El lenguaje algebraico.
|
|
|
- Ramón Rivas Cáceres
- hace 9 años
- Vistas:
Transcripción
1 El lenguaje algebraico. 1. Representa la edad de una persona: Transcurridos 10 años, si es la edad actual. Fa y anys, si 0 anys és la seva edat actual.. Calcula el valor numérico de les epresiones algebraicas siguientes: 1. ac 5b ab, si a, b, c 1 1. y y y, si, y 5. Completa la siguiente tabla para a la epresión algebraica 5 y Valor de Valor de y Valor numérico de la epressión =1 y= =0 y=1 =1 y= = y=. Epresa algebraicamente las operaciones siguientes: El triple de un número más dos. Un número menos su mitad. El doble de la suma de un número más tres. Tres menos la suma de un número más su doble. Siete más un número disminuido en cuatro unidades. f) Un número más su cuadrado. 5. Epresa en lenguaje algebraico estos enunciados: El doble de un número. El cuadrado de un número. Un tercio de un número menos el doble de un otro. Un número menos su triple. 6. Epresa en lenguaje algebraico estos enunciados: La suma de dos números consecutivos. El cociente entre un número y otro. El producto de dos números pares consecutivos. El cociente entre dos números consecutivos. El cuadrado de la suma de dos números. 7. Escribe el que representen les epressions tenint en compte aquestes correspondències: a= quantitat de diners (en euros) b= La mesura del costat d un polígon (en cm) c= edat d una persona (en anys)
2 a a 5 c c b f) 5a 5 8. Epresa estas relaciones algebraicamente. Considera t los minutos que ha tardado Bernardo en completar la cursa. Marcos ha tardado la mitad de tiempo que en Bernardo. Luisa ha tardado el triple de tiempo que Marcos. Roberto ha tardado el mismo tiempo que en Marcos más 0 minutos. La Laura ha tardado el doble de tiempo que Roberto. 9. Los taistas cobran una cantidad fija de por bajar la bandera, 0, por cada kilómetro recorrido en la ciudad, y 0, por cada kilómetro recorrido en el etrarradio de la ciudad. Escribe una epresión algebraica que reculli el coste de un viaje de forma general y después sustitúyela por estos valores: km en la ciudad más km en el etrarradio. 5 km en la ciudad y cap a el etrarradio.,5 km en el etrarradio y cap a la ciutat. 10. Algunos juegos se pueden interpretar algebraicamente. Piensa un número y haz las operaciones que te indican: - Multiplícalo por. - Suma 18 al resultado. - Divídelo por. - Súmale. Observa que el resultado que obtienes es el número que has pensado incrementado en 10. Sabrías decir por qué? 11. Escribe estas epresiones en lenguaje algebraico: La mitad de un número. Añadir cinco unidades al doble de un número. La suma de un número y su doble. El área de un triángulo de base b y altura h. h La resta de un número par y el número que el sigue. f) La suma de dos números consecutivos es 1. El producto de tres números consecutivos es 10. b 1. Piensa un número natural, súmale el número siguiente, después suma 7 al resultado obtenido y divídelo por. Si le restas el número pensado inicialmente, qué obtienes? Eprésalo en lenguaje algebraico. 1. Escribe estas epresiones en lenguaje algebraico: El producto de dos números pares consecutivos es 8.
3 Unos pantalones y una camisa cuestan 80 en total. La camisa costa 5 menos que los pantalones. Al aumentar cm el lado de un cuadrado, su superficie aumenta cm. La diferencia entre los cuadrados de un número y el número anterior a este es 1. La suma de dos números es y su diferencia es 8. f) En un triangulo rectángulo la hipotenusa mide 1 cm y los catetos se diferencian en 7 cm. Epresa el teorema de Pitágoras en función de qualsevol de los dos catetos. 1 cm Les dos cifras de un número suman 1. Si invertimos el orden de sus cifras, el número disminuye 6 unidades. h) De dos números sabemos que el cociente entre el mayor y el menor es y el resto es, mientras que el cociente entre ellos dos es eactamente igual a cuando le aumentamos 7 unidades a cada uno. 1. Observa la figura y contesta estas preguntas: - Qué epresión algebraica nos da el perímetro del triangulo? Cuál es el perímetro del triangulo si los lados iguales miden 5 cm cada uno? 15. Indica cuáles de estas epresiones son ciertas y cuáles son falsas. Corrige aquellas que no sean ciertas: El cuadrado de la suma de dos números: y n La mitad d un número más 5 unidades: 5 La suma de los cuadrados de dos números: y n La mitad de la suma de un número más tres unidades: 16. Escribe en lenguaje simbólico les epresiones siguientes: Número de ruedas necesarias para fabricar coches. Número de euros para cambiar por billetes de 5 euros. Número de días de semanas. Número de horas de días. Número de patas de gallinas de un corral.
