La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín"

Transcripción

1 La euaión lineal de primer grado on tres inógnitas. El plano en el espaio afín En un artíulo anterior habíamos hablado sobre la euaión lineal de primer grado on dos inógnitas y sobre la reta en el plano afín. Esas ideas se pueden extender al espaio en tres dimensiones. Así que vamos allá. Ya sabemos que una euaión lineal es una euaión polinómia de grado uno on una o varias inógnitas. Si la euaión tiene tres inógnitas la euaión adopta la forma ax + by + z + d = 0 donde a, b, y d son número reales, y las inógnitas son x, y, z. Llamando, por ejemplo, x = λ, y = µ, podemos despejar la inógnita z: ax + by + z + d = 0 z = aλ bµ d z = a λ b µ d El heho de llamar λ a la inógnita x y µ a la inógnita y, viene a deir que las inógnitas x e y pueden tomar ualquier valor real, a los que llamaremos parámetros. Por tanto, la inógnita z depende del valor que le demos a los parámetros λ y µ. Podemos esribir las soluiones en forma de terna ordenada, de la siguiente manera: x, y, z) = λ, µ, a λ b µ d ) Por ejemplo, sea la euaión lineal de primer grado on tres inógnitas x 2y + z 5 = 0. En este aso a = 1, b = 2, = y d = 5. Por tanto, las soluiones son de la forma x, y, z) = λ, µ, 1 λ 2 µ 5 ) = λ, µ, 1 λ + 2 µ + 5 ) Ahora, si damos valores a λ y a µ podemos ir obteniendo los valores de z. Por ejemplo, si λ = 5 y µ = 0, entones z = 1 λ + 2 µ + 5 = = = 0 on lo que una soluión es x, y, z) = 5, 0, 0). Proediendo de manera similar podemos obtener las ternas de soluiones siguientes: λ = 0, µ = 0 x, y, z) = 0, 0, 5 ) 1

2 λ = 0, µ = 5 2 x, y, z) = 0, 5 2, 0 ) λ = 2, µ = 2 x, y, z) = 2, 2, 7 ) λ =, µ = 1 x, y, z) =, 1, 2) Podemos representar inluso los valores anteriores usando unos ejes de oordenadas, es deir, fijando un sistema de referenia afín tridimensional el espaio afín). Este sistema es el habitual, es deir, R = {O, {i, j, k}}, donde i = 1, 0, 0), j = 0, 1, 0), k = 0, 0, 1) ya se habló sobre este sistema de referenia en un artíulo anterior, dediado a los sistemas de dos euaiones lineales de primer grado on dos inógnitas). Pues bien, todas las ternas que son soluiones de la euaión x 2y + z 5 = 0 están situadas en un mismo plano π, on lo que llamaremos π x 2y + z 5 = 0 Lo podemos apreiar en la figura siguiente, en la que inluso se observa el punto del plano, 1, 2), que también representa al vetor de las mismas oordenadas. Las soluiones de una euaión lineal de primer grado on tres inógnitas, ax + by + z + d = 0, también las podemos esribir así: x, y, z) = λ, µ, a λ b µ d ) = λ, 0, a ) λ + 0, µ, b ) µ + 0, 0, d ) 2

