ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO."

Transcripción

1 ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. Ciertas líneas del hidrógeno y de los alalinos mostraban perfiles on varias omponentes muy próximas entre sí, indiando un desdoblamiento de los niveles de energía entre los uales se produe la transiión. Esto se llama estrutura fina de los niveles. Vimos que al resolver la euaión de Shrödinger para el átomo de H, los autovalores orresponden a los niveles de energía según el número uántio n. E n = Z µe 4 h n para n = 1,,... De auerdo a esto, ada nivel es simple, depende solamente de n y por lo tanto las transiiones originan líneas simples. Pero debemos reordar que la teoría de Shrödinger tiene dos aproximaiones: por un lado onsidera energía no-relativista para el eletrón y por otro, onsidera que el eletrón sólo se mueve alrededor del núleo, sin tener en uenta el spin. Al introduir estas dos orreiones, veremos que se produe un orrimiento y/o desdoblamiento de los niveles de energía y que además del número uántio n, la energía dependerá de otros números uántios. La estrutura fina del hidrógeno onsiste entones, en la suma de dos orreiones que son del mismo orden de magnitud: Correión relativista. Correión debida a la interaión spin-órbita, originada por el aoplamiento de los momentos angulares L y S. J = L + S Correión relativista: La teoría de Shrödinger toma la expresión no-relativista: E = p m + V (r) 1

2 Expresión orreta siempre que la veloidad del eletrón sea pequeña respeto a. Pero vimos (modelo de Bohr), que la veloidad máxima del eletrón, para n = 1, vale v max = m/s, por lo tanto, v max % Si bien la relaión es pequeña, existen efetos relativistas que pueden ser observables. Si m 0 es la masa en reposo del eletrón: T = p + m 0 4 m 0 E r = p + m 0 4 m 0 + V (r) [ ( E r = m p ) 1/ 1] + V (r) m 0 4 Considerando que m 0 v m 0, tomamos ɛ = p m 0 serie: (1 + ɛ) 1/ ɛ 1 8 ɛ +... [ ] E r = m p m p4 0 8m V (r) 0 4 [ ] p E r = + V (r) p4 m 0 8m 0 1 y desarrollamos en Los dos primeros términos orresponden a la expresión lásia de la energía y el terer término es la orreión relativista de primer orden. E r = p4 8m = m 0v ( ) 4 8( ) E r = erg = 10 4 ev Se trata omo una pequeña perturbaión y podemos estimar su valor medio usando las autofuniones normalizadas: E r = 1 8m ψnlmp 4 ψ nlm dv 0 V ol E r = RhZ4 α ( ) n 4n 1 l+1/ α = e h 1 17 Se denomina onstante de estrutura fina. Como l n, siempre tendremos que E r < 0, es deir, provoa un orrimiento del nivel haia valores más negativos. La orreión relativista depende de n y l y destruye la degeneraión respeto a este último número uántio. Para un n dado, uanto menor es el l, mayor es la orreión. Si expresamos (1) en número de ondas: (1) T r = RZ4 α ( ) n 4n 1 l+1/ m 1 ()

3 Interaión spin-órbita: Consideremos al eletrón moviéndose en una órbita irular y masa del núleo infinita, por lo tanto despreiamos efetos debidos al movimiento del núleo. El eletrón se mueve on una veloidad v en un ampo elétrio E produido por el núleo. Tomaremos dos sistemas de referenia ineriales: S en el ual el núleo está en reposo y S en el que instantáneamente el eletrón está en reposo. Para el sistema S el núleo se mueve on una veloidad v que es perpendiular a E en ada instante en que el eletrón se onsidera en reposo. Para el eletrón en S el núleo argado genera una orriente j j = Ze v Según la ley de Ampére, el ampo magnétio produido por esa orriente en el lugar donde se halla el eletrón es: B = j r r = Ze ( v r) r E = Ze r r B = ( v E) En el sistema S el eletrón ve un ampo magnétio y habrá una energía de interaión entre el ampo y el momento magnétio de spin µ s. Como en este sistema de referenia estamos onsiderando fijo al eletrón, L = 0 y µ l = 0. La energía de interaión en S será: E = µ s B µ s = g s µ B h S E = g s µ B h S B

