SOLUCIONES DICIEMBRE 2016
|
|
|
- César Valenzuela Rubio
- hace 7 años
- Vistas:
Transcripción
1 Página 1 de 8 SOLUCIONES DICIEMBRE 2016 Soluciones extraídas del libro: XVII CONCURSO DE PRIMAVERA 2013 Obtenible en Autores: Colectivo Concurso de primavera. Comunidad de Madrid Diciembre 1-2: En la pista de atletismo de la figura, Laia, si corre por fuera tarda seis segundos más que si corre por dentro, en dar una vuelta completa corriendo a una misma velocidad. Cuál es esta? Solución: En una vuelta completa, la diferencia entre la distancia recorrida por fuera y la recorrida por dentro es 2 (R+6) 2 R = 12. Si tarda 6 segundos más en recorrer la vuelta por fuera, lleva una velocidad de 2 m/s Diciembre 3: Aitana ha tardado 20 minutos menos que Laia en completar una carrera. Si Laia corre a 5 km/h menos que Aitana, qué distancia tenía la carrera? Solución: Faltan datos para determinar la solución del problema. Si t A, t L, v A, y v L son los tiempos y velocidades empleados por Aitana y Laia, tendremos: t A = t L 1 3 } v A t A = v L t L v A t A = (v A 5) (t A ) v A = 15t A + 5 v L = v A 5 Si, por ejemplo, t A = 1 hora, v A = 20 y el espacio recorrido es de 20 km. Diciembre 4: Halla los números de dos cifras que son el triple del producto de sus cifras. Nivel: A partir de 4ESO. Preparación OME y OMS. Solución: Debemos resolver 10 a + b = 3 a b, siendo a y b dígitos con a no nulo. Tendremos: b = a(3b 10). Por lo tanto, b debe ser mayor que 3 y menor que 7. Para b= 4 se obtiene a = 2. Para b = 5 se obtiene a = 1 y para b = 6 no hay solución para a. Por lo tanto, sólo hay dos números que cumplan el enunciado: el 25 y el 15.
2 Página 2 de 8 Diciembre 5, 6: El rectángulo ABCD tiene área 48; M es el punto medio del lado DC y 3 BN = BC. Cuál es el área del triángulo ANM? Solución: A ΔANB = = 8; A ΔADM = = 12; 2 A ΔNMC = = 8; A ΔANM = 48 ( ) = 20 Diciembre 7: Las gráficas de y=- x+8 +6, y=0 e y=x+k, determinan en el cuadrante segundo un trapecio de área 20. Hallar k Nivel: A partir de 4ESO. Preparación OMS Solución: El trapecio se puede obtener como diferencia de dos triángulos, el grande de base 12 y altura 6 y el pequeño de base k 2 y altura k 2 1 (altura del punto de intersección de las rectas y = x + k, y = - x 2). Así el área del trapecio es: (k 2)2 36 = 20 k = 10 4 Diciembre 8: Seleccionamos al azar dos números reales en [-20; 10], cuál es la probabilidad de que su producto sea positivo? Nivel: A partir de 4ESO. Preparación OMS. Solución: El producto es positivo si los dos números son ambos positivos o ambos negativos. La probabilidad de que los dos sean positivos es 1/3 1/3. La probabilidad de que los dos sean negativos es 2/3 2/3. Por tanto la probabilidad pedida es: 4/9 + 1/9 = 5/9
3 Página 3 de 8 Diciembre 9, 10: En la figura E = 40 y los arcos AB, BC y CD son de igual longitud. Hallar el ángulo x Nivel: A partir de 4ESO. Solución: Como el ángulo exterior mide 40, la diferencia entre los arcos BC y AD es de 80. Por otro lado 3 BC + AD = 360. Así que AD = 360. Tenemos entonces que AD = 2x = 30 Diciembre 11: Laia elige 6 primos menores que 20: A, B, C, D, E y F. Observa que: A+B=C+D=E+F. Cuánto vale E+F? Nivel: A partir de 1ESO. Solución: Los números primos menores que 20 son: 2, 3, 5, 7, 11, 13, 17 y 19. Manipulándolos tenemos: = = , luego E + F = 24 Diciembre 12, 19: En el triángulo ABC se tiene que A = 80 ; los puntos E, D y F (en los lados BA, BC y AC, respectivamente), cumplen que BE = BD; CF = CD. Hallar el ángulo x Solución: Los ángulos B y C suman 100. Como BE = BD (CF = CD) BED ( CDF) es isósceles. De aquí: B + 2 E = 180 ( C + 2 F = 180 ). Sumando ambas igualdades tenemos: ( E + F) =360 E + F = 130. Y como los tres ángulos: E, F y x forman un llano, tendremos que x = 50 Diciembre 13: En el rectángulo ABCD, de lados AB=12 y BC=8, elegimos el punto P al azar. Cuál es la probabilidad de que el triángulo PBC tenga área mayor que 20? Nivel: A partir de 4ESO. Preparación OMS.
4 Página 4 de 8 Solución: Para que el triángulo PBC tenga área mayor que 20, debe tener altura mayor que 5, es decir debe escogerse P en el rectángulo de base 7 y altura 8. Por lo tanto, la probabilidad pedida es: = 7 12 Diciembre 14, 15: En la figura se aprecian dos circunferencias de perímetro 6, colocadas de tal manera que cada una pasa por el centro de la otra. Qué perímetro tiene la figura pintada de rojo? Nivel: A partir de 4ESO. Preparación OMS. Solución: Al perímetro de dos circunferencias le hemos de quitar el perímetro de los arcos de trazo discontinuo. Se forman dos triángulos equiláteros de lado el radio de cada circunferencia, y por tanto el arco de trazo discontinuo corresponde a un arco de 120. El perímetro de cada arco es (6/3 =) 2. Por lo tanto, el perímetro de la figura pintada de rojo es (12 4 =) 8 Diciembre 16: Si b > 1, x > 0 y: (2x) log b 2 (3x) log b 3 = 0, hallar x Nivel: Primero de bachillerato. Solución: Si (2x) log b 2 (3x) log b 3 = 0, entonces (2x) log b 2 = (3x) log b 3 y tomando logaritmos log b 2 log(2x) = log b 3 log(3x). Dividiendo por log b10, cambiamos los logaritmos en base b a logaritmos decimales, y así tenemos: log2 (log2 + logx) = log3 (log3 + logx) logx = log2 log3 x = 1 6 Diciembre 17: Si P, Q y R son dígitos con: P Q P Q x R R R hallar P, Q y R Nivel: A partir de 3ESO.
5 Página 5 de 8 Solución: Tenemos PQPQ RRR = (100 PQ + PQ) (100 R + 10 R + R) = (101 PQ) (111 R) = PQ R = PQ R = = 57 = 19 3 = Por tanto, PQ =19 y R = 3 o PQ = 57 y R = Diciembre 18: Hallar el resto de dividir 7 25 entre 9 Nivel: A partir de 4ESO. Preparación OMS y OME. Solución: Como: 7 = 7(9); 7 2 = 49(9) = 4(9); 7 3 = 7 2 (9) 7(9) = 4(9) 7(9) = 28(9) = 1(9), tendremos ya formado el ciclo: En otras palabras: 7, 7 4, 7 7,..=7(9) 7 2, 7 5, 7 8, =4(9) 7 3, 7 6, 7 9, =1(9) 7(9) n = 1, 4, 7,. n = 1(3) 7 n = { 4(9) n = 2, 5, 8,. n = 2(3) 1(9) n = 3, 6, 9,. n = 0(3) Como 25 =1(3), 7 25 = 7(9), es decir el resto de dividir 7 25 entre 9 es 7. Diciembre 20, 21: En un concurso de dardos, la diana tiene forma de octógono regular. Si el dardo puede caer en cualquier punto de la diana con igual probabilidad, cuál es la probabilidad de que caiga en el cuadrado pintado de rojo? Nivel: A partir de 4ESO. Preparación OMS Solución: Hemos de dividir el área del cuadrado de color rojo entre el área del octógono. El área del cuadrado rojo es l 2, pues tiene el mismo lado que el octógono. El área del octógono es 2l Por tanto, la probabilidad solicitada es: Diciembre 22: Sean M, p y q positivos con q < 100. Qué debe cumplirse para que si aumentamos M un p% y luego lo disminuimos un q% tengamos aún una cantidad mayor que M? Nivel: A partir de 3ESO. Solución: Cuándo M crece un p% y luego decrece un q%, pasa a valer M (1 + p 100 ) (1 q 100 ). Para que esta cantidad sea mayor que M debe ser:
6 Página 6 de 8 (1 + p 100 ) (1 q 100 ) > p q 100 pq > 1 p 100 (1 q 100 ) > q 100 p > 100q 100 q Diciembre 23, 24: En el rombo ABCD, de lado 2, el ángulo B mide 120. Cuál es el área de la región interior del rombo formada por los puntos que están más cerca del vértice B que de cualquier otro vértice? Nivel: Preparación OME. Solución: Las mediatrices de los segmentos AB y BC junto con el segmento QP determinan la zona de puntos que están más cerca del vértice B que de cualquier otro vértice. Debemos hallar el área del pentágono BMQPN. Como el ángulo en B es de 120, el rombo se compone de dos triángulos equiláteros de lado 2 y altura 3. Las diagonales del rombo son 2 y 2 3 y su área es 2 3. Como P y Q son los baricentros de los triángulos equiláteros BCD y ABD, PC = PD = PQ = AC =. 3 3 El área del triángulo QPD es la tercera parte del área del triángulo ACD, que es la sexta parte del área del rombo ABCD, es decir: A ΔQPD = = 6 3 Por último, el área del pentágono BMQPN es el doble del área del triángulo QPD, es decir Diciembre 25: Si a y b son naturales con (a + 2b) (a b)=10, cuánto vale (2a b)? Solución: De (a + 2b) (a b)=10 siendo a y b naturales caben dos opciones, por la unicidad de la descomposición factorial en primos: 1.- a + 2b = 10 } a = 4, b = 3 a b = 1
7 Página 7 de a + 2b = 5 } a = 3, b = 1 a b = 2 Y en los dos casos 2 a b = 5 Diciembre 26, 27: Resolver: Nivel: Bachillerato. Preparación OME. Solución: Observemos que Así pues: log 2 x + log 2 x + log 4 x 2 + log 8 x 3 + log 16 x 4 =40 log 2 nx n = log 2x n log 2 2 n = nlog 2x = log n 2 x log 2 x + log 2 x + log 4 x 2 + log 8 x 3 + log 16 x 4 =40 log 2 x + log 2 x + log 2 x + log 2 x + log 2 x = 40 5log 2 x = 40 log 2 x = 8 x = 2 8 = 256 Diciembre 28: Dos triángulos isósceles distintos, tienen igual área. En ambos, sus lados iguales miden 26 cm. Si la base de uno mide 48 cm, hallar la base del otro Nivel: A partir de 3ESO. Solución: La altura del triángulo cuya base mide 48 cm es: = 10, y su área es (48 10/2=) 240 cm 2. Como los dos triángulos tienen igual área, la del segundo podemos expresarla como: b h = 240, y de aquí b = 480 h. Como h = 26 2 ( b 2 )2, la expresión anterior queda b = De aquí se deduce b 676 ( b 26 2 ( b )2. 2 )2 = 480 b 2 (676 b2 ) = Operando 2 queda b b = 0, que lleva a b = 20 Diciembre 29, 30: La base del rectángulo de la figura mide 4 y su altura 2, cuál es el área de la región roja generada por dos semicircunferencias con centros en los lados largos del rectángulo? Nivel: A partir de 3ESO. Solución: El área de la región roja es el doble del área de un segmento circular de ángulo central 120 en un círculo de radio R = 2. Como A segmento = A sector A triángulo, tendremos: A segmento = π b h 2 = 4π = 4π 2 3 3
8 Página 8 de 8 De aquí, que el área solicitada sea A = 8π Diciembre 31: Resolver: 5 x + 8 = x 2 16 Nivel: 4ESO. Preparación OMS. Solución: La ecuación 5 x + 8 = x 2 16 es equivalente a x 2 5 x - 24 = 0. Si x > 0, la ecuación es x 2 5x 24 = 0, con soluciones x = 8 y x = - 3, no siendo válida esta última porque no es mayor que 0. Si x < 0, la ecuación es x 2 + 5x 24 = 0, con soluciones x = - 8 y x = 3, no siendo esta última válida porque no es menor que 0. Las soluciones válidas son 8 y 8.
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.
GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.
REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Ejercicios Resueltos: Geometría Plana y del Espacio
Ejercicios Resueltos: Geometría Plana y del Espacio 1. Determine el valor del ángulo en el triángulo de la figura: Ejercicios extraídos de pruebas parciales. Roberto Vásquez B. x x 4x x x 180º 1x 180º
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
1. La semirrecta El punto P divide a la recta r en dos semirrectas opuestas. El punto P es el origen de las dos semirrectas.
GEOMETRÍA 1. La semirrecta El punto P divide a la recta r en dos semirrectas opuestas. El punto P es el origen de las dos semirrectas. 2. El segmento Los puntos A y B determinan una parte de la recta s
PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano
Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)
Soluciones Nota nº 1
Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos
Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo
44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +
Seminario de problemas. Curso Hoja 5
Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 24 de noviembre de 2006
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid Primera sesión, viernes 4 de noviembre de 006 En la hoja de respuestas, rodea con un círculo la opción que creas
1. Señale para cada enunciado si es verdadero o es falso, justificando su determinación.
11.6 EJERCICIOS PROPUESTOS Temas: Función área. 1. Señale para cada enunciado si es verdadero o es falso, justificando su determinación. 1.1. El área de un polígono simple siempre es un número entero y
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD.
Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA Construcciones con regla no graduada y compás A) Reproduce la siguiente figura, luego trace las
TEMA Nombre IES ALFONSO X EL SABIO
1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas
1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.
MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS
Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA TERCER GRADO 1. Cuánto mide el área sombreada A entre el área sombreada B en la siguiente figura? Para referenciar las argumentaciones se le inscriben letras
P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
P RACTICA Puntos Si los puntos 6 ) 6) y ) son vértices de un cuadrado cuál es el cuarto vértice? 6) 6 ) ) P ) P Los puntos ) ) y ) son vértices de un rombo. Cuáles son las coordenadas del cuarto vértice?
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)
3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura
Unidad didáctica 9 Geometría plana
Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice
( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4.
DO AÑO. 014 TRABAJO PRÁCTICO 0 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) 5.. f) 5 0 b) 6 : g) 4. - + c) 5-5. 5 h) 5 d) ( 5 ) 5 i) e) Esta Guía 0 contiene los prerrequisitos
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
La circunferencia y el círculo
La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:
LAS FIGURAS PLANAS POLÍGONOS REGULARES
LAS FIGURAS PLANAS LOS POLÍGONOS Un polígono es una figura plana limitada por segmentos. Los elementos de un polígono son los lados, los vértices, los ángulos y las diagonales. El perímetro es la suma
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
8 GEOMETRÍA DEL PLANO
8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un
Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento?
Geometría 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? 2 a.- Qué originan dos puntos en una recta?. Cuántas rectas pasan por dos puntos?, y por un punto?
TEMA 6: LAS FORMAS POLIGONALES
EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado
ALGUNAS RELACIONES PARA RECORDAR:
ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel Problema 1: Si se traza una recta m paralela a r que pase por el centro del rectángulo, éste quedará seccionado en dos trapecios iguales. En efecto, trazando
El polígono es una porción del plano limitado por una línea poligonal cerrada.
UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los
. M odulo 7 Geometr ıa Gu ıa de Ejercicios
. Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
E 3.4. LA LEY DE BIOT SAVART
E 3.4. LA LEY DE BIOT SAVART E 3.4.01. Considere el alambre ABCDA que muestra la figura, por el cual circula una corriente de I [A] en la dirección indicada. Suponga que BC y DA son arcos de circunferencia
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C.
1. Encuentra cuánto vale el ángulo exterior θ en la siguiente figura si son conocidos los ángulos α y β. El ángulo θ se llama ángulo exterior en C. 2. En un triángulo rectángulo, los ángulos agudos están
Figuras planas. Definiciones
Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.
TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las
4, halla sen x y tg x. 5
TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva
sen a + b c) Expresa las sumas del segundo miembro como productos y concluye que se cumple que a + b
NOTA: Todos los ejercicios con asterisco (*) deberán ser entregados antes del 3 de enero del 0. Ejercicio Calcula los lados y ángulos que faltan, el área y los radios de la inscrita y circunscrita en los
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
PSU Matemática NM-4 Guía 14: Ángulos y Triángulos
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
open green road Guía Matemática tutora: Jacky Moreno .co
Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
PROBLEMAS DE MATEMÁTICA I
Academia Sabatina OMPR 2009 14 de febrero de 2009 PROBLEMAS DE MATEMÁTICA I 1 En un pueblo, la plaza tiene la forma de un cuadrilátero irregular como el de la figura. En sus esquinas hay cuatro parterres
CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES
GEOMETRÍA CURVAS TÉCNICAS 1 CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES Los óvalos y ovoides pertenecen al grupo de los enlaces denominados cerrados, dado que comienzan y terminan en un mismo punto. También
B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2
EJERCICIOS DE ÁREAS Y PERÍMETROS DE TRIÁNGULOS 1. En el triángulo ABC es isósceles y rectángulo en C. Si AC = 5 cm y AD = cm, cuál (es) de las siguientes proposiciones es (son) verdadera (s)?: I) Área
Guía Nº 1 - Revisión
A. Completar con V o F según sea verdadero o falso. 1) Dos ángulos opuestos por el vértice siempre son iguales. 2) Dos ángulos opuestos por el vértice son suplementarios. 3) Dos ángulos opuestos por el
Tema 2 2 Geometría métrica en el pla no
Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
5 Geometría analítica plana
Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
TAMARA GRANDÓN SEGUNDO MEDIO
GUIA 2 MEDIO MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA NOMBRE: 1. Si se sabe que α = 35 y β = 45, cuál es la medida del ángulo x de la figura? Fecha:.. 2. El m( CA ) = 94
EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU
PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)
1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.
MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:
UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,
Halla los siguientes perímetros y áreas:
73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo 016-1 1- Se desea cercar un terreno de forma cuadrada que tiene una superficie de 400 m. Cuántos metros de tela de alambre se necesitan?
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
Agudo Recto Obtuso Extendido Completo º 180º. Ángulos complementarios
Definición Ángulo: Vértice: O Lados: OA y OB Clasificación Agudo Recto Obtuso Extendido Completo 0º 90º 90º 90º 80 º 360 º Posiciones relativas Ángulos consecutivos Ángulos adyacentes Ángulos complementarios
Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.
Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En
polígono 3 Triángulo 4 Cuadrilátero 5 Pentágono 6 Hexágono 7 Heptágono 8 Octógono 9 Eneágono 10 Decágono 11 Undecágono 12 Dodecágono 20 Icoságono
TEMA: POLÍGONOS Y ÁNGULOS. POLÍGONOS REGULARES. POLÍGONOS Un polígono es una figura cerrada cuyos lados son segmentos. La palabra polígonos se puede interpretar como: figura de muchos ángulos. Los triángulos,
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción:
TEMA 8. PROPORCIONALIDAD NUMERICA 1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción: 4 5 8 7 12 15 16 14 8 10 80 70 2. Indica qué proporciones son ciertas: 4 10 8 20