3 x, y, z) = λ 1, 0, a ) + µ 0, 1, b ) + 0, 0, d ) Siguiendo on el ejemplo anterior podemos esribir las soluiones de la euaión x 2y + z 5 = 0 del siguiente modo: x, y, z) = λ 1, 0, 1 ) + µ 0, 1, 2 ) + 0, 0, 5 ) Geométriamente, la expresión anterior india que el plano π x 2y + z 5 = 0 es el plano paralelo al plano que ontiene a los vetores 1, 0, 1 ), 0, 1, 2 ) y que pasa por el punto 0, 0, 5 ). Diho de otro modo: todos los puntos de este plano son los extremos de los vetores que se obtienen al sumar ualquier vetor proporional al vetor 1, 0, 1 ) on ualquier vetor proporional al vetor 0, 1, 2 ), y on el vetor 0, 0, 5 ). De heho, si tomamos λ = 1 y µ = 1, tenemos que un punto del plano es x, y, z) = 1 1, 0, 1 ) + 1 0, 1, 2 ) + 0, 0, 5 ) = 1, 1, 2) No es fáil imaginar esta situaión en el espaio, pero on ayuda de alguna apliaión que represente figuras en tres dimensiones podemos haernos una idea. En este aso, omo en la imagen anterior, hemos utilizado Geogebra. En la siguiente figura se observa omo nuestro plano π x 2y + z 5 = 0, es paralelo al plano que ontiene a 1, 0, 1 ) y a 0, 1, 2 ) y además pasa por el punto 0, 0, 5 ). De heho también se apreia on laridad que el punto 1, 1, 2), generado por las soluiones orrespondientes a λ = 1 y µ = 1, pertenee al plano π.

4 Analizando lo anterior llegamos a una onlusión: un plano viene ompletamente determinado por dos vetores on distinta direión linealmente independientes) y un punto. O lo que es lo mismo, existe un únio plano que pasa por un punto dado y en dos direiones determinadas. A los vetores que determinan el plano se le llaman vetores de direión o vetores diretores del plano. Generaliemos esta situaión desde el punto de vista vetorial. Para ello llamaremos O al origen de oordenadas A a un punto ualquiera del espaio, OA al vetor de posiión on origen en O y extremo en A, y u y v a dos vetores on distinta direión. La euaión del plano que pasa por el punto A on la direión de los vetores u y v viene dada por OX = OA + λ u + µ v, λ, µ R donde OX es el vetor de posiión on origen en O generado al dar valores a los parámetros λ y µ. Hemos de insistir en que las oordenadas de los vetores están esritas en base al sistema de referenia R = {O, {i, j, k}} del que hemos hablado anteriormente. Es deir, hemos instalado en el espaio unos ejes de oordenadas: el eje X para la anhura, el eje Y para la profundidad, y el eje Z para la altura. Así, uando hablamos de tomar el vetor e = 1, 1, 2), y lo visualizamos en el espaio omo un segmento orientado desde el origen de oordenadas O = 0, 0, 0) hasta el extremo en el punto de oordenadas 1, 1, 2), lo que estamos haiendo realmente es la siguiente operaión: 1, 1, 2) = 1 1, 0, 0) + 1 0, 1, 0) + 2 0, 0, 1) = 1 i + 1 j + 2 k 4

5 O lo que es lo mismo, el vetor e = 1, 1, 2) es aquel que tiene una unidad de anhura, otra de profundad y dos unidades de altura. Los vetores i = 1, 0, 0), j = 0, 1, 0), k = 0, 0, 1) situados respetivamente sobre el eje X, sobre el eje Y y sobre el eje Z, tienen módulo 1 y son perpendiulares. Se die que los tres vetores son ortonormales o que forman una base ortonormal del espaio. Además ualquier vetor a, b, ) lo podemos esribir así: a, b, ) = a 1, 0, 0) + b 0, 1, 0) + 0, 0, 1) = a i + b j + k La igualdad anterior expresa que todo vetor del espaio, o lo que es lo mismo, todo el espaio, se puede generar a partir de los vetores i = 1, 0, 0), j = 0, 1, 0), k = 0, 0, 1). Se die que todo vetor del espaio es una ombinaión lineal de i = 1, 0, 0), j = 0, 1, 0), k = 0, 0, 1). Estos vetores, junto on el origen de oordenadas O forman el sistema de referenia ortonormal R = {O, {i, j, k}}. La geometría en el espaio afín empieza de este modo. Se onsidera un sistema de referenia afín ortonormal R = {O, {i, j, k}}. Se sabe que todo vetor que se apoye en O se puede poner omo ombinaión lineal de i, de j y de k: X = OX = x 1 i + x 2 j + x k = x 1, x 2, x ) Por tanto un vetor ualquiera del espaio lo podemos. a trapar. en nuestro sistema de referenia. Todo vetor e del espaio tiene un origen A a 1, a 2, a ) y un extremo B b 1, b 2, b ), y por tanto e = AB. Además: OB = OA + AB AB = OB OA AB = b 1, b 2, b ) a 1, a 2, a ) AB = b 1 a 1, b 2 a 2, b a ) Por ejemplo, el vetor e que une el punto P, 1, 2) on el punto Q 2,, 1) es e = PQ = 2, 1), 1 2) = 1, 2, ) 5