4 Vimos en apítulos anteriores que el efeto del ampo B es generar un movimiento de preesión de µ s alrededor del ampo on una freuenia llamada freuenia de Larmor: ω L = g s µ B h B E = ω L S Ahora bien, estas expresiones orresponden al sistema S y lo que realmente interesa es onoer sus valores en el maro de referenia donde el núleo está en reposo y el que se mueve es el eletrón. Se puede demostrar que al transformar al sistema S, ambiará la preesión de Larmor: ω L ω, donde ω = ω L + ω T ω T se llama preesión de Thomas y representa la preesión del sistema S respeto al maro normal. Su valor resulta ser: ω T = 1 ω L = ω = 1 ω L De donde resulta que en el maro normal S, la energía de interaión será: Pero: Reemplazando: 1 ω L S = g s B = Ze ( v r) = Ze r e m B S m( r v) = Ze mr mr L Ze m r L S Ze 1 m LS os LS ˆ r Por onservaión del momento angular, J y el ángulo LS ˆ deben permaneer invariantes durante la preesión. Podemos evaluar el produto LS os LS ˆ mediante el diagrama vetorial: J = L + S LS os(π ˆ LS) = L + S + LS os ˆ LS LS os ˆ LS = 1 (J L S ) 4

5 Reemplazando: Ze 1 4m r (J L S ) Como r depende de Z, n, l el término 1 ambia para ualquier estado, por r lo tanto se obtiene un valor medio: r 1 = < 1 r >= r=0 π θ=0 π ϕ=0 ψ nljm j 1 r ψ nljm j r sin θdrdθdϕ < 1 r >= Z r1 n l(l + 1 h es el radio de la primera órbita de Bohr. me Introduimos las onstantes: α = e h 1 onstante de estrutura fina 17 R = me4 4π h onstante de Rydberg Rα = 5.819m 1 Z 4 Rα h n l(l + 1 [j(j + 1) l(l + 1) s(s + 1)] () Expresada en número de ondas: T LS (m 1 Z 4 Rα ) = n l(l + 1 [j(j + 1) l(l + 1) s(s + 1)] O bien: donde: a(m 1 Z 4 Rα ) = n l(l + 1 T LS (m 1 ) = a [j(j + 1) l(l + 1) s(s + 1)] (4) De auerdo a () y (4), la interaión spin-órbita india que los números uántios neesarios para espeifiar el estado del eletrón son n, l, j. La energía depende de ellos, pero subsiste la degeneraión respeto al número uántio m j. Veremos más adelante que se destruye esta degeneraión uando onsideramos un átomo en un ampo magnétio externo (Efeto Zeeman). Cuando l = 0 (estados s), el nivel es simple y no hay orrimiento ( 0). Siempre s = 1/ y para ada valor de l, el número uántio j toma dos valores: j = (l+1/) y j = (l 1/), ya que S puede tener sólo dos orientaiones posibles. Es deir la multipliidad de los niveles será. La nomenlatura utilizada para designar ada nivel es: l j Si l=0 Términos S l=1 Términos P l= Términos D

6 Como la orreión relativista y la interaión spin-órbita son del mismo orden, podemos sumar () y (4), para obtener la expresión final de la estrutura fina: T EF (m 1 ) = T r + T LS T EF (m 1 ) = RZ4 α [ ] n 4n 1 [j(j + 1) l(l + 1) s(s + 1)] + l + 1/ l(l + 1/ T EF (m 1 ) = RZ4 α [ ] n 4n 1 (5) j + 1/ La expresión entre orhetes es siempre negativa, por lo tanto los niveles se orren haia abajo (valores más negativos). Vemos además que la estrutura fina, desarrollada hasta el primer orden de aproximaión, depende solamente de n y j: T nj (m 1 ) = RZ n + RZ4 α [ ] n 4n 1 (6) j + 1/ Veamos la estrutura fina de los primeros niveles del hidrógeno: n l s j Config-eletr. Niveles 1 0 1/ 1/ 1s S 1/ 0 1/ 1/ s S 1/ 1 1/ 1/,/ p P 1/, P / 0 1/ 1/ s S 1/ 1 1/ 1/,/ p P 1/, P / 1/ /,5/ d D /, D 5/ De auerdo a (5) el desplazamiento de los niveles de estrutura fina serán: n Niveles T EF (m 1 ) 1 S 1/ S 1/, P 1/ P / S 1/, P 1/ P /, D / D 5/ Las transiiones entre estos niveles están regidas por las reglas de seleión, las que indian qué ambios en los números uántios dan las transiiones más probables : l = ±1 j = 0, ±1 Por ejemplo la transiión n = n =, orrespondiente a la línea Hα de la Serie de Balmer, son en realidad 5 transiiones de estrutura fina: D 5/ P / D / P / 6

