tercera parte, me queda -> c. Si ayer corté la mitad y hoy 8 m, me queda -> d. Si ayer corté la mitad y hoy 8 m, he cortado -> e. Si ayer corté las dos terceras partes y hoy la cuarta parte, me queda -> f. Si ayer corté las dos terceras partes y hoy la cuarta parte de lo que quedaba, me queda -> Expresiones algebraicas (problemas) 4 8 v1.2
5 5. Sobre edades (ecuaciones de 1 er y 2º grado, sistemas) Planteamientos simples Expresión Planteamientos difíciles Expresión Edad actual x Edad hace 15 años x 15 Edad dentro de 15 años x + 15 DIFICULTAD ALTA Si tengo 15 años, dentro de cuántos años mi edad DIFICULTAD ALTA Si tengo 15 años, hace cuántos años mi edad 15 + x 15 - x 5.1 Plantea en lenguaje algebraico (la edad de un padre = x): a. La edad de un padre dentro de 20 años -> b. La edad de un padre hace 20 años -> c. Hace cuántos años la edad de un padre de 40 años? -> d. Dentro de cuántos años la edad de un padre de 40 años? -> 5.2 Plantea en lenguaje algebraico (la edad de una abuela = x): a. La edad de una abuela dentro de 5 años -> b. La edad de una abuela hace 5 años -> c. Dentro de cuántos años la edad de una abuela de 70 años? -> d. Hace cuántos años la edad de una abuela de 70 años? -> Expresiones algebraicas (problemas) 5 8 v1.2
6 6. Sobre geometría (ecuaciones de 1 er y 2º grado, sistemas) Planteamientos simples Expresión Planteamientos difíciles Expresión El perímetro de un terreno que mide el triple de largo que de ancho (recuerda que el perímetro es la suma de los lados) Por ecuaciones: x + x + 3x + 3x Por sistemas: x = 3y 2x+2y El área de un terreno que mide el triple de largo que de ancho (recuerda que el área es el producto de largo por el ancho) Por ecuaciones: x 3x Por sistemas: x = 3y x y El perímetro de un terreno que mide el treinta metros más de largo que de ancho Por ecuaciones: x + x + x+30 + x+30 El área de un terreno que mide el Por sistemas: x = y+30 2x + 2y treinta metros más de largo que de ancho Por ecuaciones: x (x + 30) Por sistemas: x = y+30 x y 6.1 Plantea en lenguaje algebraico (el ancho de un jardín rectangular= x): a. La longitud de la valla de un jardín que mide cuarenta metros más de largo que de ancho -> c. La extensión de un jardín que mide cuatro veces de largo que de ancho -> b. La longitud de la valla de un jardín que mide cuatro veces de largo que de ancho -> d. La extensión de un jardín que mide cuarenta metros más de largo que de ancho -> 6.2 Plantea en lenguaje algebraico (el largo de un tablero de madera = x): a. La longitud del tablero de madera que mide quince centímetros menos de ancho que de largo -> b. La longitud de un tablero de madera que mide tres cuartas partes de ancho que de largo -> c. La superficie de un tablero de madera jardín que mide de ancho la tercera parte de largo -> d. La superficie de un tablero de madera que mide quince centímetros menos de ancho que de largo -> Expresiones algebraicas (problemas) 6 8 v1.2
7 7. Sobre problemas típicos de sistemas de ecuaciones Planteamientos simples Expresión Planteamientos difíciles Expresión Ruedas de x motos e y coches 2x + 4y Patas de x gallinas e y conejos 2x + 4y El dinero (en ) de x monedas de 0,50 e y monedas de 2 0,5x + 2y Las personas alojadas en x habitaciones dobles e y triples 2x + 3y 7.1 Plantea en lenguaje algebraico: a. Las personas alojadas en x habitaciones individuales e y habitaciones dobles -> b. El total de patas de un corral de x gallinas e y conejos c. El total de habitaciones de x habitaciones individuales e y habitaciones dobles -> d. El total de cabezas de un corral de x gallinas e y conejos -> e. El total de ruedas de x bicicletas e y triciclos -> f. El dinero (en ) que supone x monedas de 1 e y monedas de 2 -> g. El total de volantes de x bicicletas e y triciclos -> h. El total de monedas que supone x monedas de 1 e y monedas de 2 -> 7.2 Plantea en lenguaje algebraico: a. Las personas alojadas en x habitaciones de 4 e y habitaciones de 5 personas -> b. El total de jorobas de un zoo con x dromedarios e y camellos -> c. El total de habitaciones de x habitaciones de 4 e y habitaciones de 5 personas -> d. El total de cabezas de un zoo con x dromedarios e y camellos e. El total de ruedas de x coches e y motos -> f. El dinero (en ) que supone x monedas de 1 e y monedas de 2 -> Expresiones algebraicas (problemas) 7 8 v1.2
8 g. El total de motores de x coches e y motos -> h. El total de monedas que supone x monedas de 0,05 e y monedas de 0,10 -> Expresiones algebraicas (problemas) 8 8 v1.2
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Página 1 de 25
Página 1 de EXAMEN A: Ejercicio nº 1.- Expresa de forma algebraica los siguientes enunciados matemáticos: a) Los kilómetros recorridos por un coche que va a 100 km/h durante x horas. b) La edad de Juan
9 Ecuaciones. de primer grado. 1. El lenguaje algebraico
9 Ecuaciones de primer grado 1. El lenguaje algebraico Calcula el resultado de las siguientes epresiones: a) Tenía 5 y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado mide metros y el
TEMA 3. Algebra. Ejercicios. Matemáticas
1 1 Las expresiones algebraicas 1. Traduce a lenguaje algebraico 1) El doble de un número aumentado en la mitad del mismo número. 2) El doble de a, aumentado en b. 3) El doble de a aumentado en b. 4) La
9. Ecuaciones de 1. er grado
9 9. Ecuaciones de 1. er grado 1. EL LENGUAJE ALGEBRAICO PIENSA Y CALCULA Calcula el resultado de las siguientes epresiones: a) Tenía y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado
= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado:
Hoja de Ejercicios Ecuaciones de primer y segundo grado y problemas 1. Resuelve las siguientes ecuaciones de primer grado: a) x x1 b) x c) x 10 x d) 1x 1 1 x e) x 0 x1 f) x g) x1 x1 h) x x i) x x 1 j)
140 = = 1.- Resuelve las siguientes multiplicaciones de fracciones y simplifica: 1 = Resuelve los ejercicios que se plantean: 9 x 6
Coordinación de Nivel Curso: º Básico Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Nombre: Fecha: 0 Calcula: 6 6 6 0 6 ( ) 6 Encuentra el perímetro de un triángulo equilátero de
Tema 8: ECUACIONES. SISTEMAS DE ECUACIONES 3º de ESO. 1. Resuelve por sustitución, igualación y reducción el sistema:
MARZO DE 0 º de ESO Guadi. Resuelve por sustitución, igualación reducción el sistema:. Resuelve el sistema:. Halla las soluciones del sistema: 4. Resuelve:. Resuelve por sustitución, igualación reducción
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
1. NÚMEROS NATURALES 2. POTENCIAS
. NÚMEROS NATURALES. Aplica la propiedad distributiva y opera: a) 5 (9 5)= b) (8 5+4) 6= c) (9 6) = d) (9+4 0+) =. Opera: a) (6 4) 5+6 (7 5)= b) (0 5 4) 7 (8 4):= c) (6+5 ) 8 (4 ) (5 )= d) 5+(6 8) (0 )
( ) ( ) SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES. IES CINCO VILLAS TEMA 5 2º ESO Página 1. b) = 3. Ejercicio nº 1.- a) 4. b) 2x.
SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES Ejercicio nº 1.- Indica cuál de los siguientes valores es solución de la ecuación x + 6 =. a) 4 b) 2 c) 4 c) 4 a) + 5 = 2 b) 3 + 5x = x 1 a) + 5 = 2 = 2 5 x
PROBLEMAS DE ECUACIONES DE PRIMER GRADO
PROBLEMAS DE ECUACIONES DE PRIMER GRADO Para resolver un problema es necesario: 1. Leer e interpretar el problema 2. Hacer una representación de lo expuesto en el problema, un gráfico, un diagrama o una
7 ECUACIONES. SISTEMAS DE ECUACIONES
EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.
Problemas de Ecuaciones de Primer Grado.
Problemas de Ecuaciones de Primer Grado. 1. **Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo? (Sol: 10 años). 2. *Si al doble de
El lenguaje algebraico.
El lenguaje algebraico. 1. Representa la edad de una persona: Transcurridos 10 años, si es la edad actual. Fa y anys, si 0 anys és la seva edat actual.. Calcula el valor numérico de les epresiones algebraicas
Manejo de campos numéricos y relaciones entre cantidades.
Manejo de campos numéricos y relaciones entre cantidades. Resolverá en términos numéricos empleando las propiedades y operaciones aplicables al campo de los conjuntos y números reales así como la traducción
PROBLEMAS ALGEBRAICOS. 2) La diferencia entre los cuadrados de dos números consecutivos es 71. Calcula dichos números.
PROBLEMAS ALGEBRAICOS 1) La suma de un número y su cuadrado es 4. Calcula dicho número. Sea dicho número La suma del nº y su cuadrado es 4: + = 4 1+ 13 1 = = 6 1± 1 4 ( 4) 1± 13 + 4 = 0 = = = 1 13 = =
mismo número consecutivos cualesquiera r) Dos números consecutivos h) La cuarta parte de un número
MATEMÁTICAS ª ESO LENGUAJE ALGEBRAICO. ECUACIONES. Epresa algebraicamente los siguientes enunciados verbales: Ejemplo Un número cualquiera a a) El doble de un número b) Un número aumentado en. c) Un número
19 f) = (Sol: x = -3 )
EJERCICIOS REPASO ÁLGEBRA con soluciones 1.- Resuelve las siguientes ecuaciones: x + a = 1 (Sol: x = 1 5x + 1 x + 5 x b = (Sol: x = 5 14 5 x x + 1 x + c + = (Sol: x = 0 6 x x + 1 x d = (Sol: x = -1 4 6
Nombre: Curso: 8 Básico Fecha: 02/08/2010. I Expresa en lenguaje algebraico las siguientes proposiciones.
GUÍA 1 DE PROBLEMAS Nombre: Curso: 8 Básico Fecha: 02/08/2010 1) doble de un número 2) x disminuido en el triple de 5. 3) El doble de la suma de a y -8 4) Un número aumentado en su cuarta parte. 1) Si
MATEMÁTICAS 2º E.S.O. TEMA 6 SISTEMAS DE ECUACIONES
MATEMÁTICAS 2º E.S.O. TEMA 6 SISTEMAS DE ECUACIONES 6.1. Ecuaciones lineales. 6.2. Representación gráfica de una ecuación lineal. 6.3. Sistemas de ecuaciones lineales 6.4. Método de sustitución. 6.5. Método
3º DE ESO ECUACIONES
3º DE ESO ECUACIONES 1. Resuelve las siguientes ecuaciones de primer grado: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) f) ( ) ( ) g) ( ) ( ) h) ( ) ( )( ) ( ) i) ( ) ( ) ( )( ) j) ( ) ( ) (
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)
TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de
MATEMÁTICAS 3º ESO IES LOS CARDONES PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: FECHA DE ENTREGA 03 de Septiembre de 2013.
MATEMÁTICAS º ESO IES LOS CARDONES 01-01 PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: - ESTRATEGIAS, HABILIDADES, DESTREZAS Y ACTITUDES GENERALES. - NÚMEROS naturales, enteros, racionales y reales. Operaciones.
Ecuaciones e inecuaciones
Ecuaciones e inecuaciones 066 Jorge tiene 3 discos más que Marta, Marta tiene 3 discos más que Alberto y Alberto tiene 3 discos más que Sara. Entre los cuatro tienen 58 discos. Cuántos discos tiene cada
RELACIÓN Nº 6: SISTEMA DE ECUACIONES. REPASO DE ECUACIONES
NOMBRE: FECHA: RELACIÓN Nº 6: SISTEMA DE ECUACIONES. REPASO DE ECUACIONES 1.-Resolver las siguientes ecuaciones por el método de sustitución: a) b) y 3x 10 3( x 2) 2( y 1) 12 x y 4 3 x 2y 11 c) d) x y
BLOQUE II. Álgebra. 7. Polinomios 8. Ecuaciones de 1 er y 2º grado 9. Sistemas de ecuaciones lineales
BLOQUE II Álgebra 7. Polinomios 8. Ecuaciones de er y º grado 9. Sistemas de ecuaciones lineales 7 Polinomios. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función
TRABAJO DE MATEMÁTICAS. SEPTIEMBRE 1º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE MATEMÁTICAS. SEPTIEMBRE 1º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
TAREA DE VERANO MATEMÁTICAS REFUERZO 1º ESO
TAREA DE VERANO MATEMÁTICAS REFUERZO º ESO Realiza las siguientes operaciones con paréntesis a) 9 b) Calcula a) 6 8 b) 9 Realiza las siguientes operaciones a) + 60-6 ( + ) + ( - ) = b) ( - + - 0 ) - (
TEMA 5 - ECUACIONES DE SEGUNDO GRADO Ejercicios Resueltos
TEMA 5 - ECUACIONES DE SEGUNDO GRADO Ejercicios Resueltos Resuelve mentalmente las siguientes ecuaciones: 1 5 5, 5 9 7, 7 4 5 5 1, 1 Resuelve las siguientes ecuaciones: 6 6, 6 7 16 4, 8 7 9 5 + 6, 10 +
COLEGIO DE LOS REYES PREESCOLAR. PRIMARIA. SECUNDARIA CENTRO DE CERTIFICACION DE INGLES TOEFL TAREAS DEL CICLO ESCOLAR
PERIODO DEL 13 AL 17 DE FEBRERO, MATERIA: MATEMÁTICAS 1. PROFESOR: JOSÉ ANTONIO PÉREZ CALDERÓN, NIVEL: SECUNDARIA. MATERIALES AVISOS Y/U OBSERVACIONES: REQUERIDOS: v Padres de familia se les recuerda revisar
Definiciones I. Definiciones II
Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una
6 EL LENGUAJE ALGEBRAICO. ECUACIONES
6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.
RESOLVER LAS ECUACIONES DE PRIMER GRADO
RESOLVER LAS ECUACIONES DE PRIMER GRADO 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) PROBLEMAS DE ECUACIONES DE PRIMER GRADO 1 Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x
7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =
Sistemas de Ecuaciones
3. Métodos de resolución Resolver un sistema por el método de reducción consiste en encontrar otro sistema, con las mismas soluciones, que tenga los coeficientes de una misma incógnita iguales o de signo
ECUACIONES 3 o ESO. 1 - Calcular un número sabiendo que su doble más 17 unidades es igual a 47.
ECUACIONES 3 o ESO EJERCICIOS I 1 - En una academia de idiomas el número de alumnos que estudian francés es la mitad de los que estudian inglés. Calcula el número de alumnos de cada grupo si en total son
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente
1. Lenguaje algebraico
1. Lenguaje algebraico El lenguaje algebraico permite epresar mediante símbolos matemáticos enunciados de situaciones de la vida diaria. En el álgebra se presentan problemas planteados en palabras que
( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3
Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego
La aritmética es la ciencia que se ocupa de analizar con objetos concretos, esto es, el uso de los números.
Aritmética vs. Álgebra Aritmética y álgebra La aritmética es la ciencia que se ocupa de analizar con objetos concretos, esto es, el uso de los números. El álgebra son las operaciones matemáticas analizadas
Tema 6: Ecuaciones de primer y segundo grado x x
Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Ecuaciones de primer y segundo grado. A) Resuelve las siguientes ecuaciones de primer grado:.- 0.-.- 8.- 9.- ( ) ( ).- ( ) ( ) ( ) 8.- ( ) (
EJERCICIOS DE REPASO DE MATEMÁTICAS 2º ESO GEOMETRÍA
EJERCICIOS DE REPASO DE MATEMÁTICAS º ESO GEOMETRÍA. Halla el área de un triángulo equilátero de lado cm. R) A 0, cm. Halla el área de un hexágono regular de lado cm. R) A,6 cm. La superficie de una mesa
+ 30 x = 2 x x 2 x= x= 22 x= :11
ECUACIONES I 8. Calcula el valor de a para que sean solución de la ecuación 3(-) +a Sustituyendo: 3( - ) + a 3 0 + a 0 + a 0 a a - 9. El ordenador de Juan tiene una velocidad de 1600 Mhz, que es el triple
IES VIGAN DEPARTAMENTO DE MATEMÁTICAS 1º ESO/3º EVALUACIÓN ALUMNO/A: CURSO: 1º ESO NOTA:
1. Completa la siguiente tabla: Números Millares Centenas Decenas Unidades 5.720 13.783 32 7 8 4 9 4 0 1 2. Resuelve las operaciones siguientes: 3. Halla los cinco primeros múltiplos de los números siguientes:
a) Cuadrado de lado 12,25 cm (Área = lado lado) b) Rectángulo de dimensiones 7,315 cm de largo y 2'7 cm de ancho (Área = largo ancho)
NUMEROS DECIMALES III 1 Calcula el cociente con 2 cifras decimales: a) 26,63 : 3,5 b) 3,201 : 0,61 2 Un kilo de pescado fresco cuesta 5,73 Euros Cuánto costará 3,25 Kg de pescado? 3 Efectúa las siguientes
Trabajo Práctico N 3: Expresiones algebraicas
Matemática año Trabajo Práctico N : Expresiones algebraicas Problema 1: Javier y Laura están analizando la distribución del gasto mensual en función de sus sueldos, J y L: En vivienda, invierten la mitad
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:...
IES FONTEXERÍA MUROS MATEMÁTICAS 2º E.S.O-A (Desdoble 1) 1º Examen (1ª Evaluación) 18-X-201 Nombre y apellidos:... 1. Contesta estas cuestiones: a) Qué es un monomio?. Un monomio es una expresión algebraica
Sistemas de ecuaciones lineales
9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13
14 Álge bra: Ecuaciones de primer grado.
14 Álge bra: Ecuaciones de primer grado. Problemas Problema 14.1. PRACTICANDO Resuelve los siguientes ejercicios traduciendo al lenguaje algebraico cada uno de los enunciados y resolviéndolos posteriormente.
Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = =
Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Sistemas de ecuaciones lineales..- Resuelve los siguientes sistemas mediante el método de sustitución: 9 0 0 0.- Resuelve los siguientes sistemas
tema 5: lenguaje algebraico curso 2010/2011
IES Montevil tema 5: lenguaje algebraico curso 2010/2011 nombre: apellidos: 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un número La mitad de un número La diferencia
RESOLUCIÓN ECUACIONES LINEALES
Nombre: RESOLUCIÓN ECUACIONES LINEALES 1.- Resuelve las siguientes ecuaciones por tanteo: a) 6 x = 1 b) 8 + x = 3 c) 2x = 10 d) x + 2 = 6 e) 6 x = 6 f) x 1 = 3 2.- Calcula el valor de x por tanteo: a)
ECUACIONES DE 1º GRADO =2x-(10-4x) 2. 5(x-1)+10(x+2)= x+3(2x-4)= x-3(x+5)=3x (2-x)=18x (x-3)=3(x+1) 5-2x.
ECUACIONES DE 1º GRADO 1. 0=(10). 5(1)10()=5. 1()=0. (1)= 5. (5)= 0. [(1)]=1 7. (5)=10 8. ()=181 9. 105()=(1) 10. ()=[5()] 11. (1)(11)=9 1. = 1. 8 = 1. 7 = 1 5 5 15. 10 = ( ) 9 1. 5 8 5 ( 0)= 18 7 17.
ALUMNOS DE 2º ESO CON LAS MATEMÁTICAS DE 1º PENDIENTES REPASO DE LOS NÚMEROS NATURALES
ALUMNOS DE º ESO CON LAS MATEMÁTICAS DE º PENDIENTES REPASO DE LOS NÚMEROS NATURALES.- Realiza las siguientes operaciones a) 7980 x 8 b) 087 c) 980 98 d) 987.- Calcula el valor de los siguientes polinomios
Resuelve mentalmente: a) x + 2 = 5 b) x 3 = 4 c) 4x = 12 d) (x 3)(x + 5) = 0. Solución: a) x = 3 b) x = 7 c) x = 3 d) x = 3, x = 5.
Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) ( )( + ) a) = b) = 7 c) = d) =, = P I E N S A Y C A L C U L A Resuelve las siguientes ecuaciones: a) + = 8 b)
b. 14 x = 4 c. 2 c + 2 cba 2 cqa = 4
Curso 016-017 Pág. 1 de 15 UNIDAD 6 ECUACIONES 1. RAÍZ DE UNA ECUACIÓN Actividades de clase 1.1. Comprueba si x = 5 es solución de alguna de estas ecuaciones sin resolverlas: 3x 7 = x [ 10 b. x ] x [ =
COLEGIO INTERNACIONAL TORREQUEBRADA
CUADERNO DE VERANO MATEMÁTICAS 2º ESO ALUMNO: LOS NÚMEROS ENTEROS CONTENIDOS. 1. Los números enteros 2. Valor absoluto de un número entero 3. Ordenación de números enteros 4. Representación de los números
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
Cuáles son esos números?
MATEMÁTICAS PROBLEMAS QUE SE RESUELVEN CON ECUACIONES Para resolver un problema de ecuaciones debes seguir los siguientes pasos: a) Identificar el dato desconocido y asignarle el valor x (si hay dos o
Interpretar los resultados obtenidos y comprobar que verifican las condiciones del enunciado.
FICHA 4: 49 problemas de planteamiento de ecuaciones y sistemas RECORDAR: A la hora de resolver un problema que requiera el planteamiento de una ecuación o un sistema se recomienda: Leer atentamente el
GUÍA DE APRENDIZAJE N 5. a) j) k) b) c) l) d) m) e)
GUÍA DE APRENDIZAJE Asignatura: Matemática para Ciencias de la Salud (MAT-0) Primer Semestre 0 N 5 Contenido: Ecuaciones de grado & planteamiento de problemas..- Resuelve las siguientes ecuaciones: a)
4º DE ESO ECUACIONES
4º DE ESO ECUACIONES 1. Resuelve las siguientes ecuaciones de primer grado: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) f) ( ) ( ) g) ( ) ( ) h) ( ) ( )( ) ( ) i) ( ) ( ) ( )( ) j) ( ) ( ) (
. M odulo 3 Algebra Gu ıa de Ejercicios
. Módulo 3 Álgebra Guía de Ejercicios Índice Unidad I. Operaciones algebraicas en polinomios Ejercicios Resueltos... pág. 2 Ejercicios Propuestos... pág. 7 Unidad II. Factorizaciones Ejercicios Resueltos...
1. Clasifica en identidades o ecuaciones las siguientes igualdades: 3. Escribe en lenguaje algebraico:
1. Clasifica en identidades o ecuaciones las siguientes igualdades: (a) 7(4 2x) 4(5 3x) =2(5 x) 2 (b) (x 1)$(x +1) x$(x +2) =3x (c) 5(x 1) 4(x +2) =3(x 1) 2(x +5) (d) x+1 2 x 2 3 =5 2. Resuelve las siguientes
He invitado a tres amigos a comer y voy a hacer pizzas. La receta para elaborar la masa dice:
Pág. 1 de 14 UNIDAD 10 ÁLGEBRA 1. EXPRESIONES ALGEBRAICAS Actividades de clase 1.1. HOY COCINO YO He invitado a tres amigos a comer y voy a hacer pizzas. La receta para elaborar la masa dice: Completa
Guía de Matemática Primero Medio
Guía de Matemática Primero Medio Aprendizaje Esperado: 1. Generalizan utilizando expresiones algebraicas no fraccionarias. 2. Reducen expresiones algebraicas. Contenido Mínimo Obligatorio: 1. Expresión
9 Ecuaciones. de primer grado. 1. El lenguaje algebraico
9 Ecuaciones de primer grado 1. El lenguaje algebraico Calcula el resultado de las siguientes epresiones: a) Tenía 5 y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado mide metros y el
>a) Para x = -2: 5' (-2)2 + 3 (-2) - 9 =
e una,"v r,,"" :;linl"nr::l tldel'aci(mes indicadas. :/enro/o; Para hallar el valor numérico de la expresión 7xm 2 para x = 5 Y m = 3 se sustituyen las letras por los números y se opera: 7 5 3 2 = 315.
DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS
GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de
2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista
Fracciones y números decimales. Operaciones con fracciones Realiza mentalmente las siguientes operaciones: + b c 0 b c P I E N S A Y C A L C U L A Carné calculista : C = ; R = Calcula mentalmente: + b
TRABAJO DE REPASO PARA 2º ESO
TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN
Colegio Portocarrero. Curso Departamento de matemáticas.
Colegio Portocarrero. Curso 01-015. Lenguaje algebraico, con solución 1 El precio de 1 kg de naranjas es euros. Epresa en lenguaje algebraico: a) Lo que cuestan 5 kg de naranjas. 1 b) Lo que cuesta kg
C. Ecuaciones e inecuaciones
C. Ecuaciones e inecuaciones C. Conceptos básicos La resolución de ecuaciones es el ejemplo más práctico de cómo el álgebra nos ayuda a resolver problemas. Mediante las ecuaciones será posible encontrar
CONTENIDO: Resolución de problemas que impliquen el PLANTEAMIENTO Y/O ECUACIÓN y la resolución de problemas.
TEMA. PATRONES Y ECUACIONES CONTENIDO: Resolución de problemas que impliquen el la resolución de problemas. LECCIÓN 21. ECUACIONES DE LA FORMA: a + b = c + d A. IGUALDAD ALGEBRAICA Una IGUALDAD ALGEBRAICA
10) 45 : {-2 + 12 : (-7 + 3) + 12 [ (-24) : ( -3 5 + 7) ] + 5} =
REPASO DEL CURSO (ENTREGAR EN SEPTIEMBRE) OPERACIONES COMBINADAS 1) 9:3 4 (4 + 3):3= Sol: 11 ) 3 7 (4 ) :6 + (10 14:7)= Sol: 15 3) 4:6 + 4 5 (3 5)= Sol: 4) -5(-3)-(-7) (-4)+ (-6)(-8)3= Sol: 131 5) 6 +
IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO
IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO OBJETIVO Una ecuación de segundo grado con una incógnita es una ecuación que se epresa de la forma: a + b + c = 0 donde a, b y c son números reales y
Problemas de ecuaciones de primer grado
Problemas de ecuaciones de primer grado 1. CÓMO RESOLVEMOS UN PROBLEMA DE ECUACIONES DE PRIMER GRADO? 6 2. CALCULA TRES NÚMEROS CONSECUTIVOS CUYA SUMA SEA 51. 7 3. CALCULA EL NÚMEROS QUE SUMADOS CON SU
Ecuaciones de 1er y 2º grado
Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:
SISTEMAS DE ECUACIONES HOJA DE REFUERZO SISTEMAS DE ECUACIONES Y ECUACIONES DE 2º GRADO MATEMÁTICAS 3º ESO. Colegio San José Hijas de la Caridad
SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES 1. Calcula dos números tales que el doble del primero más el doble del segundo sea 141, y que el primero más el doble del segundo sea 150. Sol.:
1. Ordena los números de menor a mayor: 2. Completa la siguiente serie: 3. Calcula estas sumas y restas:
TEMA 1 ACTIVIDADES DE REFUERZO 1. Ordena los números de menor a mayor: 2. Completa la siguiente serie: 2 4 12 3. Calcula estas sumas y restas: 47 32 96 64 78 23 + 41 35 + 22 17............... 4. Rodea
Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.
TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.
NUMEROS PRIMOS Y COMPUESTOS. 1. Anota en el recuadro una V si la proposición es verdadera o una F si es falsa
ACTIVIDAD: Lee con mucha atención y contesta lo que se te pide en cada número si tienes dudas revisa tus apuntes. NUMEROS PRIMOS Y COMPUESTOS 1. Anota en el recuadro una V si la proposición es verdadera
ECUACIONES 2º E.S.O. Ancho x Largo x + 3. x x ECUACIONES. SIGNIFICADO Y UTILIDAD. Ejemplo: ECUACIONES. SIGNIFICADO Y UTILIDAD
ECUACIONES. SIGNIFICADO Y UTILIDAD ECUACIONES º E.S.O. Una ecuación epresa, en lenguaje algebraico, una relación entre cantidades cuyo valor, de momento, se desconoce. Ejemplo: La mitad de un número es
POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS
ESO POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS EXPRESIONES ALGEBRAICAS - Traduce los siguientes enunciados a epresiones algebraicas El doble de un número menos su tercera parte. El doble del resultado
Problemas de ecuaciones de primer grado
Problemas de planteo (con solución) Problemas de ecuaciones de primer grado 1 Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo? el
Problemas de ecuaciones de primer grado
Problemas de planteo Problemas de ecuaciones de primer grado 1 Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo? el número? 2Si al
UNIDAD 3: Ecuaciones Lineales.
UNIDAD 3: Ecuaciones Lineales. GRADO DE DIFICULTAD BAJO. El valor de x que satisface la ecuación 5x = 8 es: 3/5 B) 5/3 C) 9/ 5 D) 3/5 E) 9/5. Si a = 5 cual de las siguientes expresiones es igual a a +
Leer atentamente el enunciado en su totalidad, para hacerse una idea de la situación.
FICHA 4: 66 problemas de planteamiento de ecuaciones y sistemas RECORDAR: A la hora de resolver un problema que requiera el planteamiento de una ecuación o un sistema se recomienda: Leer atentamente el
EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO.
EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. INSTRUCCIONES Estos ejercicios y problemas se realizarán en casa para preparar las pruebas CDI, cada alumno dedicará
Problemas de Sistemas de Ecuaciones de Primer Grado con dos Incógnitas
Problemas de Sistemas de Ecuaciones de Primer Grado con dos Incógnitas Recuerda las cuatro fases que tendremos que seguir para resolver un problema: 1.- Comprender el problema. 2.- Plantear el sistema
7. Sistemas de ecuaciones lineales
76 SOLUCIONARIO 7. Sistemas de ecuaciones lineales 1. SISTEMAS LINEALES. RESOLUCIÓN GRÁFICA PIENSA CALCULA a) En qué punto se cortan la gráfica roja la azul del dibujo? s r 3. Aplica el criterio que relaciona
6. Ecuaciones de 1. er y 2. o grado
SOLUCIONARIO. Ecuaciones de. er y. o grado. ECUACIONES DE. ER GRADO PIENSA Y CALCULA Resuelve mentalmente: a) + = b) = c) = d) ( )( + ) a) = b) = 7 c) = d) =, = CARNÉ CALCULISTA Calcula con dos decimales:
TRABAJO PARA EL VERANO Matemáticas 6º E.P.
TRABAJO PARA EL VERANO Matemáticas 6º E.P. Nombre: Curso: 1 Calcula el área de estos paralelogramos aplicando sus fórmulas. Dibújalos y recuadra el resultado final. a) Un cuadrado de 5,6 cm de lado. b)
DEPARTAMENTO DE MATEMÁTICAS. 3º E.S.O. A y C
DEPARTAMENTO DE MATEMÁTICAS. 3º E.S.O. A y C EJERCICIOS DE RECUPERACIÓN DE LA 2º EVALUACIÓN. 09/10 ENTREGA: VIERNES, 9 de ABRIL (ÚNICO DÍA) EXAMEN DE RECUPERACIÓN: Semana del 19 al 23 de Abril (Se confirmará)