6 Nuestro vetor e aaba de ser esrito en base a nuestro sistema de referenia. Hay infinitos vetores en el espaio on el mismo módulo, direión y sentido, pero sólo uno que se apoya en el origen O de nuestro sistema de referenia. Al onjunto de todos los vetores on el mismo módulo, direión y sentido se le llama vetor libre del espaio. Con las onsideraiones anteriores la euaión vetorial del plano que pasa por el punto A on la direión de los vetores u y v, OX = OA + λ u + µ v, λ, µ R, adquiere todo su sentido. Si la euaión vetorial la expresamos en oordenadas tenemos: x, y, z) = a 1, a 2, a ) + λ u 1, u 2, u ) + µ v 1, v 2, v ) x, y, z) = a 1 + λu 1 + µv 1, a 2 + λu 2 + µv 2, a + λu + µv ) Igualando oordenadas: x = a 1 + λu 1 + µv 1 y = a 2 + λu 2 + µv 2 z = a + λu + µv Las euaiones anteriores reiben el nombre de euaiones paramétrias del plano. Estas euaiones las podemos ver omo un sistema de tres euaiones on dos inógnitas: λ y µ. λu 1 + µv 1 = x a 1 λu 2 + µv 2 = y a 2 λu + µv = z a Si de este sistema eliminamos los parámetros λ y µ obtenemos la euaión general o implíita del plano, que será una euaión lineal de primer grado on tres inógnitas: Ax + By + Cz + D = 0 Veamos on un ejemplo ómo eliminar los parámetros. Supongamos que queremos hallar la euaión general del plano que pasa por el punto A 2,, 5) y es paralelo a los vetores u = 1, 2, ), v = 1,, 5). Sus euaiones paramétrias serán: x = 2 λ + µ y = 2λ + µ z = 5 λ + 5µ Y de aquí: λ + µ = x 2 2λ + µ = y λ + 5µ = z 5 6

7 Consideremos que las inógnitas son λ y µ y apliquemos el método de Gauss para resolver el sistema: 1 1 x 2 2 y 5 z x y 2x z x x y 2x x 2y + z 1 De lo anterior se dedue, para que el sistema tenga soluiones preisamente las soluiones son todos los puntos del plano), que x 2y + z 1 = 0, justamente la euaión general o implíita del plano. Sin haer el último paso en el método de Gauss también se obtiene lo mismo. Las dos últimas euaiones asoiadas son { y de aquí se obtiene, por igualaión, que µ = y 2x + 1 2µ = z x + 1 y 2x + 1 = z x y 4x + 2 = z x + 1 x 2y + z 1 = 0 7

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG junio 016 Propuesta B Matemátias II º Bahillerato Pruebas de Aeso a Ensen anzas Universitarias Oiiales de Grado (PAEG) Matemátias II (Universidad de Castilla-La Manha) junio 016 Propuesta B EJERCICIO

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

2. PUNTOS, RECTAS Y PLANOS

2. PUNTOS, RECTAS Y PLANOS 2. PUNTOS, RECTAS Y PLANOS 2.1. RELACIONES ENTRE LOS PUNTOS DEL ESPACIO Y LOS VECTORES. AXIOMAS DEL ESPACIO AFÍN Entendemos por espacio afín tridimensional como el conjunto de puntos del espacio intuitivo

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Distancia entre dos rectas que se cruzan Perpendicular común

Distancia entre dos rectas que se cruzan Perpendicular común Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO D PROFSORS RTIGS SPILIDD MTMÁTI GOMTRÍ UNIDD FIH 3: Teorema de Thales y más. 3.1 Teorema de Thales. 3. Teorema de las bisetries. 3.3 irunferenia de polonio. 3.4 riterios de semejanza de triángulos.