7 S 1/ P / D / P 1/ ó P / S 1/ P 1/ S 1/ ó S 1/ P 1/ El perfil de Hα tendrá ino omponentes muy eranas y de distintas intensidades. Las más intensas orresponden a las dos transiiones que involuran los mayores valores de j ( D 5/ P / y D / P / ) y las tres restantes son más dédiles. 7

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

ECUACIONES BASICAS DE LA MAGNETOHIDRODINAMICA IDEAL. Sebastián Ramírez Ramírez pcm-ca.github.io/people/seramirezra/

ECUACIONES BASICAS DE LA MAGNETOHIDRODINAMICA IDEAL. Sebastián Ramírez Ramírez pcm-ca.github.io/people/seramirezra/ ECUACIONES BASICAS DE LA MAGNETOHIDRODINAMICA IDEAL Sebastián Ramírez Ramírez seramirezra@unal.edu.o pm-a.github.io/people/seramirezra/ La magnetohidrodinámia es la teoría que desribe la dinámia de un

Más detalles

, para radiaciones electromagnéticas, la frecuencia se calcula c

, para radiaciones electromagnéticas, la frecuencia se calcula c Modelo 0. Pregunta B.- Considere los uatro elementos on la siguiente onfiguraión eletrónia en los niveles de energía más externos: A: s p 4 ; B: s ; C: 3s 3p ; D: 3s 3p 5. d) n el espetro del átomo hidrógeno

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

11 La teoría de la relatividad

11 La teoría de la relatividad La teoría de la relatividad de Einstein Atividades del interior de la unidad. Desde una nave que se mueve a 50 000 km/s se emite un rayo de luz en la direión y sentido del movimiento. Calula la veloidad

Más detalles

y = y ' Esta es la relatividad de Galileo.

y = y ' Esta es la relatividad de Galileo. Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se muee en

Más detalles

Proceso selectivo profesores secundaria Madrid 2012, Física y Química 2 de julio de 2012 Revisado 21 junio 2018

Proceso selectivo profesores secundaria Madrid 2012, Física y Química 2 de julio de 2012 Revisado 21 junio 2018 Proeso seletivo profesores seundaria Madrid 212, Físia y Químia 2 de julio de 212 3. Consideremos el esquema representado en la figura. En él una fuente láser F emite un haz (que supondremos, por senillez,

Más detalles

Esta es la relatividad de Galileo.

Esta es la relatividad de Galileo. FJC 009 Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo on origen en y otro móil on respeto al primero que tiene su origen en. Para simplifiar, amos a suponer que el móil sólo se

Más detalles

Soluciones Hoja 1: Relatividad (I)

Soluciones Hoja 1: Relatividad (I) Soluiones Hoja 1: Relatividad (I) 1) Una nave abandona la Tierra on una veloidad de 3/5. Cuando el reloj de la nave mara 1 h transurrida, la nave envía una señal de vuelta a la Tierra. (a) De auerdo on

Más detalles

y ' a x a y a z a t z' a x a y a z a t t' = a x + a y + a z + a t

y ' a x a y a z a t z' a x a y a z a t t' = a x + a y + a z + a t Transformaión de Galileo Supongamos dos sistemas de referenia: uno fijo (XYZ) on origen en O y otro móil (X Y Z ) on respeto al primero que tiene su origen en O. Para simplifiar las osas, amos a suponer

Más detalles

Capítulo 3 El fotón. - Planck encontró que la energía de radiación em es discretizada cuantizada.

Capítulo 3 El fotón. - Planck encontró que la energía de radiación em es discretizada cuantizada. Capítulo 3 El fotón Teoría uántia de la luz - E. de Maxwell la luz onsiste en ondas em. - Plank enontró que la energía de radiaión em es disretizada uantizada. - Plank intentó infrutuosamente oniliar estas

Más detalles

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017 Examen Final Tema A Cálulo Vetorial Mayo 3 de 17 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono

Más detalles

CAMPO Y POTENCIAL ELECTROSTÁTICOS

CAMPO Y POTENCIAL ELECTROSTÁTICOS 1 Un eletrón de arga e y masa m se lanza orizontalmente en el punto O on una veloidad v a lo largo de la direión equidistante de las plaas de un ondensador plano entre las que existe el vaío. La longitud

Más detalles

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e.

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e. 0.1. Ciruito. Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la direión y magnitud de la orriente en el alambre horizontal entre a y e. b R 2R d ε 4R 3R 2ε a e Soluión: Dibujemos las orrientes Figura

Más detalles

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r,

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r, egundo Examen Parial Cálulo etorial Abril de 16 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono elular.