4 f) Número de patas de ovejas. Número de pasajeros de un autobús después de bajarse 7. i) Número de bañistas de una piscina después de salirse Epresa en lenguaje algebraico les epresiones siguientes: Número de pies que hay en una habitación con personas. Número de dedos en manos. Número de orejas en una habitación con personas. Número de personas que hay en una habitación después llegar. Número de cromos que me quedan después de perder 1 en un juego. 18. Traduce a lenguaje algebraico las epresiones siguientes: Número de lectores de una biblioteca después de salir 8. La edad de un padre es el triple de la del su hijo. Un número más unidades. Número de patas en una cuadra de caballos. 19. Escribe en lenguaje simbólico les epresiones siguientes: Un número menos unidades. El doble de un número. La mitad de un número. El doble de un número menos unidades. Restar la mitad de un número al. 0. Escribe en lenguaje simbólico les epresiones siguientes: Quatre menos un número. El cuádruplo de un número. La cuarta parte de un número. Dos números es diferencien en unidades. La cuarta parte de un número más la quinta parte. 1. Escribe en lenguaje simbólico les epresiones siguientes: Añadir al doble de un número. El doble de un número menos su mitad. La mitad de un número menos su doble. El doble de un número menos. La mitad de manzanas de una cesta.. Traduce al lenguaje simbólico les epresiones siguientes: Dos números pares consecutivos. En el precio de una compra que vale me descuentan 15 euros. Número de viajeros en un autobús después de bajarse 8. La mitad de un número más unidades. Número de cuartos de hora en días.. Escribe en lenguaje simbólico les epresiones siguientes: Dos ángulos de un triángulo se diferencian en 0º. Un número menos. Un número más. El triple de un número.
5 La tercera parte de un número.. Traduce al lenguaje simbólico les epresiones siguientes: La mitad de un número menos la tercera parte. Número de personas casadas después de celebrarse matrimonios. Repartir una fortuna entre 7 hermanos. El doble de la edad más 5 años. f) Dos quintas partes de un número. El triple de un número más 1. h) Un número menos. i) Tres veinteavos de un número. j) Un ciclista ha recorrido 87 km. Cuántos le faltan para llegar a la meta? k) Número de participantes que llegan a la meta si se retiran 5. l) Valor de 5 sellos de correo de céntimos. m) La edad de Pedro hace años. n) La edad de Juan dentro de 16 años. 5. Traduce al lenguaje simbólico les epresiones siguientes: La tercera parte de un número más unidades. El triple de un número menos unidades. El triple de un número más su tercera part. La tercera parte de un número menos. El triple de un número menos su tercera part. 6. Escribe en lenguaje simbólico les epresiones siguientes: La cuarta parte de una cantidad de dinero más 500 euros. Un número más su cincuentava parte. Restar a la seta parte de un número unidades. 7. Escribe en lenguaje simbólico les epresiones siguientes: Repartir entre 5 personas una cantidad de dinero menos 50 euros. El quíntuplo d un número dividido entre. Páginas que me falten para acabar un libro, si ya he leido 5. El pare me da el doble del dinero que yo ya tenia. Cuánto dinero tengo ahora? Dos números cuya suma es. 8. Escribe en lenguaje simbólico les epresiones siguientes: Dos números se diferencian en 0 unidades. Dos tercios de un número menos 60. Un número más unidades. Dos números impares consecutivos. Distancia recorrida por un coche en 6 horas. 9. Simplifica: 5( 1) 7( ) 0 19 ( ) (5 ) a a(5 ) 15a ( y 1) y ( y ) ( y) y
6 1 a( b b( a c( a f) 8ac ( y z) y 1 z h) ( n m ) ( m n ) m n ( m 1) m ( n ) m 5 ( 1) 0 i) (1 ) Soluciones: f) 1 0 h) 0 i)1 0. Simplifica al máimo estas epresiones: bc abc ( ) 10 5 ( ) Simplifica estas epresiones: 51 1 ac a 7ac 5 1. Simplifica estas epresiones: ( ) 1 51 ( 5) 1 5 ( ) (8 ) 1 y y ( ) 1 f) 1 ( ) Etrae factor común en estas epresiones: Traduce al lenguaje simbólico les epresiones siguientes: El triple de un número más La suma de los cuadrados de dos números El producto de dos números consecutivos 5. Halla el valor numérico de las siguientes epresiones algebraicas: y ( 1) para: 5, y 5 ( 1) 8 a para: a 8 para:
7 6. Simplifica: 11a6a 1 y 5 y y f) h) 5a a y ( ) y ( ) 5 ( ) 7. Quita los paréntesis: ( y ) 5(yy 1) 8. Simplifica: (5 y ) ( y) ( a y (5 ) ( 1) 5 (1 ) 5 9. Traduce al lenguaje simbólico les epresiones siguientes: El doble de un número más el triple del siguiente El cuadrado de la suma de dos números 0. Calcula el valor numérico de la epresiones algebraicas siguientes: (1 y) para: 5, y y ( 1) para:, y Simplifica: 5y y y y y 8 5 f) y ( ) y h) ( ) ( ). Quita los paréntesis: 5( 1) (y ) ( a y ( ) ( y) 5 ( y). Simplifica: ( a ( a ( 6)(1 ) ( ) 8 a a (5a 6(1 1 6 z 5 z z ( z z) ( z ) y ( y) ( y ) ( y) f) ( b 5( a 5(a (a ( )( s 5) (5 s) ( s 5) s 5. Halla el valor numérico de las siguientes epresiones algebraicas: y para a 1, y para a 1, y y 5 y para a 1, y 5
8 5. Escribe la epresión algebraica de las siguientes afirmaciones, siendo el número desconocido: La suma de un número y su triple. La diferencia entre un número y su mitad es 0. El producto de un número y el siguiente suman 0. La diferencia entre el cubo de un número y su cuadrado es. El cubo de la diferencia entre un número y su cuadrado es. f) El cuadrado de la diferencia entre un número y su cubo es. 6. Epresa, a partir de, la superficie S y el perímetro P del rectángulo: 7. Simplifica, si es posible, las siguientes epresiones: a b f) y 9 5y h) 5y i) 8 j) k) 10 1y 5 l) 1 5 y 7 11y 1 7 m) n) Saca factor común, siempre que sea posible: a b 7b c y 1 6y 1abc 10ab c 9. Simplifica al máimo las siguientes epresiones: 5 y 7y Simplifica: ab 7 b y y 7 11
9 5 f) 7 1 j) h) 1 1 i) zz z 5 a 7 a 51. Simplifica las siguientes epresiones: 5. Simplifica: y z z 5 ( y z) z y z 1 10 y z ( y z) z ( y) z ( z) y z 5. Simplifica: 7 1 y z 5 y z y z y z y z 5 7 y z 1 7 z y 5 y z z y y z y z 5 y z Simplifica: y z 11 7 y 11 7 z a a c c 5 b b 15 0 y y ( ) ( y ) 6 ( y ) 1 ( ) y 6 ( y ) 6 6
10 55. Simplifica las epresiones siguientes: y y y y Soluciones (mezcladas): y, y, 5 y, 5 y ( y ) y ( y ) y 56. Elimina el paréntesis de las epresiones siguientes, cuando sea posible: ( yz) ( yz) ( z) 1 ( yz) f) ( yyz) (5 ) ( z z) ( z z ) 57. Simplifica les epresiones siguientes: abc abc abc a abc ab a bcabc ( a b Soluciones (mezcladas): abc ab, a bc, abc, abc a 58. (*) Simplifica las epresiones siguientes: y y y y y ( y) z z yz yz z z z 6 y y 8 z z Soluciones (mezcladas) 1, 5 8 y z, y, a, y z f) 5 y z y 7 z 6 9 a b 11a b, y, 16ab y y Completa: Un taller de marquetería fabrica cuadros cuadrados. El marco que se ha colocado cuesta euros el metro, el vidrio, euros el metro cuadrado, y la mano de obra, 6 euros. Si es la medida del lado del marco, escribe la epresión algebraica que representa el importe total del cuadro. Calcula el precio de un cuadro de 60 cm de lado, sustituyendo en la epresión anterior por su valor. Haz lo mismo para un cuadro de 110 cm de lado. 60. Substituye en la epresión matemática a b c, los valores siguientes: a 7, b, c a 1, b 5, c Substituye en la epresión matemática y z los valores siguientes:, y, z, y, z 5
11 6. Substituye en cada epresión matemática los valores indicados: 1 5 n m, n, m a b, a, b 6 6. Etrae factor común en las epresiones siguientes p q 8p q r 6p q s 6. Escribe las epresiones siguientes sin paréntesis: 1 ( 1) 65. Escribe las epresiones siguientes sin paréntesis: Escribe las epresiones siguientes sin paréntesis: Escribe las epresiones siguientes sin paréntesis: Escribe las siguientes frases en lenguaje matemático: El triple de un número más 8. La diferencia entre un número y su cuadrado. 69. Escribe las siguientes frase en lenguaje matemático: ( ) José tiene tantos caramelos como el cuadrado de la suma de los caramelos de sus hermanos Pedro y Luis, dividido entre el doble del nombre de caramelos de María. (X=caramelos de José, Y= caramelos de Pedro, L= caramelos de Luis, M=Caramelos de Marí
12
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.
TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.
mismo número consecutivos cualesquiera r) Dos números consecutivos h) La cuarta parte de un número
MATEMÁTICAS ª ESO LENGUAJE ALGEBRAICO. ECUACIONES. Epresa algebraicamente los siguientes enunciados verbales: Ejemplo Un número cualquiera a a) El doble de un número b) Un número aumentado en. c) Un número
PÁGINA 38. Son ecuaciones a) y d). Son identidades b) y c).
PÁGINA 38 Entrénate 1 Indica, de estas epresiones algebraicas, cuáles son identidades y cuáles ecuaciones: a) + 3 = 8 b) ( + 3) = + 6 c) + 5 (1 ) = + 4 d) + 4 = + 4 Son ecuaciones a) y d). Son identidades
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
Página 1 de 25
Página 1 de EXAMEN A: Ejercicio nº 1.- Expresa de forma algebraica los siguientes enunciados matemáticos: a) Los kilómetros recorridos por un coche que va a 100 km/h durante x horas. b) La edad de Juan
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)
TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de
9. Ecuaciones de 1. er grado
9 9. Ecuaciones de 1. er grado 1. EL LENGUAJE ALGEBRAICO PIENSA Y CALCULA Calcula el resultado de las siguientes epresiones: a) Tenía y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado
1 Expresiones algebraicas
1 Epresiones algebraicas Página 7 1. Epresa en lenguaje algebraico. El doble de un número menos su tercera parte. b) El doble del resultado de sumarle tres unidades a un número. c) La edad de Alberto ahora
6 EL LENGUAJE ALGEBRAICO. ECUACIONES
6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.
9 Ecuaciones. de primer grado. 1. El lenguaje algebraico
9 Ecuaciones de primer grado 1. El lenguaje algebraico Calcula el resultado de las siguientes epresiones: a) Tenía 5 y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado mide metros y el
Colegio Portocarrero. Curso Departamento de matemáticas.
Colegio Portocarrero. Curso 01-015. Lenguaje algebraico, con solución 1 El precio de 1 kg de naranjas es euros. Epresa en lenguaje algebraico: a) Lo que cuestan 5 kg de naranjas. 1 b) Lo que cuesta kg
TEMA 4 EL LENGUAJE ALGEBRAICO
4.1 Epresiones algebraicas TEMA 4 EL LENGUAJE ALGEBRAICO PÁGINA 78 ACTIVIDADES 1. Describe mediante una epresión algebraica los enunciados siguientes: d Gasté en un traje 3 de lo que tenía y 0 euros en
3 Lenguaje algebraico
Lenguaje algebraico Qué tienes que saber? QUÉ tienes que saber? Actividades Finales Ten en cuenta El lenguaje algebraico epresa la información con letras, números operaciones matemáticas. El valor numérico
Departamento de Matemáticas. Nombre:.Grupo:..
I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3
1. NÚMEROS NATURALES 2. POTENCIAS
. NÚMEROS NATURALES. Aplica la propiedad distributiva y opera: a) 5 (9 5)= b) (8 5+4) 6= c) (9 6) = d) (9+4 0+) =. Opera: a) (6 4) 5+6 (7 5)= b) (0 5 4) 7 (8 4):= c) (6+5 ) 8 (4 ) (5 )= d) 5+(6 8) (0 )
POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS
ESO POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS EXPRESIONES ALGEBRAICAS - Traduce los siguientes enunciados a epresiones algebraicas El doble de un número menos su tercera parte. El doble del resultado
IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:...
IES FONTEXERÍA MUROS MATEMÁTICAS 2º E.S.O-A (Desdoble 1) 1º Examen (1ª Evaluación) 18-X-201 Nombre y apellidos:... 1. Contesta estas cuestiones: a) Qué es un monomio?. Un monomio es una expresión algebraica
( ) ( ) SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES. IES CINCO VILLAS TEMA 5 2º ESO Página 1. b) = 3. Ejercicio nº 1.- a) 4. b) 2x.
SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES Ejercicio nº 1.- Indica cuál de los siguientes valores es solución de la ecuación x + 6 =. a) 4 b) 2 c) 4 c) 4 a) + 5 = 2 b) 3 + 5x = x 1 a) + 5 = 2 = 2 5 x
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente
Expresiones algebraicas
5 Epresiones algebraicas EXPRESIONES ALGEBRAICAS MONOMIOS POLINOMIOS OPERACIONES SUMA RESTA MULTIPLICACIÓN DIVISIÓN FACTOR COMÚN IGUALDADES NOTABLES 1 El templo de Apis Desde un lugar privilegiado, el
+ 30 x = 2 x x 2 x= x= 22 x= :11
ECUACIONES I 8. Calcula el valor de a para que sean solución de la ecuación 3(-) +a Sustituyendo: 3( - ) + a 3 0 + a 0 + a 0 a a - 9. El ordenador de Juan tiene una velocidad de 1600 Mhz, que es el triple
ECUACIONES DE 1º GRADO
ECUACIONES DE 1º GRADO º E.S.O. 1.- Resuelve la siguiente ecuación: - ( - 7 ) = - ( + ).- Resuelve la siguiente ecuación: +(-)-(-1)=4-.- Resolver las siguientes ecuaciones:.(-1) = ; ; 4 (1 ) ; 1 1 8 4
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
ECUACIONES DE 1º GRADO =2x-(10-4x) 2. 5(x-1)+10(x+2)= x+3(2x-4)= x-3(x+5)=3x (2-x)=18x (x-3)=3(x+1) 5-2x.
ECUACIONES DE 1º GRADO 1. 0=(10). 5(1)10()=5. 1()=0. (1)= 5. (5)= 0. [(1)]=1 7. (5)=10 8. ()=181 9. 105()=(1) 10. ()=[5()] 11. (1)(11)=9 1. = 1. 8 = 1. 7 = 1 5 5 15. 10 = ( ) 9 1. 5 8 5 ( 0)= 18 7 17.
Tema 6: Ecuaciones de primer y segundo grado x x
Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Ecuaciones de primer y segundo grado. A) Resuelve las siguientes ecuaciones de primer grado:.- 0.-.- 8.- 9.- ( ) ( ).- ( ) ( ) ( ) 8.- ( ) (
MATEMÁTICAS 2º ESO EXPRESIONES ALGEBRÁICAS
MATEMÁTICAS º ESO EXPRESIONES ALGEBRÁICAS BLOQUE I Ejercicio 1.- Escribe un monomio que verifique: a) Su coeficiente es -3 y la parte literal es w xz. b) Su coeficiente es y es semejante a 4xz. c) Tiene
5 Expresiones algebraicas
Epresiones algebraicas. Asocia en tu cuaderno cada frase a su epresión algebraica. La suma de dos números seguidos n El cuadrado de un número n La raíz cuadrada del doble de un número n + (n + ) El triple
Expresiones algebraicas (1º ESO)
Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico
POLINOMIOS ECUACIONES - INECUACIONES
º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS ECUACIONES - INECUACIONES.- Calcula el valor de k para que el polinomio P() = 6 + k sea divisible por el binomio ( + ). k =.- Calcula
TEMA 3. Algebra. Ejercicios. Matemáticas
1 1 Las expresiones algebraicas 1. Traduce a lenguaje algebraico 1) El doble de un número aumentado en la mitad del mismo número. 2) El doble de a, aumentado en b. 3) El doble de a aumentado en b. 4) La
1 a) Aplica a la figura una traslación de vector ( 7, -3). Halla la figura homóloga con respecto a una simetría axial de eje OX
MATEMÁTICAS º.E.S.O Ejercicios de repaso Movimientos en el plano. Geometría a Aplica a la figura una traslación de vector 7, -. Halla la figura homóloga con respecto a una simetría aial de eje OX b Aplica
1. DIVISIBILIDAD. NÚMEROS ENTEROS.
1.- Calcula: a) (-) + (-) + (+6) = b) (-6) (+) (-) = c) 8 + = d) 10 + 1 + = e) 8 7 + 11 7 = f) 0 1 + 0 =.- Calcula: a) 8 (-) = b) (-) : (-6) = c) (-) (-) (-) = 1. DIVISIBILIDAD. NÚMEROS ENTEROS..- Resuelve
El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?
TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se
ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.
ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º
Tema 8: ECUACIONES. SISTEMAS DE ECUACIONES 3º de ESO. 1. Resuelve por sustitución, igualación y reducción el sistema:
MARZO DE 0 º de ESO Guadi. Resuelve por sustitución, igualación reducción el sistema:. Resuelve el sistema:. Halla las soluciones del sistema: 4. Resuelve:. Resuelve por sustitución, igualación reducción
2. Calcula el número que sumado con su anterior y con su siguiente dé 114
1. Calcula tres números consecutivos cuya suma sea 51 2. Calcula el número que sumado con su anterior y con su siguiente dé 114 3. Calcula el número que se triplica al sumarle 26 4. Si a un número le quitas
Sistemas de ecuaciones lineales
9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13
Ecuaciones e inecuaciones
Ecuaciones e inecuaciones EJERCICIOS 00 Indica los elementos de estas ecuaciones. a) ( + ) ( 5) + 7 b) + ( ) 9 + a) Incógnita: Miembros: ( + ) ( 5) + ; 7 Grado: b) Incógnita: Miembros: + ( ) 9; + Grado:
SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES
DPTO DE MATEMÁTICAS T: ALGEBRA - 1 SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES 1. Los lados de un rectángulo se diferencian en m. Si aumentáramos m cada lado, el área se incrementaría en 40 m.
ECUACIONES 3 o ESO. 1 - Calcular un número sabiendo que su doble más 17 unidades es igual a 47.
ECUACIONES 3 o ESO EJERCICIOS I 1 - En una academia de idiomas el número de alumnos que estudian francés es la mitad de los que estudian inglés. Calcula el número de alumnos de cada grupo si en total son
7. Sistemas de ecuaciones lineales
76 SOLUCIONARIO 7. Sistemas de ecuaciones lineales 1. SISTEMAS LINEALES. RESOLUCIÓN GRÁFICA PIENSA CALCULA a) En qué punto se cortan la gráfica roja la azul del dibujo? s r 3. Aplica el criterio que relaciona
MATEMÁTICAS 2º ESO 1. a) x+2 = 5 b) x+3 = 2 c) x-1 = 5 d) x-3 = 4 e) x-1 = 1 f) 3x = 6 g) 5x = 15 h) i)
MATEMÁTICAS 2º ESO 1 1) Asocia cada enunciado con la ecuación que lo epresa algebraicamente: a) La tercera parte de un número es igual a su cuarta parte más una unidad. b) La edad de Antonio es el triple
TEMA 3. ECUACIONES. Curso de Preparación de Prueba de Acceso a CFGS - Matemáticas. Aritmética y Álgebra Tema x-34=
Curso de Preparación de Prueba de Acceso a CFGS Matemáticas Aritmética y Álgebra Tema TEMA. ECUACIONES. =0. 98=7. =. 79=9. 8=. =7 7. =8 8. 99=7 9. = 0. =0. =. =0. 8=. =9. 8=0. 7=7 7. 0= 8. 70= 9. 8= 0.
Sistemas de ecuaciones lineales
7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la
Apuntes de Matemáticas. Iniciación a los polinomios
016-017 Apuntes de Matemáticas. Iniciación a los polinomios Profesora Ana María Zarco García F.P.A. Orosia Silvestre 016-017 D e p a r t a m e n t o d e C i e n c i a s. C u r s o 0 1 6 / 1 7 P á g i n
Polinomios. 100 Ejercicios para practicar con soluciones
Polinomios. 00 Ejercicios para practicar con soluciones El perímetro de un paralelogramo mide 70 cm. Si dos lados miden cm y los otros dos y cm, escribe la epresión de y en función de. + y 70 + y 5 y 5.
= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado:
Hoja de Ejercicios Ecuaciones de primer y segundo grado y problemas 1. Resuelve las siguientes ecuaciones de primer grado: a) x x1 b) x c) x 10 x d) 1x 1 1 x e) x 0 x1 f) x g) x1 x1 h) x x i) x x 1 j)
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
PROBLEMAS ALGEBRAICOS. 2) La diferencia entre los cuadrados de dos números consecutivos es 71. Calcula dichos números.
PROBLEMAS ALGEBRAICOS 1) La suma de un número y su cuadrado es 4. Calcula dicho número. Sea dicho número La suma del nº y su cuadrado es 4: + = 4 1+ 13 1 = = 6 1± 1 4 ( 4) 1± 13 + 4 = 0 = = = 1 13 = =
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
Unidad 5. El lenguaje algebraico
a las Enseñanzas Académicas Página 8 Resuelve 1. Cuál de estas igualdades asocias al enunciado del montón de trigo que aparece en el papiro egipcio? Cuántas medidas tiene ese montón? I 1 1 II III + La
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS 1.- ÁLGEBRA. EXPRESIONES ALGEBRAICAS Y LENGUAJE ALGEBRAICO ÁLGEBRA es la parte de las matemáticas que estudia las expresiones algebraicas. EXPRESIÓN ALGEBRAICA
Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.
TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones
5. El cociente de la división de dos números naturales vale 8 y el resto 66. Halla estos números, sabiendo que uno excede al otro en 570 unidades.
PROBLEMAS ECUACIONES Y SISTEMAS 1. Una suma de 375 está formada por un mismo número de billetes de 10 que de 5 Hallar el número de billetes de cada clase. 2. En tres meses una fábrica de latas de sardinas
19 f) = (Sol: x = -3 )
EJERCICIOS REPASO ÁLGEBRA con soluciones 1.- Resuelve las siguientes ecuaciones: x + a = 1 (Sol: x = 1 5x + 1 x + 5 x b = (Sol: x = 5 14 5 x x + 1 x + c + = (Sol: x = 0 6 x x + 1 x d = (Sol: x = -1 4 6
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
1. Números naturales y enteros
. Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (
PLANTEO DE ECUACIONES
PLANTEAR UNA ECUACIÓN ES: PLANTEO DE ECUACIONES 1. Leer cuidadosamente la situación planteada (problema) y tratar de entender a que se refiere. 2. Identificar las magnitudes (todo lo que se puede medir)
TRABAJO DE REPASO PARA 2º ESO
TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. PÁGINA 9 EJERCICIOS Primeras ecuaciones 7 8 5 5 0 0 0 5 + 5 0 0 5 5 + 6 6 0 7 7 7 5 6 9 7 8 6 9 5 + + 6 5 5 0 0 Cualquier solución es válida. Pág. 0 8 + 5 6 8 5 5 7 + + + 6 9 8 + + 8 9 7 + 7 + 8 +
140 = = 1.- Resuelve las siguientes multiplicaciones de fracciones y simplifica: 1 = Resuelve los ejercicios que se plantean: 9 x 6
Coordinación de Nivel Curso: º Básico Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Nombre: Fecha: 0 Calcula: 6 6 6 0 6 ( ) 6 Encuentra el perímetro de un triángulo equilátero de
Materia: MATEMÁTICAS. Curso: 3º ESO Nº:
REPASO GLOBAL COLEGIO HISPANO INGLES Rambla General Franco, 9-800 Santa Cruz de Tenerife + 9 76 06 - Fa: + 9 78 77 Materia: MATEMÁTICAS Evaluación: Fecha: Curso: º ESO Nº: NÚMEROS REALES: ) Aproima el
Definiciones I. Definiciones II
Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una
DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO
REPASO Y APOYO OBJETIVO 1 DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO El lenguaje que utilizamos habitualmente se llama lenguaje usual, y es con el que escribimos y/o hablamos. También usamos el lenguaje
CUADERNO DE REPASO DE VERANO
CUADERNO DE REPASO DE VERANO MATEMÁTICAS ACADÉMICAS 3º ESO Las actividades deben realizarse en estos folios, si algún proceso no te cabe en el hueco destinado para ello, lo haces en otra hoja o por detrás.
Ecuaciones e inecuaciones
Ecuaciones e inecuaciones 066 Jorge tiene 3 discos más que Marta, Marta tiene 3 discos más que Alberto y Alberto tiene 3 discos más que Sara. Entre los cuatro tienen 58 discos. Cuántos discos tiene cada
DuocUC MAT 1001 GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EVALUACIÓN DE EXP RESIONES ALGEBRAICAS
GUÍA DE EJERCICIOS Nº 9 AP LICACIONES DE ECUACIONES DE P RIMER GRADO EALUACIÓN DE EXP RESIONES ALGEBRAICAS 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el número.. El triple de
TEMA 01 - NÚMEROS ENTEROS
MATEMÁTICAS º ESO TEMA 0 - NÚMEROS ENTEROS º. Indica el número que corresponde a cada letra. º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) luego escríbelos de forma ordenada.
PROBLEMAS DE ECUACIONES DE PRIMER GRADO. 1.-Hallar un número que restado al 7,54 dé lo mismo que sumado al 3,23.
PROBLEMAS DE ECUACIONES DE PRIMER GRADO NIVEL 1 FICHA 1 1.-Hallar un número que restado al 7,5 dé lo mismo que sumado al 3,3..-La mitad de la suma de seis veces un número y dos es igual a la diferencia
5 EXPRESIONES ALGEBRAICAS
5 EXPRESIONES ALGEBRAICAS EJERCICIOS Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 menos, expresa algebraicamente lo que cuestan: a) Cuatro libros. b) Diez bolígrafos.
Fíjate bien. En el lenguaje algebraico podemos usar las letras que queramos, x, y, z, a, b, c, m, n, p, etc, etc.
2º ESO UNIDAD 5.- EXPRESIONES ALGEBRAICAS ------- 1.- EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO Objetivo 1.- Traducir del lenguaje natural al algebraico en diversas situaciones Objetivo 2.- Calcular valores
Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado:
ALGEBRAIC LANGUAGE. POLYNOMIAL (ACTIVIDADES AMPLIACION 2 ESO) Ejercicio nº 1.-Efectúa las siguientes operaciones: Ejercicio nº 2.-Efectúa estas operaciones y simplifica el resultado: (3x 2 1) (2x 2 + 5x)
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1.- Comprueba si los valores indicados son soluciones de las ecuaciones correspondientes: a) x 2 de 3x + 3 1 b) x l de + x 2 3x + 5 x + 2 1 x c) x 2 de 1 3 3 x 2 6 d) x 6 de
SISTEMAS DE ECUACIONES HOJA DE REFUERZO SISTEMAS DE ECUACIONES Y ECUACIONES DE 2º GRADO MATEMÁTICAS 3º ESO. Colegio San José Hijas de la Caridad
SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES 1. Calcula dos números tales que el doble del primero más el doble del segundo sea 141, y que el primero más el doble del segundo sea 150. Sol.:
5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:
Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:
2. Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo?
TEMA 5: ECUACIONES Y SISTEMAS LINEALES DE ECUACIONES ECUACIONES DE PRIMER GRADO Una ecuación es una igualdad algebraica en la que interviene una letra llamada incógnita. El objetivo es descubrir el valor
MATEMÁTICAS 3º ESO IES LOS CARDONES PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: FECHA DE ENTREGA 03 de Septiembre de 2013.
MATEMÁTICAS º ESO IES LOS CARDONES 01-01 PLAN DE RECUPERACIÓN CONTENIDOS MÍNIMOS: - ESTRATEGIAS, HABILIDADES, DESTREZAS Y ACTITUDES GENERALES. - NÚMEROS naturales, enteros, racionales y reales. Operaciones.
MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE.
MATEMÁTICAS º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA
ÁLGEBRA VIII.- PROBLEMAS CON SISTEMAS DE ECUACIONES
Colegio Sagrado Corazón ÁLGEBRA VIII.- PROBLEMAS CON SISTEMAS DE ECUACIONES Matemáticas 3º E.S.O. CONCEPTOS: En la resolución de problemas se deben seguir los siguientes pasos: Leer detenidamente el enunciado,
PÁGINA Resuelve las siguientes ecuaciones: a) 10x 2 3x 1 = 0 b) x 2 20x = 0 c) 3x 2 + 5x + 11 = 0 d) 2x 2 8x + 8 = 0
Soluciones a las actividades de cada epígrafe PÁGINA Pág. 1 1 Resuelve las siguientes ecuaciones: a) 10x x 1 0 b) x 0x + 100 0 c) x + 5x + 11 0 d) x 8x + 8 0 a) x ± 9 + 0 0 ± 9 0 ± 7 0 Las soluciones son:
2º. Rellena los huecos que faltan y determina la constante de proporcionalidad:
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO ª EVALUACIÓN CURSO: 3º ESO PROPORCIONALIDAD NUMÉRICA 1º. Busca los valores para que las siguientes proporciones sean ciertas:... 0 45 5 45 5............,...
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
Guía de Matemática Primero Medio
Guía de Matemática Primero Medio Aprendizaje Esperado: 1. Generalizan utilizando expresiones algebraicas no fraccionarias. 2. Reducen expresiones algebraicas. Contenido Mínimo Obligatorio: 1. Expresión
EJERCICIOS PENDIENTES 1º ESO (2º EXAMEN)
EJERCICIOS PENDIENTES 1º ESO (2º EXAMEN) 1. Escribe las siguientes frases de lenguaje usual en lenguaje numérico. a) La diferencia entre veinte y catorce. b) El cubo de doce menos el cuadrado de ocho.
Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x
7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =
EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO
NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número
Expresiones algebraicas
Expresiones algebraicas Contenidos 1. Lenguaje algebraico Expresiones algebraicas Traducción de enunciados Valor numérico 2. Monomios Características Suma y resta Producto 3. Ecuaciones Solución de una
RESOLUCIÓN ECUACIONES LINEALES
Nombre: RESOLUCIÓN ECUACIONES LINEALES 1.- Resuelve las siguientes ecuaciones por tanteo: a) 6 x = 1 b) 8 + x = 3 c) 2x = 10 d) x + 2 = 6 e) 6 x = 6 f) x 1 = 3 2.- Calcula el valor de x por tanteo: a)
C. Ecuaciones e inecuaciones
C. Ecuaciones e inecuaciones C. Conceptos básicos La resolución de ecuaciones es el ejemplo más práctico de cómo el álgebra nos ayuda a resolver problemas. Mediante las ecuaciones será posible encontrar
EJERCICIOS Y PROBLEMAS PARA EL ALUMNADO PENDIENTE DE MATEMÁTICAS DE 3º ESO. DPTO DE MATEMÁTICAS. IES CRISTÓBAL COLÓN
1. Resuelve las siguientes ecuaciones: a) ( + ) = 16,64 +1 4 b) 6 3 1 = + 4. Resuelve gráficamente y por otro de los métodos el siguiente sistema: 5y = 1 3 + y = 7 3. Observa como se forman casitas adosadas
1. Lenguaje algebraico
1. Lenguaje algebraico El lenguaje algebraico permite epresar mediante símbolos matemáticos enunciados de situaciones de la vida diaria. En el álgebra se presentan problemas planteados en palabras que
3º ESO. ACTIVIDADES DE RECUPERACIÓN
º ESO. ACTIVIDADES DE RECUPERACIÓN. Opera: [ 7 ( )] (7 ) ( ) :( ) ( ) f) 7 9 c) d) e) 9 : 9 : g) h). Calcula utilizando las propiedades de las potencias. Deja el resultado en forma de potencia: 8 9 9 c)
Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)
Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar
P RACTICA. 1 Opera y simplifica las siguientes expresiones: a) 3x(2x 1) (x 3)(x + 3) + (x 2) 2 b)(2x 1) 2 +(x 1)(3 x) 3(x +5) 2
Pág. P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones: 3( ) ( 3)( + 3) + ( ) ( ) +( )(3 ) 3( +5) 4 ( 3) (3 )(3 + ) (4 3 + 35) 3 3 3 Efectúa las siguientes operaciones y
RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 2º ESO
RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO BLOQUE I. NÚMEROS. * Divisibilidad y números enteros Ejercicio nº 1.- Calcula todos los divisores de 5. Ejercicio nº.- Calcula: a mín.c.m. 0, 60, 90 b máx.c.d.