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta... Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Por qué k µ es un cuadrivector?

Por qué k µ es un cuadrivector? Por qué k µ es un uadrivetor? odemos deir algo aera de por qué la freuenia y el vetor número P de onda forman un uadrivetor. La respuesta orta es: onda plana en un sistema, onda plana en todos. La idea

Más detalles

Tema 6: Ángulos y distancias en el espacio

Tema 6: Ángulos y distancias en el espacio Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

Sistemas de ecuaciones lineales. El método de Gauss

Sistemas de ecuaciones lineales. El método de Gauss Sistemas de ecuaciones lineales. El método de Gauss En los artículos anteriores se ha hablado de ecuaciones lineales de primer grado con dos incógnitas y de ecuaciones lineales de primer grado con tres

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Unidad 4: VECTORES EN EL ESPACIO

Unidad 4: VECTORES EN EL ESPACIO Unidad 4: VECTORES EN EL ESPACIO 4.1.- OPERACIONES CON VECTORES Las características de los vectores en el espacio, así como sus operaciones, son idénticas a las de los vectores del plano, que ya conoces

Más detalles

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES.

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. Cuando tenemos el problema de alular la primitiva de una funion raional P (x) an x n + a n x n + + a x + a 0 b m x m + b m x

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

y = y ' Esta es la relatividad de Galileo.

y = y ' Esta es la relatividad de Galileo. Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se muee en

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS

VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS VECTORES EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO PROBLEMAS MÉTRICOS EJERCICIOS Matemáticas 2º de Bachillerato Ciencias y Tecnología Profesor: Jorge Escribano Colegio Inmaculada Niña Granada www.coleinmaculadanina.org

Más detalles

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes

EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

GEOMETRÍA MÉTRICA. Plano afín:

GEOMETRÍA MÉTRICA. Plano afín: Plano afín: Es el plano vectorial al que se le ha dotado de un sistema de referencia compuesto por un origen y una base de dicho espacio vectorial. En el plano afín podemos asignar a cada punto del plano

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales

Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales Tema 1.b: El espacio euclídeo -dimensional Trabajaremos con el conjunto R ( N) delas -uplas ordenadas de números reales R = {( 1 2 ) R para todo =1 2 } A los elementos de este conjunto los llamaremos puntos

Más detalles

TEMA 2: EL PLANO AFÍN

TEMA 2: EL PLANO AFÍN TEMA : EL PLANO AFÍN En la primera mitad del siglo XVIII nació una rama completamente nuea de la Matemática que surge por la necesidad de relacionar las curas del plano con las ecuaciones algebraicas de

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa Matriz Inversa Transpuesta de una matriz Si A es una matriz m x n entones la transpuesta de A denotada por A T se dene omo la matriz n x m que resulta de interambiar los renglones y las olumnas de A Si

Más detalles

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto)

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto) Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Vectores 75 Espacios vectoriales Tema 4 Vectores en el espacio (Productos escalar, vectorial y mixto) Definición de espacio vectorial Un

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ), Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los

Más detalles

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l.

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l. UNIDAD 3 LA RECTA SU ECUACIÓN CARTESIANA OBJETIVOS ESPECÍFICOS. Al término de la unidad, el alumno: Conocerá las distintas formas de representación de la recta e identificará cuál de ellas conviene usar.