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

11.1. Ecuaciones de la dinámica de sólidos

11.1. Ecuaciones de la dinámica de sólidos Capítulo 11 Dinámia de sólidos Todos los modelos estudiados hasta ahora suponían que los sólidos deformables se enuentran, en todo instante, en equilibrio uasi-estátio. Esto quiere deir que, aunque éstos

Más detalles

SOLUCIONES FÍSICA JUNIO 10 OPCIÓN A

SOLUCIONES FÍSICA JUNIO 10 OPCIÓN A SOLUCIONES FÍSIC JUNIO 10 OCIÓN 1.- a) Veloidad de esape es la mínima que debe omuniarse a un uerpo, situado en la superfiie de un planeta de masa m p y radio r p, para que salga del ampo gravitatorio.

Más detalles

Por qué k µ es un cuadrivector?

Por qué k µ es un cuadrivector? Por qué k µ es un uadrivetor? odemos deir algo aera de por qué la freuenia y el vetor número P de onda forman un uadrivetor. La respuesta orta es: onda plana en un sistema, onda plana en todos. La idea

Más detalles

9.- FÍSICA CUÁNTICA. + Los antecedentes de la Física cuántica están relacionados con la naturaleza de la luz.

9.- FÍSICA CUÁNTICA. + Los antecedentes de la Física cuántica están relacionados con la naturaleza de la luz. 9.- FÍSICA CUÁNTICA 9.1 Naturaleza de la luz + Los anteedentes de la Físia uántia están relaionados on la naturaleza de la luz. + Dos modelos (s.xvii): Cualquier modelo sobre la luz debe expliar => propagaión

Más detalles

Ecuaciones de Máxwell y ondas electromagnéticas

Ecuaciones de Máxwell y ondas electromagnéticas Zero Order of Magnitude ZOoM)-PID 13-28 Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm

Más detalles

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias ey Juan Carlos POBEMAS DE TEMA : CICUITOS EÉCTICOS EN AC Problemas de reatanias Problema 4. Una bobina on = 5 mh se oneta a un generador de tensión alterna sinusoidal de V ef = 80 V. Calula la reatania

Más detalles

x = d F B C x = d x - d x 0 = 0.12 (x d) 2 3 x = 1

x = d F B C x = d x - d x 0 = 0.12 (x d) 2 3 x = 1 www.lasesalaarta.om Universidad de Castilla la anha Junio.00 JUNIO 00 Opión A Problema.- Dos argas elétrias puntuales fijas A y B, de signos opuestos y alineadas a lo largo del eje X, están separadas una

Más detalles

La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín

La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín La euaión lineal de primer grado on tres inógnitas. El plano en el espaio afín En un artíulo anterior habíamos hablado sobre la euaión lineal de primer grado on dos inógnitas y sobre la reta en el plano

Más detalles

Introducción a la Química Computacional

Introducción a la Química Computacional Introduión a la Químia Computaional MÉTODO D LA VARIACION PARA ROLVR APROXIMADAMNT LA CUACIÓN D CRÖDINGR Reservados todos los derehos de reproduión. Luis A. Montero Cabrera y Rahel Crespo Otero, Universidad

Más detalles

REVISTA CUBANA DE FÍSICA Vol. 22, No. 1, 2005

REVISTA CUBANA DE FÍSICA Vol. 22, No. 1, 2005 REVISTA CUANA DE FÍSICA Vol., No. 1, 5 SORE LAS PROPIEDADES ÓPTICAS DEL VACÍO CUÁNTICO MAGNETIZADO S. Villalba Chávez y H. Pérez Rojas Instituto de Cibernétia, Matemátia y Físia, Ciudad de La Habana, Cuba

Más detalles

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR 91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos

Más detalles

Ejercicios resueltos TEMA 11. Física cuántica

Ejercicios resueltos TEMA 11. Física cuántica Departaento Cienias. Físia jeriios resueltos TMA. Físia uántia Pregunta 39 Una fuente luinosa eite luz onoroátia de longitud de onda: 5 n. La potenia eitida por la fuente es W. Calule: a) La energía del

Más detalles

Capítulo 2 Orígenes de la teoría cuántica

Capítulo 2 Orígenes de la teoría cuántica Capítulo Orígenes de la teoría uántia.1 Radiaión de uerpo negro La teoría uántia se originó entre 1900 05: 1900: Plank explia la radiaión térmia en términos de la disretizaión de la energía. 1905: Einstein

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

TÍTULO: ANÁLISIS ESPECTRAL EN RAYOS X DEL SISTEMA BINARIO DE ALTA MASA 4U /QV Nor

TÍTULO: ANÁLISIS ESPECTRAL EN RAYOS X DEL SISTEMA BINARIO DE ALTA MASA 4U /QV Nor "Análisis espetral en rayos X del sistema binario de alta masa 4U 1538 52/QV Nor", por José Joaquín Ro José Joaquín Rodes Roa Tesis leída en junio de 2007 TÍTULO: ANÁLISIS ESPECTRAL EN RAYOS X DEL SISTEMA

Más detalles

Unidad 1 Estructura interna de la materia. Modelo atómico! 21

Unidad 1 Estructura interna de la materia. Modelo atómico! 21 Unidad Estrutura interna de la materia. Modelo atómio! "# Las lámparas de sodio usadas a menudo en el alumbrado públio produen una luz amarillenta debido a una emisión de 50 nm de longitud de onda. Los

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

Anisotropía Sísmica como una forma de definir mejor la imaging en el subsuelo

Anisotropía Sísmica como una forma de definir mejor la imaging en el subsuelo Anisotropía Sísmia omo una forma de definir mejor la imaging en el subsuelo Pedro Contreras PhD de Veloidad en un medio anisótropo de tipo VTI para onda PP y PS Proesamiento Sísmio Convenional Introduión

Más detalles

opone al avance de la barra, es decir, a la velocidad. El valor de la fuerza será:

opone al avance de la barra, es decir, a la velocidad. El valor de la fuerza será: TEMA 7. CAMPO MAGNÉTICO TEMA 8. INDUCCIÓN ELECTROMAGNÉTICA TEMA 9. LA LUZ. CUESTIÓN 1.- Una arilla ondutora de 0 m de longitud se desliza paralelamente a sí misma on una eloidad de 0,4 m/s, sobre un ondutor

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio. árquez Departamento de Química Física Universidad de Sevilla Curso 017/018 Índice 1. Ecuación de Schrodinger 1. Orbitales hiogenoides 5 3. Función de distribución radial 7

Más detalles

El efecto Sagnac y el gravitomagnetismo

El efecto Sagnac y el gravitomagnetismo 17 El efeto Sagna y el gravitomagnetismo 1.17 El efeto Sagna lásio Consideremos una guia de ondas irular (o un montaje de espejos que permita que un rayo de luz realie un reorrido errado) que está rotando

Más detalles

PARADOJA DE LOS GEMELOS

PARADOJA DE LOS GEMELOS PARADOJA DE LOS GEMELOS Homero y Ulises son gemelos idéntios. Ulises realiza un viaje a una veloidad muy elevada haia un planeta más allá del sistema solar y vuelve a la Tierra mientras Homero permanee

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA I. RELATIVIDAD a) Métodos para medir la eloidad de la luz. b) Experimento de Mihelson-Morley (88). ) Sistemas de referenia. d) Transformaiones de Galileo. e) Constania

Más detalles

Hoja de Problemas 5. Física Atómica.

Hoja de Problemas 5. Física Atómica. Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM. 3-3-26 Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas

Más detalles

+V(x,y,z).ψ(x,y,z,t) = i.h

+V(x,y,z).ψ(x,y,z,t) = i.h Ecuación n de Schrödinger -h ( Ψ Ψ Ψ ) m Ψ +V(x,y,z).ψ(x,y,z,t) = i.h x y z t h = h / π i = (-1) 1/ ψ(x,y,z,t)... función (compleja) de onda V(x,y,z)... función de energía potencial ψ (x,y,z,t)... puede

Más detalles

2. Teoría BCS. Física de los pares de Cooper

2. Teoría BCS. Física de los pares de Cooper . eoría CS. Físia de los pares de Cooper La primera teoría mirosópia de la superondutividad fue planteada en 957 por John ardeen, Leon Neil Cooper y Robert Shrieffer. La idea fundamental es tratar el problema

Más detalles

Efecto de la temperatura. k = En general, la velocidad de una reacción química aumenta con T. Este efecto sigue la relación empírica de Arrhenius:

Efecto de la temperatura. k = En general, la velocidad de una reacción química aumenta con T. Este efecto sigue la relación empírica de Arrhenius: Efeto de la temperatura En general, la veloidad de una reaión químia aumenta on T. Este efeto sigue la relaión empíria de Arrhenius: Ae E a a 1 ó en forma logaritmia ln ln A donde A fator preexponenial

Más detalles

Ecuaciones del gravitoelectromagnetismo

Ecuaciones del gravitoelectromagnetismo 4 Euaiones del ravitoeletromanetismo 4 Introduión La meánia relaional entiende las fuerzas de ineria omo oriinadas en la induión ravitatoria La teoría de Newton no ontempla fenómenos indutivos, pero una

Más detalles

VELOCIDAD INSTANTANEA

VELOCIDAD INSTANTANEA VELOCIDAD INSTANTANEA OBJETIVOS DE APRENDIZAJE Determinar experimentalmente la veloidad instantánea de un móvil en un punto fijo de su trayetoria a través de un gráfio de veloidad media versus tiempo en

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

TECNOLOGÍAS DE ALTA FRECUENCIA

TECNOLOGÍAS DE ALTA FRECUENCIA TENOLOGÍS E LT FREUENI EJERIIOS TEM : GUÍS E ON Y LÍNES E TRNSMISIÓN. En una guía de ondas de seión uadrada de lado a se pide: a) las reuenias de orte de los modos. b) omprobar que existen dos modos dominantes.

Más detalles

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO CAPITULO II MARCO TEORICO Reordemos que las Turbinas Pelton son Turbinas de Aión, y son apropiadas para grandes saltos y pequeños audales; por lo ual sus números espeífios son bajos. Referente a las partes

Más detalles

TEMA 15. RELATIVIDAD ESPECIAL II.

TEMA 15. RELATIVIDAD ESPECIAL II. Relatividad Espeial II. Físia General. TEMA 15. RELATIVIDAD ESPECIAL II. 1. Efeto Doppler relativista. El desplazamiento Doppler para las ondas materiales desribe el ambio de freuenia y de longitud de

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral xamen final de Cálulo Integral 6 de septiembre de 1 (Soluiones) Cuestiones C 1 Apliando el teorema 1.15 y definiión 1. de los apuntes se onluye inmediatamente que el valor de la integral oinide on la longitud

Más detalles

PRACTICA #5 METODO DE NODOS. 1.- Verificar en forma experimental la teoría del análisis de nodos

PRACTICA #5 METODO DE NODOS. 1.- Verificar en forma experimental la teoría del análisis de nodos OBJETIOS: PACTICA #5.- erifiar en forma experimental la teoría del análisis de nodos EXPOSICION: Un nodo es un punto omún de un iruito que une dos o más elementos del mismo. Si en un nodo se unen mas de

Más detalles

7. ONDAS ELECTROMAGNÉTICAS

7. ONDAS ELECTROMAGNÉTICAS 7. ONDAS LTROMAGNÉTAS 7.1 orriente de desplazamiento de Maxwell. 7. uaiones de Maxwell. 7.3 Ondas eletromagnétias. 7.4 nergía, momento y presión de las ondas eletromagnétias. 7.5 spetro eletromagnétio.

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (6)

TEORIA ELECTROMAGNETICA FIZ 0321 (6) TEORIA ELECTROMAGNETICA FIZ 0321 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Fuerza entre cargas en movimiento Fuerza entre cargas q 1 y q 2 que se

Más detalles

RELATIVIDAD. Conceptos previos:

RELATIVIDAD. Conceptos previos: Coneptos muy básios de Relatiidad Espeial RELATIVIDAD Coneptos preios: Sistema de referenia inerial: Se trata de un sistema que se muee on eloidad onstante. En él se umple el prinipio de la ineria. Sistema

Más detalles

d x e z d y Z d Ecuación de Schroedinger tridimensional en coordenadas cartesianas x, y, z. El operador Hamiltoniano (H), ahora es:

d x e z d y Z d Ecuación de Schroedinger tridimensional en coordenadas cartesianas x, y, z. El operador Hamiltoniano (H), ahora es: 1 Ecuación de Schroedinger tridimensional E e z d y d x d h r Z d d d m 0 4 8 en coordenadas cartesianas x, y, z. El operador Hamiltoniano (H), ahora es: z d y d x d h d d d m 8 El primer término de esta

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica SOLUCIÓN

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica SOLUCIÓN XXII OLIMPIADA NAIONAL DE FÍSIA Guadalajara, Jal. 0-4 de noviembre de 011 Prueba teórica SOLUIÓN 1. PROBLEMA olisión de piedras (8 puntos) Una piedra esférica se deja caer desde un edificio alto de altura

Más detalles

P3.- Ondas gravitacionales

P3.- Ondas gravitacionales P.- Ondas gravitaionales El de febrero de 6 la olaboraión aligo (advaned Laser Interferometer Gravitational-wave Observatory) anunió al mundo la primera deteión direta de ondas gravitaionales, predias

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Universidad Naional de Rosario Faultad de Cienias Exatas, Ingeniería y Agrimensura Esuela de Ingeniería Eletrónia Teoría de Sistemas y Señales Trabajo Prátio Nº 3 Análisis Freuenial de Señales Problemas

Más detalles

Espectroscopía atómica

Espectroscopía atómica C A P Í T U L O 6 Espectroscopía atómica 6.. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS PROBLEMAS 6. Demuestre la regla de selección angular del átomo hidrogenoide m = 0, ±. Para m m 2π 0 e im Φ e imφ dφ

Más detalles

Las pérdidas en el hierro de un transformador a 50 Hz y 1000 V son 2400 W. A 40 Hz y 800 V son 1600 W. Las pérdidas para 60 Hz y 1200 V serán:

Las pérdidas en el hierro de un transformador a 50 Hz y 1000 V son 2400 W. A 40 Hz y 800 V son 1600 W. Las pérdidas para 60 Hz y 1200 V serán: EXAMEN DE TEMA ELÉCTRCO 5 de febrero de 000 TRONCAL (4,5 CRÉDTO) - E... AN EBATÁN TET ª PREGUNTA REPUETA Un núleo de hierro de superfiie transversal tiene unas pérdidas totales P h. i se le aplia la mitad

Más detalles

SOBRE LA CELDA DE PLANCK, LA RELACIÓN COSMOLÓGICA DE EINSTEIN Y LA COSMOLOGÍA. P. Kittl (1) y G. Dìaz (2)

SOBRE LA CELDA DE PLANCK, LA RELACIÓN COSMOLÓGICA DE EINSTEIN Y LA COSMOLOGÍA. P. Kittl (1) y G. Dìaz (2) SOBE LA CELDA DE PLANCK, LA ELACIÓN COSOLÓGICA DE EINSTEIN Y LA COSOLOGÍA P. Kittl () y G. Dìaz () () Departamento de Ingeniería eánia, Faultad de Cienias Físias y atemátias, Universidad de Chile, Casilla

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)]

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)] Ingeniero Industrial Asignatura: Transformadas Integrales y Euaiones en Derivadas Pariales Convoatoria de Febrero del 2004 Teoria y Cuestiones 1. Consideremos la funión ½ 0 si

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD JUNIO 2011

PRUEBA DE ACCESO A LA UNIVERSIDAD JUNIO 2011 PRUEB DE CCESO L UNIVERSIDD JUNIO 011 FÍSIC OPCIÓN 1. a) Campo elétrio de una arga puntual. b) Dos argas elétrias puntuales positivas están situadas en dos puntos y B de una reta. Puede ser nulo el ampo

Más detalles

Espectro de emisión en la desintegración del 137

Espectro de emisión en la desintegración del 137 Espetro de emisión en la desintegraión del 137 55 Cs Grupo 2 Franhino Viñas, S. A. Hernández Maiztegui, F. f ranhsebs@yahoo.om.ar f ranx22182@hotmail.om Muglia, J. Panelo, M. Salazar Landea, I. juan muglia@yahoo.om

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

Espectro de emisión en la desintegración del 137

Espectro de emisión en la desintegración del 137 Espetro de emisión en la desintegraión del 55 Cs Grupo 2 Franhino Viñas, S. A. Hernández Maiztegui, F. f ranhsebs@yahoo.om.ar f ranx22182@hotmail.om Muglia, J. Panelo, M. Salazar Landea, I. juan muglia@yahoo.om.ar

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Tema 1. Sección 2. Incompatibilidad de la mecánica de Newton con el electromagnetismo.

Tema 1. Sección 2. Incompatibilidad de la mecánica de Newton con el electromagnetismo. Tema. Seión 2. Inompatibilidad de la meánia de Newton on el eletromagnetismo. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 2907-Málaga. Spain. Abril de 200.

Más detalles

Física teórica 2 CLASE 16. ATOMO DE HIDROGENO SEMIRELATIVISTA. Abstract

Física teórica 2 CLASE 16. ATOMO DE HIDROGENO SEMIRELATIVISTA. Abstract Física teórica CLASE 16. ATOMO DE HIDROGENO SEMIRELATIVISTA J. E. Miraglia Departamento de Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina. (Dated: June 9, 017)

Más detalles

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I GRADO EN FÍSICA Física cuántica I Grupo C 15/1 Examen final de junio de 1 Nombre: Soluciones Firma: Problema 1 (1 punto). Un haz de radiación

Más detalles

ÍMPETU DE LAS ONDAS ELECTROMAGNÉTICAS

ÍMPETU DE LAS ONDAS ELECTROMAGNÉTICAS ÍMPETU DE LA ONDA ELECTOMAGNÉTCA Mientras una onda eletromagnétia inide ontra un objeto, le ejere una fuerza y, si el objeto está libre para moverse, le transfiere ímpetu (llamado también antidad de movimiento).

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10 Físia atual PAU 0. La fusión nulear en el Sol produe Helio a partir de Hidrógeno según la reaión: 4 protones + eletrones núleo He + neutrinos + Energía uánta energía se libera en la reaión (en MeV)? Datos:

Más detalles

PROBLEMAS DE MECANICA DE FRACTURA

PROBLEMAS DE MECANICA DE FRACTURA MECANICA AVANZADA DE MATERIALES Dr. Luis A. Godoy 2005 PROBLEMAS DE MECANICA DE FRACTURA Prolema 1: El eséimen de la figura tiene una fisura en el extremo, y uede onsiderarse omo una dole viga en voladizo.

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

TEMA 2. Modelo mecanocuántico. ntico del átomo de

TEMA 2. Modelo mecanocuántico. ntico del átomo de TEMA. Modelo mecanocuántico ntico del átomo de hidrógeno Aunque la teoría de Bohr y la etensión de Somerfeld conducen a resultados satisfactorios para el átomo de hidrógeno su aplicación tropezaba con

Más detalles

Las poligonales en forma general pueden ser clasificadas según sus formas en:

Las poligonales en forma general pueden ser clasificadas según sus formas en: Agrimensura Faena - Unne átedra: Topografía Poligonometría Una poligonal esta formada por una suesión de líneas enlazadas entre si por medio del ángulo que forman entre si las líneas. Las poligonales en

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUIÓN ELETROMAGNÉTIA Ley de Ampére La ley de Ampère, relaciona la componente tangencial del campo magnético, alrededor de una curva cerrada, con la corriente I c que atraviesa dicha curva. r r B dl =

Más detalles

Física Teórica II Práctica 8: Teoría de Perturbaciones Parte I: Perturbaciones Independientes del Tiempo

Física Teórica II Práctica 8: Teoría de Perturbaciones Parte I: Perturbaciones Independientes del Tiempo Física Teórica II Parte I: Perturbaciones Independientes del Tiempo 1. Si los estados vibracionales de una molécula diatómica dipolar pueden ser descriptos adecuadamente por un potencial armónico unidimensional,

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta

Más detalles

ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE

ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE 195 TCSD 03-05 ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE Ignaio R. Martín Domínguez y Ma. Teresa Alarón Herrera Centro de Investigaión en Materiales Avanzados, S.C. Miguel de

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

Serie 11. Sistemas de control más elaborados

Serie 11. Sistemas de control más elaborados Serie Sistemas de ontrol más elaborados Sistemas de ontrol más elaborados Se utilizan uando los lazos de ontrol onvenionales no son sufiientemente apropiados, debido a difiultades omo proesos on grandes

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Estruturas de Materiales Compuestos Plaas Sandwih Ing. Gastón Bonet - Ing. Cristian Bottero - Ing. Maro Fontana Estruturas de Materiales Compuestos Ensayos normalizados de araterizaión Plaas sandwih Las

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de Hidráulia In. David Hernández Huéramo Manual de prátias Hidráulia de anales 5o semestre Autores: Guillermo enjamín Pérez Morales Jesús Alberto Rodríuez Castro Jesús Martín Caballero Ulaje

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 9 Problema.- En una determinada investigaión se estudia en diferentes estados amerianos la relaión entre varias variables soiodemográfias y el índie

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

NOTAS DEL CURSO TERMODINÁMICA QUÍMICA

NOTAS DEL CURSO TERMODINÁMICA QUÍMICA NOTAS DE CURSO TERODINÁICA QUÍICA Capítulo. Planteamiento de problemas de equilibrio de fases Dr. Enrique Bazúa Rueda Dr. Fernando Barragán Arohe Faultad de Químia UNA Febrero de 007 09/0/07, :55 . PANTEAIENTO

Más detalles