Matemáticas 1 Agosto 2015

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas 1 Agosto 2015"

Transcripción

1 I.- Resuelve las ecuaciones siguientes Matemáticas 1 Agosto 2015 Laboratorio # 1 Ecuación cuadrática I 5.- 9y² -25 = II.- Calcula el discriminante para determinar la naturaleza de las raíces de la ecuación dada III.- Halla el valor (valores) de k de modo que la ecuación dada tenga raíces iguales Página 1 de 11

2 Laboratorio # 2 Ecuación cuadrática II I.- Resuelve las ecuaciones siguientes Página 2 de 11

3 Laboratorio # 3 Números complejos I.- Determina los valores reales de x y y que cumplan con la relación dada II.- Efectúa las operaciones indicadas y expresa cada resultado en la forma canónica ( ) III.- Determina la forma polar de los siguientes números complejos IV.- Realiza las operaciones indicadas utilizando la forma polar Página 3 de 11

4 Laboratorio # 4 Matrices I.- Dadas las matrices A=, B= Determina: 1.- Las dimensiones de A y B 2.- Los elementos de II.- Dadas las siguientes matrices, efectúa las operaciones indicadas. Si algunas no tienen sentido, justifica,,,, 1.- 5BA 2.- 2AC(A B) 3.- BAE III.- Encontrar la matriz X que satisface la condición indicada 1.- IV.- Encuentra la inversa de las siguientes matrices por transformaciones elementales 3.- Página 4 de 11

5 Laboratorio # 5 Sistemas de ecuaciones I I.- Resuelve los sistemas siguientes usando el método indicado x+2y+3z-w=0 x-y+2z+w=0 3x+2y+z-2w=0 x+y-3z-2w= x+y+3z=3 x-y-2z=2 x+2y+2z=4 x+y+z=3 4.- ; Gauss Jordan 5.- ; Gauss 6.- ; Gauss Jordan Página 5 de 11

6 I.- Dado el determinante Matemáticas 1 Agosto 2015 Laboratorio # 6 Determinantes 1.-, determine: Los menores,, y 2.- A = a) Los menores: M13, M22, M32 b) Los cofactores: C11, C23, C33, II. Calcule los siguientes determinantes. 1.- A= 2.- A= 3.- A= 4.- A= 5.- A= III. Halle el valor de que satisface lo siguiente : Página 6 de 11

7 Laboratorio # 7 Sistemas de ecuaciones II I. Determine los valores de, tales que el sistema siguiente tenga: a) Una solución única; b) ninguna solución; c) más de una solución. 1.- II. Resuelva los siguientes sistemas de ecuaciones utilizando determinantes Página 7 de 11

8 6.- Laboratorio # 8 Teorema del binomio I. Utilice el Teorema del Binomio para efectuar el desarrollo indicado y simplifique el resultado. II. Escriba y simplifique los cinco primeros términos de los desarrollos siguientes. III. Encuentre solamente los términos indicados en cada desarrollo. 1.- Los primeros tres términos de 2.- Los dos últimos términos de 3.- Los términos centrales de 4.- Los términos independientes de x en IV. Encuentra solamente el término (términos) indicado en cada desarrollo. Página 8 de 11

9 1.- Octavo termino de Laboratorio # 9 Progresión aritmética I.- Determina si las sucesiones siguientes forman o no una progresión aritmética , 7, 1, -5, -11, II. Escriba los primeros 5 términos de una progresión aritmética para la cual se cumple que: 3.- El décimo término de una sucesión geométrica es, y el segundo término es. Calcule el primer término. 4.- Calcule la suma parcial de la sucesión aritmética que satisfaga las condiciones: III.- Resuelve 1.- Si a1 = 30, an = -10 y Sn = 90, halla d y n. 2.- Si a1 = 45, Sn = 357, d = 3, halla an y n. 3.- Obtener la media aritmética de 7y -11. IV. Resuelva los siguientes problemas. 1.- A un señor le ofrecen un trabajo con salario de $30000 anuales y le prometen aumentos anuales de $2300. Calcule sus ingresos totales a los 10 años de trabajar en ese empleo. 2.- Cuando un objeto se deja caer libremente dentro de la atmósfera terrestre, la atracción gravitacional es tal que el objeto cae 16 ft en el primer segundo, 48 ft en el siguiente segundo, 80 en el siguiente, etc. a) Calcule la distancia total que cae el objeto en 6 s. b) Deduzca una fórmula de la distancia total que cae una pelota en n segundos. Página 9 de 11

10 3.- La cantidad de $1,000 se reparte entre 4 personas de manera que a partir de la segunda persona, cada una recibe $20 menos que la persona anterior. Cuánto recibe cada persona? 4.- Un hombre desea construir una escalera con nueve peldaños que disminuya uniformemente desde 24 pulgadas en la base hasta 8 pulgadas en la parte superior. Determina la longitud de los siete peldaños intermedios Laboratorio # 10 Progresión geométrica I.- Determina si las sucesiones siguientes definen o no una progresión geométrica ,2,4,6, ,2,3,4,11,12,13,14,... II.- Resuelve 1.- Encuentra y si 2.- Encuentra n y Sn 3.- Interpolar 3 medios geométricos entre 16 y 1/16 III.- Resuelve los siguientes problemas. 1.- El tercer término de un progresión geométrica es 3 y el séptimo termino es 3/16. Calcular la razón y el primer término 2.- Una bomba para extracción de aire expulsa en cada movimiento la decime parte del aire de un tanque. Calcular la fracción del volumen original de aire que queda en el tanque, al final de ocho movimientos. IV.- Determina la suma de la progresión geométrica infinita dada ,6,3, ,,1, V.- Resuelva los siguientes problemas. Página 10 de 11

11 2.- Halla tres números en progresión geométrica tales que su suma sea 38 y su producto sea igual a El segundo término de una progresión geométrica es 18 y el quinto término es. Calcule el sexto término y la suma de los cinco primeros términos. VI.- Escribe la fracción común (simplificada) equivalente al decimal periódico infinito dado Página 11 de 11

Álgebra Enero Laboratorio #1 Ecuaciones Cuadráticas I. I.- Resolver las ecuaciones siguientes usando el método Factorización.

Álgebra Enero Laboratorio #1 Ecuaciones Cuadráticas I. I.- Resolver las ecuaciones siguientes usando el método Factorización. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes usando el método Factorización. 6x 2 + 11x = 10 4y 2 + 30 = 29y 8x 2 + 19x 27 = 0 60y 2 35 = 85y II.- Resolver las ecuaciones

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

SUCESIONES Y SERIES MATEMÁTICAS

SUCESIONES Y SERIES MATEMÁTICAS SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,

Más detalles

SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS

SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el

Más detalles

GBG ejerciciosyexamenes.com 1

GBG ejerciciosyexamenes.com 1 PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12

Más detalles

PROGRESIONES GEOMÉTRICAS

PROGRESIONES GEOMÉTRICAS PROGRESIONES GEOMÉTRICAS. Hallar el número de términos y la razón de una progresión geométrica cuyo primer término es 4 el último 6500 y la suma de todos sus términos 784.. La razón de una progresión geométrica

Más detalles

=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3

=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3 0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas

Más detalles

Sucesiones y Progresiones. Guía de Ejercicios

Sucesiones y Progresiones. Guía de Ejercicios . Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...

Más detalles

PAIEP. Sucesiones, Sumatoria y Progresiones

PAIEP. Sucesiones, Sumatoria y Progresiones Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sucesiones, Sumatoria y Progresiones Definición: Una sucesión de números reales es una función a : N R, definida

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.

2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores. TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (APLICADAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general

Más detalles

Progresiones Geométricas. tal que. a n+1 a n. = r. para todo entero positivo n.

Progresiones Geométricas. tal que. a n+1 a n. = r. para todo entero positivo n. www.matebrunca.com Profesor Waldo Márquez González Progresiones Geométricas 1 Progresiones Geométricas Una sucesión a 1, a 2, a,..., a n,... es una progresión geométrica si y sólo si si existe un número

Más detalles

PROGRAMA DE ESTUDIO. A. Antecedentes Generales.

PROGRAMA DE ESTUDIO. A. Antecedentes Generales. PROGRAMA DE ESTUDIO A. Antecedentes Generales. - Nombre de la asignatura : MATEMATICA I - Código : EMM 114 - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : No tiene

Más detalles

3 x. x, escribe el coeficiente de x 3.

3 x. x, escribe el coeficiente de x 3. MATEMÁTICAS I ACTIVIDADES REFUERZO VERANO Ejercicio 1. Resuelve utilizando el método de Gauss y clasifica los siguientes sistemas de ecuaciones: + z = a) { y + z = 8 + y z = 1 9y + 5z = b) { + y z = 9

Más detalles

Álgebra II Agosto 2015

Álgebra II Agosto 2015 Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices: 4 3 5 2 4 0 0 2 a) ( 2 4 1 ) b) ( 1 5 8) c) ( 4 1 ) d) ( 3 2 1 5 4 ) e) ( 1 ) f) ( 3 1 5 2 ) 0

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Tópicos de Álgebra Agosto 2015

Tópicos de Álgebra Agosto 2015 Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices: 4 3 5 2 4 0 0 2 a) ( 2 4 1 ) b) ( 1 5 8) c) ( 4 1 ) d) ( 3 2 1 5 4 ) e) ( 1 ) f) ( 3 1 5 2 ) 0

Más detalles

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1619) I. PROGRESIONES

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1619) I. PROGRESIONES INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (08) GUÍA DE MATEMÁTICAS VI (69) Sucesión: finita e infinita. Serie. Define progresión aritmética y geométrica. I. PROGRESIONES. Forma

Más detalles

CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:

CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: {x/ -1

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA MATEMATICA I

UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA MATEMATICA I ESCUELA Ciencias Administrativas CODIGO PREREQUISITO(S) 008-1613 Ninguno HORAS SEMANALES TOTAL HORAS SEMESTRE 05 90 HORAS TEORICAS HORAS PRACTICAS 02 03 UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA

Más detalles

EJEMPLO DE PREGU,TAS

EJEMPLO DE PREGU,TAS EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y

Más detalles

Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL

Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA Nombre Del Proceso PLANIFICACIÓN Fecha: 1-09-2008 Código: C01-2.1-02-00-00-P01 Versión:1.0 Página: 1 de 13 UNIDAD DIDACTICA No. 1

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

PROGRESIONES. Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término:

PROGRESIONES. Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término: 1 Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término: 1.1 5, 9, 13, 17, 21,,,,, 1.2 22, 19, 16, 13, 10,,,,, 1.3 3, 6, 12, 24, 48,,,,, 1.4 1, 4, 9, 16, 25,,,,, 1 6 2 4 8 16 8 10 12

Más detalles

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales MasMatescom mx-y = m [04] [EXT] Considere el sistema de ecuaciones lineales, para m x+(m-4)y = m+ a) Discuta el sistema de ecuaciones para los diferentes valores del parámetro m b) Resuelva el sistema

Más detalles

6 ACTIVIDADES DE REFUERZO

6 ACTIVIDADES DE REFUERZO 6 ACTIVIDADES DE REFUERZO 1. Escribe los cuatro primeros términos de estas sucesiones recurrentes. a) a 1 = 1, a =, a n+ = a n+1 - a n b) a 1 = 1, a = 5, a n+ = a n + a n+1 c) a 1 = 0, a n+1 = 3 a n. Qué

Más detalles

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias

Más detalles

ÍNDICE. Prefacio... xi

ÍNDICE. Prefacio... xi ÍNDICE Prefacio... xi 1 EL SISTEMA DE LOS NÚMEROS REALES... 1 1.1 Conjuntos... 1 Ejercicio 1.1, 20 problemas... 7 1.2 Constantes y variables... 8 1.3 El conjunto de los números reales... 9 Ejercicio 1.2,

Más detalles

TRABAJO DE VERANO DE MATEMÁTICAS DE 2º ESO

TRABAJO DE VERANO DE MATEMÁTICAS DE 2º ESO TRABAJO DE VERANO DE MATEMÁTICAS DE º ESO OPERACIONES CON DECIMALES. Coloca y efectúa estas divisiones sacando decimales si fuese necesario,89 6,7 b),6,,96 7, d),9,6 e),8,9 f) 6 7 g),9 6, 8 h) 8,96 9,

Más detalles

GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA.

GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA. GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA. INSTRUCCIONES El conjunto de ejercicios que a continuación se presenta tienen como objetivo proporcionarte orientación

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por:

Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por: PROGRAMA DE ESTUDIO Matemáticas Básicas Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6 Clave: F1406 Tipo:

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +

Más detalles

001. Identifica, en un conjunto de números, los que son enteros.

001. Identifica, en un conjunto de números, los que son enteros. 2.6 Criterios específicos de evaluación. 001. Identifica, en un conjunto de números, los que son enteros. 002. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos

Más detalles

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO (Primer Trimestre) (Para alumnos de 3º de ESO)

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO (Primer Trimestre) (Para alumnos de 3º de ESO) PLAN DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO (Primer Trimestre) (Para alumnos de 3º de ESO) NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

2. Determine los números enteros n que satisfacen la relación planteada:

2. Determine los números enteros n que satisfacen la relación planteada: ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH. CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,

Más detalles

TEMA 3: PROGRESIONES

TEMA 3: PROGRESIONES 3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!

Más detalles

UNIDAD 4: SUCESIONES

UNIDAD 4: SUCESIONES UNIDAD 4: SUCESIONES ACTIVIDADES RELATIVAS A CADA PUNTO DE LA UNIDAD REGULARIDADES Y SUCESIONES 1. Con cerillas se han construido las siguientes figuras: a) Cuántas cerillas se necesitan para formar una

Más detalles

MATEMÁTICAS. Bachillerato: 1º H:

MATEMÁTICAS. Bachillerato: 1º H: MATEMÁTICAS Bachillerato: 1º H: ÁLGEBRA: Operar con soltura expresiones con radicales y logaritmos. Conocer métodos de aproximación a números irracionales, y cuantificar el error que se puede cometer.

Más detalles

En este material se muestran ejemplos donde se aplican las fórmulas de las diferentes medidas de tendencia central, tales como: media aritmética,

En este material se muestran ejemplos donde se aplican las fórmulas de las diferentes medidas de tendencia central, tales como: media aritmética, En este material se muestran ejemplos donde se aplican las fórmulas de las diferentes medidas de tendencia central, tales como: media aritmética, mediana, moda, media geométrica, media cuadrática, percentiles,

Más detalles

ACTIVIDADES PARA PREPARAR EL EXAMEN DE SEPTIEMBRE. ES OBLIGATORIO ENTREGARLAS EL DÍA DEL MISMO PARA PODER APROBAR

ACTIVIDADES PARA PREPARAR EL EXAMEN DE SEPTIEMBRE. ES OBLIGATORIO ENTREGARLAS EL DÍA DEL MISMO PARA PODER APROBAR ACTIVIDADES PARA PREPARAR EL EXAMEN DE SEPTIEMBRE. ES OBLIGATORIO ENTREGARLAS EL DÍA DEL MISMO PARA PODER APROBAR ª evaluación: N OS REALES. POTENCIAS Y RADICALES Escribe cuatro números racionales y cuatro

Más detalles

TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones.

TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones. TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones. Actividades para preparar el examen: Estudia si las afirmaciones siguientes son verdaderas: I.- CUESTIONES TEÓRICAS: 1) Una sucesión de números

Más detalles

Definición. Progresiones Aritméticas

Definición. Progresiones Aritméticas www.matebrunca.com Profesor Waldo Márquez González Progresiones Aritméticas 1 Progresiones Aritméticas Un tipo particular de sucesión son la que se denominan progresiones; las más conocidas son las aritméticas

Más detalles

Tópicos de Álgebra Enero 2016

Tópicos de Álgebra Enero 2016 Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices. 4 3 5 2 4 0 0 A = ( 2 4 1 ) B = ( 1 5 8) C = ( 4 0 6 7 6 3 1 2 2 1 ) 1 D = ( 3 2 1 5 4 ) E = (

Más detalles

CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO

CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO UNIDAD 1 1.1. Simplifica y compara fracciones y las sitúa de forma aproximada sobre la recta. 1.2. Realiza operaciones aritméticas con números fraccionarios.

Más detalles

Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.

Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones

Más detalles

Programa de Asignatura ÁLGEBRA

Programa de Asignatura ÁLGEBRA Orientado por Objetivos de Aprendizaje Programa de Asignatura ÁLGEBRA A. Antecedentes Generales 1. Unidad Académica FACULTAD DE ECONOMÍA Y NEGOCIOS 2. Carrera INGENIERÍA COMERCIAL 3. Código ECM113 4. Número

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Raíz Numérica y Radicales Capítulo Preguntas

Raíz Numérica y Radicales Capítulo Preguntas Raíz Numérica y Radicales Capítulo Preguntas 1. Cuáles son las propiedades de un cuadrado? 2. Qué relación tienen la raíz cuadrada y el área de superficie?. Por qué ayuda saber de memoria los cuadrados

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS

PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión

Más detalles

UD 1: NÚMEROS REALES Y COMPLEJOS

UD 1: NÚMEROS REALES Y COMPLEJOS UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?

Más detalles

01. Identifica, en un conjunto de números, los que son enteros.

01. Identifica, en un conjunto de números, los que son enteros. 3.3.4 Criterios específicos de evaluación. 01. Identifica, en un conjunto de números, los que son enteros. 02. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos

Más detalles

1: LAS CUATRO OPERACIONES FUNDAMENTALES

1: LAS CUATRO OPERACIONES FUNDAMENTALES ÍNDICE 1: LAS CUATRO OPERACIONES FUNDAMENTALES... 1 1.1 El sistema de los números reales... 1 1.2 Definiciones básicas... 5 1.3 Adición y sustracción... 6 1.4 Símbolos de agrupación... 8 1.5 Multiplicación...

Más detalles

REACTIVOS MATEMÁTICAS I. Unidad I Introducción al Álgebra. Indica la respuesta correcta a los siguientes planteamientos,

REACTIVOS MATEMÁTICAS I. Unidad I Introducción al Álgebra. Indica la respuesta correcta a los siguientes planteamientos, REACTIVOS MATEMÁTICAS I Unidad I Introducción al Álgebra Indica la respuesta correcta a los siguientes planteamientos, 0.- En un puesto de verduras del mercado, un cliente realizó la siguiente compra:.5

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

Orden Operaciones básicas, adición, sustracción, ecuaciones multiplicación, división y problemas. OPERACIONES CON NUMEROS NATURALES

Orden Operaciones básicas, adición, sustracción, ecuaciones multiplicación, división y problemas. OPERACIONES CON NUMEROS NATURALES AREA MATEMATICAS 2016 TEMAS PROMOCIÓN ANTICIPADA GRADO SEXTO LOGICA Y CONJUNTOS Proposiciones simples y compuestas. Conjuntos Operaciones SISTEMAS DE NUMERACION Romano Binario NUMEROS NATURALES. Orden

Más detalles

Utiliza los números ordinales al resolver problemas planteados de manera oral.

Utiliza los números ordinales al resolver problemas planteados de manera oral. 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos. Utiliza los números ordinales al resolver problemas

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Potencias de exponente racional. Propiedades

Potencias de exponente racional. Propiedades INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: POTENCIAS Y RAICES EN LOS NUMEROS REALES Área: MATEMÁTICAS Asignatura: Matemáticas

Más detalles

11 Secuencias, Series y Probabilidad

11 Secuencias, Series y Probabilidad Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #0: lunes, 7 de junio de 06. Secuencias, Series y Probabilidad. Continuación:

Más detalles

PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d

PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d Indicador: Relaciona los elementos de una progresión. PROGRESIONES Dentro de las sucesiones existen dos modelos muy importantes y corresponden al nombre genérico de progresiones. PROGRESIONES ARITMÉTICAS

Más detalles

Álgebra 2. Plan de estudios (305 temas)

Álgebra 2. Plan de estudios (305 temas) Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real.

01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real. 1.6 Criterios específicos de evaluación. 01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real. 02. Realiza operaciones aritméticas con números decimales y francionarios.

Más detalles

Polinomios y fracciones

Polinomios y fracciones 3 Polinomios y fracciones algebraicas Ejercicios y problemas. Binomio de Newton 6 Desarrolla el siguiente binomio aplicando la fórmula de Newton: ( y) 3 8 3 y + 6y y 3 7 Desarrolla el siguiente binomio

Más detalles

Matemáticas de Nivelación

Matemáticas de Nivelación José Manuel Enríquez De Salamanca García Escuela Superior de Ingeniería. Cádiz Departamento de Matemáticas Turno I 24, 25, 26 y 30 de Septiembre y, 1 y 2 de Octubre Turno II 3, 4, 8, 9, 10 y 11 de Octubre

Más detalles

TÍTULO: MATEMÁTICA EXPERIMENTAL V9

TÍTULO: MATEMÁTICA EXPERIMENTAL V9 TÍTULO: MATEMÁTICA EXPERIMENTAL V9 Disponibilidad Revisión de conceptos y repaso 12 Preguntas y respuestas sobre los números reales 12 Cómo esta constituido el conjunto de los números reales y como se

Más detalles

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:

EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA: OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un

Más detalles

TALLERES 9 COLEGIO LUIS CARLOS GALÁN SARMIENTO

TALLERES 9 COLEGIO LUIS CARLOS GALÁN SARMIENTO TRABAJO GEO No. 10 Identifique la figura y a que sólido geométrico pertenece, dibuje al frente el sólido que le corresponde señalándole las partes que posee. 1. 2. 3. 4. 5. 6. 7. 8. TRABAJO GEO No. 11

Más detalles

FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA

FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SILABO ASIGNATURA: INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES CODIGO: 3B0027 1. DATOS GENERALES 1.1DEPARTAMENTO : Ingeniería Electrónica e Informática 1.2 ESCUELA PROFESIONAL : Ingeniería Informática 1.3

Más detalles

Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2

Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2 Ecuaciones Ecuación cuadrática Ejercicios resueltos 1. Resolver la ecuación: ( 3)( + 4) = 1( ) ( 3)( + 4) = 1( ) + 5 1 = 1 4 8 + 15 = 0 coeficientes de la ec. cuadrática: a = 1, b = 8, c = 15 Discriminante

Más detalles

Matrices triangulares y descomposición LU

Matrices triangulares y descomposición LU Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente

Más detalles

CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas.

CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas. Progresiones Contenidos 1. Sucesiones Definición. Regla de formación Término general 2. Progresiones Aritméticas Definición Término general Suma de n términos 3. Progresiones Geométricas Definición Término

Más detalles

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S

E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8

Más detalles

Nombre: Curso: 1.- Aplica el algoritmo de la raíz cuadrada para calcular Hazle la prueba a) + - b)

Nombre: Curso: 1.- Aplica el algoritmo de la raíz cuadrada para calcular Hazle la prueba a) + - b) Departamento de Matemáticas. Curso 2010/11. PRUEBA INICIAL PARA 3ºESO. Nombre: Curso: 1.- Aplica el algoritmo de la raíz cuadrada para calcular 3219. Hazle la prueba. 2.- Calcula y simplifica: 3 1 5 4

Más detalles

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO

INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de

Más detalles

CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas.

CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. CURSO 2009-2010 DEPARTAMENTO: MATEMÁTICAS CURSO: 1º ESO ÁREA: MATEMÁTICAS Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. Cálculo del m.c.d. y m.c.m.

Más detalles

2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.

2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß !ß â se deben considerar para que la suma sea %*%. 1. Halle el décimo término de la progresión: %ß (ß "!ß Þ Þ Þ 2. Determine cuántos términos consecutivos a partir de ), en la progresión ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.

Más detalles

2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.

2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores. TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (ACADÉMICAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general

Más detalles

Ejercicios Aritmética - Álgebra. Elementos de Aritmética Operaciones aritméticas con números racionales

Ejercicios Aritmética - Álgebra. Elementos de Aritmética Operaciones aritméticas con números racionales Ejercicios Aritmética - Álgebra Elementos de Aritmética Operaciones aritméticas con números racionales 1. Simplifica las siguientes fracciones: 1.0 a). 00.00 b) 6 18 c) 1. 0. Escriba como decimal finito

Más detalles

PRÁCTICA FINAL. Mª Esther Ruiz Morillas

PRÁCTICA FINAL. Mª Esther Ruiz Morillas PRÁCTICA FINAL Mª Esther Ruiz Morillas Repasamos Números x y =z y Álgebra Logaritmos Sucesiones: Aritméticas Geométricas Ecuaciones: De primer grado De segundo grado De grado superior Algebraicas Irracionales

Más detalles

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES BLOQUE 5 SUCESIONES Y SERIES DE NÚMEROS REALES Sucesiones de números reales - Límite de una sucesión - Cálculo de límites Series de números reales Progresiones aritméticas y geométricas Series geométricas

Más detalles

1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico

1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico 1º ESO 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico decimal. 2-Potencias y raíces. 3-Divisibilidad 7.- Las fracciones. 8.- Operaciones con fracciones.

Más detalles