Más detalles

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1 el blog de mate de aida 4º ESO: apuntes de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El punto de

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:

Más detalles

PUNTOS, RECTAS Y PLANOS EN EL ESPACIO

PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 6 PUNTOS, RECTAS Y PLANOS EN EL ESPACIO Página 153 REFLEXIONA Y RESUELVE Puntos alineados en el plano Comprueba que los puntos A (5, 2), B (8, 3) y C (13, 5) no están alineados. Halla el valor de n para

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

Construcción de conjuntos B h módulo m y particiones

Construcción de conjuntos B h módulo m y particiones Vol. XIV No 2 Diiembre (2006) Matemátias: 65 70 Matemátias: Enseñanza Universitaria Esuela Regional de Matemátias Universidad del Valle - Colombia Construión de onjuntos B h módulo m y partiiones Gilberto

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada:

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada: GEOMETRÍA EN EL PLANO. La ecuación de la recta que pasa por el punto A(4, 6) y es perpendicular a la recta 4x y + = 0 es: A) x + y + 8 = 0 B) 6x 4y 48 = 0 C) x + y = 0 (Convocatoria junio 00. Examen tipo

Más detalles

open green road Guía Matemática RECTAS Y PLANOS EN EL ESPACIO tutora: Jacky Moreno .cl

open green road Guía Matemática RECTAS Y PLANOS EN EL ESPACIO tutora: Jacky Moreno .cl Guía Matemática RECTAS Y PLANOS EN EL ESPACIO tutora: Jacky Moreno.cl 1. Rectas en el espacio Anteriormente estudiamos las rectas en el plano cartesiano por medio de su ecuación general (L 1 : ax + by

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8 Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

GEOMETRIA EN EL ESPACIO

GEOMETRIA EN EL ESPACIO GEOMETRIA EN EL ESPACIO ECUACIONES DE LA RECTA Y EL PLANO EN EL ESPACIO Una recta queda determinada por un punto conocido P, y un vector director. Luego, si X es un punto genérico de la recta, se obtiene

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO.

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. Ciertas líneas del hidrógeno y de los alalinos mostraban perfiles on varias omponentes muy próximas entre sí, indiando un desdoblamiento de los niveles de energía

Más detalles

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES el blog de mate de aida MI: repaso de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas el eje vertical se llama eje de ordenadas. El punto de corte de

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

TEMA 5. RECTAS Y PLANOS. INCIDENCIA.

TEMA 5. RECTAS Y PLANOS. INCIDENCIA. TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

Geometría. Producto por un escalar: a(x,y)=(ax,ay). Verifican las propiedades: 1. Distributivas (respecto del escalar y respecto de los vectores).

Geometría. Producto por un escalar: a(x,y)=(ax,ay). Verifican las propiedades: 1. Distributivas (respecto del escalar y respecto de los vectores). Geometría 1.- Espacio Vectorial. (R 3 ) Sean los conjuntos de las n-uplasr,r 3 yr n. Se definen las operaciones Suma: (a,b)+(c,d)=(a+c,b+d). Verifican las propiedades asociativa, conmutativa, elemento

Más detalles

Esta es la relatividad de Galileo.

Esta es la relatividad de Galileo. FJC 009 Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

! OP por partir del origen tendrá como componentes

! OP por partir del origen tendrá como componentes 1 Ecuación del plano Conociendo N (nx ; n y ; n z )? y la distancia n a la que se encuentra el plano del origen de coordenadas ( medidaen la dirección del vector N ), deberemos encontrar la expresión del

Más detalles

GEOMETRIA ANALITICA EN EL ESPACIO

GEOMETRIA ANALITICA EN EL ESPACIO CAPITULO VII CALCULO II GEOMETRIA ANALITICA EN EL ESPACIO Es el estudio de las formas geométricas en un sistema ordenado. Un sistema de ejes coordenados en el espacio, dividen al espacio en ocho octangulos.

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles