Matemáticas 1 Agosto 2015
|
|
|
- Carmen Rodríguez Fidalgo
- hace 7 años
- Vistas:
Transcripción
1 I.- Resuelve las ecuaciones siguientes Matemáticas 1 Agosto 2015 Laboratorio # 1 Ecuación cuadrática I 5.- 9y² -25 = II.- Calcula el discriminante para determinar la naturaleza de las raíces de la ecuación dada III.- Halla el valor (valores) de k de modo que la ecuación dada tenga raíces iguales Página 1 de 11
2 Laboratorio # 2 Ecuación cuadrática II I.- Resuelve las ecuaciones siguientes Página 2 de 11
3 Laboratorio # 3 Números complejos I.- Determina los valores reales de x y y que cumplan con la relación dada II.- Efectúa las operaciones indicadas y expresa cada resultado en la forma canónica ( ) III.- Determina la forma polar de los siguientes números complejos IV.- Realiza las operaciones indicadas utilizando la forma polar Página 3 de 11
4 Laboratorio # 4 Matrices I.- Dadas las matrices A=, B= Determina: 1.- Las dimensiones de A y B 2.- Los elementos de II.- Dadas las siguientes matrices, efectúa las operaciones indicadas. Si algunas no tienen sentido, justifica,,,, 1.- 5BA 2.- 2AC(A B) 3.- BAE III.- Encontrar la matriz X que satisface la condición indicada 1.- IV.- Encuentra la inversa de las siguientes matrices por transformaciones elementales 3.- Página 4 de 11
5 Laboratorio # 5 Sistemas de ecuaciones I I.- Resuelve los sistemas siguientes usando el método indicado x+2y+3z-w=0 x-y+2z+w=0 3x+2y+z-2w=0 x+y-3z-2w= x+y+3z=3 x-y-2z=2 x+2y+2z=4 x+y+z=3 4.- ; Gauss Jordan 5.- ; Gauss 6.- ; Gauss Jordan Página 5 de 11
6 I.- Dado el determinante Matemáticas 1 Agosto 2015 Laboratorio # 6 Determinantes 1.-, determine: Los menores,, y 2.- A = a) Los menores: M13, M22, M32 b) Los cofactores: C11, C23, C33, II. Calcule los siguientes determinantes. 1.- A= 2.- A= 3.- A= 4.- A= 5.- A= III. Halle el valor de que satisface lo siguiente : Página 6 de 11
7 Laboratorio # 7 Sistemas de ecuaciones II I. Determine los valores de, tales que el sistema siguiente tenga: a) Una solución única; b) ninguna solución; c) más de una solución. 1.- II. Resuelva los siguientes sistemas de ecuaciones utilizando determinantes Página 7 de 11
8 6.- Laboratorio # 8 Teorema del binomio I. Utilice el Teorema del Binomio para efectuar el desarrollo indicado y simplifique el resultado. II. Escriba y simplifique los cinco primeros términos de los desarrollos siguientes. III. Encuentre solamente los términos indicados en cada desarrollo. 1.- Los primeros tres términos de 2.- Los dos últimos términos de 3.- Los términos centrales de 4.- Los términos independientes de x en IV. Encuentra solamente el término (términos) indicado en cada desarrollo. Página 8 de 11
9 1.- Octavo termino de Laboratorio # 9 Progresión aritmética I.- Determina si las sucesiones siguientes forman o no una progresión aritmética , 7, 1, -5, -11, II. Escriba los primeros 5 términos de una progresión aritmética para la cual se cumple que: 3.- El décimo término de una sucesión geométrica es, y el segundo término es. Calcule el primer término. 4.- Calcule la suma parcial de la sucesión aritmética que satisfaga las condiciones: III.- Resuelve 1.- Si a1 = 30, an = -10 y Sn = 90, halla d y n. 2.- Si a1 = 45, Sn = 357, d = 3, halla an y n. 3.- Obtener la media aritmética de 7y -11. IV. Resuelva los siguientes problemas. 1.- A un señor le ofrecen un trabajo con salario de $30000 anuales y le prometen aumentos anuales de $2300. Calcule sus ingresos totales a los 10 años de trabajar en ese empleo. 2.- Cuando un objeto se deja caer libremente dentro de la atmósfera terrestre, la atracción gravitacional es tal que el objeto cae 16 ft en el primer segundo, 48 ft en el siguiente segundo, 80 en el siguiente, etc. a) Calcule la distancia total que cae el objeto en 6 s. b) Deduzca una fórmula de la distancia total que cae una pelota en n segundos. Página 9 de 11
10 3.- La cantidad de $1,000 se reparte entre 4 personas de manera que a partir de la segunda persona, cada una recibe $20 menos que la persona anterior. Cuánto recibe cada persona? 4.- Un hombre desea construir una escalera con nueve peldaños que disminuya uniformemente desde 24 pulgadas en la base hasta 8 pulgadas en la parte superior. Determina la longitud de los siete peldaños intermedios Laboratorio # 10 Progresión geométrica I.- Determina si las sucesiones siguientes definen o no una progresión geométrica ,2,4,6, ,2,3,4,11,12,13,14,... II.- Resuelve 1.- Encuentra y si 2.- Encuentra n y Sn 3.- Interpolar 3 medios geométricos entre 16 y 1/16 III.- Resuelve los siguientes problemas. 1.- El tercer término de un progresión geométrica es 3 y el séptimo termino es 3/16. Calcular la razón y el primer término 2.- Una bomba para extracción de aire expulsa en cada movimiento la decime parte del aire de un tanque. Calcular la fracción del volumen original de aire que queda en el tanque, al final de ocho movimientos. IV.- Determina la suma de la progresión geométrica infinita dada ,6,3, ,,1, V.- Resuelva los siguientes problemas. Página 10 de 11
11 2.- Halla tres números en progresión geométrica tales que su suma sea 38 y su producto sea igual a El segundo término de una progresión geométrica es 18 y el quinto término es. Calcule el sexto término y la suma de los cinco primeros términos. VI.- Escribe la fracción común (simplificada) equivalente al decimal periódico infinito dado Página 11 de 11
Álgebra Enero Laboratorio #1 Ecuaciones Cuadráticas I. I.- Resolver las ecuaciones siguientes usando el método Factorización.
Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes usando el método Factorización. 6x 2 + 11x = 10 4y 2 + 30 = 29y 8x 2 + 19x 27 = 0 60y 2 35 = 85y II.- Resolver las ecuaciones
Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.
Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
SUCESIONES Y SERIES MATEMÁTICAS
SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el
GBG ejerciciosyexamenes.com 1
PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12
PROGRESIONES GEOMÉTRICAS
PROGRESIONES GEOMÉTRICAS. Hallar el número de términos y la razón de una progresión geométrica cuyo primer término es 4 el último 6500 y la suma de todos sus términos 784.. La razón de una progresión geométrica
=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3
0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
PAIEP. Sucesiones, Sumatoria y Progresiones
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sucesiones, Sumatoria y Progresiones Definición: Una sucesión de números reales es una función a : N R, definida
CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1
BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números
2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (APLICADAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general
Progresiones Geométricas. tal que. a n+1 a n. = r. para todo entero positivo n.
www.matebrunca.com Profesor Waldo Márquez González Progresiones Geométricas 1 Progresiones Geométricas Una sucesión a 1, a 2, a,..., a n,... es una progresión geométrica si y sólo si si existe un número
PROGRAMA DE ESTUDIO. A. Antecedentes Generales.
PROGRAMA DE ESTUDIO A. Antecedentes Generales. - Nombre de la asignatura : MATEMATICA I - Código : EMM 114 - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : No tiene
3 x. x, escribe el coeficiente de x 3.
MATEMÁTICAS I ACTIVIDADES REFUERZO VERANO Ejercicio 1. Resuelve utilizando el método de Gauss y clasifica los siguientes sistemas de ecuaciones: + z = a) { y + z = 8 + y z = 1 9y + 5z = b) { + y z = 9
Álgebra II Agosto 2015
Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices: 4 3 5 2 4 0 0 2 a) ( 2 4 1 ) b) ( 1 5 8) c) ( 4 1 ) d) ( 3 2 1 5 4 ) e) ( 1 ) f) ( 3 1 5 2 ) 0
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
Tópicos de Álgebra Agosto 2015
Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices: 4 3 5 2 4 0 0 2 a) ( 2 4 1 ) b) ( 1 5 8) c) ( 4 1 ) d) ( 3 2 1 5 4 ) e) ( 1 ) f) ( 3 1 5 2 ) 0
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1619) I. PROGRESIONES
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (08) GUÍA DE MATEMÁTICAS VI (69) Sucesión: finita e infinita. Serie. Define progresión aritmética y geométrica. I. PROGRESIONES. Forma
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: {x/ -1
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA MATEMATICA I
ESCUELA Ciencias Administrativas CODIGO PREREQUISITO(S) 008-1613 Ninguno HORAS SEMANALES TOTAL HORAS SEMESTRE 05 90 HORAS TEORICAS HORAS PRACTICAS 02 03 UNIVERSIDAD DE ORIENTE NUCLEO DE ANZOATEGUI PROGRAMA
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA COLEGIO MILITAR ELOY ALFARO UNIDAD EDUCATIVA EXPERIMENTAL
Colegio Militar Eloy Alfaro Nombre Del Macroproceso: GESTION EDUCATIVA Nombre Del Proceso PLANIFICACIÓN Fecha: 1-09-2008 Código: C01-2.1-02-00-00-P01 Versión:1.0 Página: 1 de 13 UNIDAD DIDACTICA No. 1
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
PROGRESIONES. Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término:
1 Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término: 1.1 5, 9, 13, 17, 21,,,,, 1.2 22, 19, 16, 13, 10,,,,, 1.3 3, 6, 12, 24, 48,,,,, 1.4 1, 4, 9, 16, 25,,,,, 1 6 2 4 8 16 8 10 12
mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales
MasMatescom mx-y = m [04] [EXT] Considere el sistema de ecuaciones lineales, para m x+(m-4)y = m+ a) Discuta el sistema de ecuaciones para los diferentes valores del parámetro m b) Resuelva el sistema
6 ACTIVIDADES DE REFUERZO
6 ACTIVIDADES DE REFUERZO 1. Escribe los cuatro primeros términos de estas sucesiones recurrentes. a) a 1 = 1, a =, a n+ = a n+1 - a n b) a 1 = 1, a = 5, a n+ = a n + a n+1 c) a 1 = 0, a n+1 = 3 a n. Qué
Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES
Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias
ÍNDICE. Prefacio... xi
ÍNDICE Prefacio... xi 1 EL SISTEMA DE LOS NÚMEROS REALES... 1 1.1 Conjuntos... 1 Ejercicio 1.1, 20 problemas... 7 1.2 Constantes y variables... 8 1.3 El conjunto de los números reales... 9 Ejercicio 1.2,
TRABAJO DE VERANO DE MATEMÁTICAS DE 2º ESO
TRABAJO DE VERANO DE MATEMÁTICAS DE º ESO OPERACIONES CON DECIMALES. Coloca y efectúa estas divisiones sacando decimales si fuese necesario,89 6,7 b),6,,96 7, d),9,6 e),8,9 f) 6 7 g),9 6, 8 h) 8,96 9,
GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA.
GUÍA DE ESTUDIOS PARA EL EXAMEN A TITULO DE SUFICIENCIA DE FUNDAMENTOS DE ÁLGEBRA. INSTRUCCIONES El conjunto de ejercicios que a continuación se presenta tienen como objetivo proporcionarte orientación
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
Obligatoria Carlos Ernesto Lobato García, Nancy Programa elaborado por:
PROGRAMA DE ESTUDIO Matemáticas Básicas Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6 Clave: F1406 Tipo:
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +
001. Identifica, en un conjunto de números, los que son enteros.
2.6 Criterios específicos de evaluación. 001. Identifica, en un conjunto de números, los que son enteros. 002. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO (Primer Trimestre) (Para alumnos de 3º de ESO)
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO (Primer Trimestre) (Para alumnos de 3º de ESO) NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación
Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.
Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los
2. Determine los números enteros n que satisfacen la relación planteada:
ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.
CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
UNIDAD 4: SUCESIONES
UNIDAD 4: SUCESIONES ACTIVIDADES RELATIVAS A CADA PUNTO DE LA UNIDAD REGULARIDADES Y SUCESIONES 1. Con cerillas se han construido las siguientes figuras: a) Cuántas cerillas se necesitan para formar una
MATEMÁTICAS. Bachillerato: 1º H:
MATEMÁTICAS Bachillerato: 1º H: ÁLGEBRA: Operar con soltura expresiones con radicales y logaritmos. Conocer métodos de aproximación a números irracionales, y cuantificar el error que se puede cometer.
En este material se muestran ejemplos donde se aplican las fórmulas de las diferentes medidas de tendencia central, tales como: media aritmética,
En este material se muestran ejemplos donde se aplican las fórmulas de las diferentes medidas de tendencia central, tales como: media aritmética, mediana, moda, media geométrica, media cuadrática, percentiles,
ACTIVIDADES PARA PREPARAR EL EXAMEN DE SEPTIEMBRE. ES OBLIGATORIO ENTREGARLAS EL DÍA DEL MISMO PARA PODER APROBAR
ACTIVIDADES PARA PREPARAR EL EXAMEN DE SEPTIEMBRE. ES OBLIGATORIO ENTREGARLAS EL DÍA DEL MISMO PARA PODER APROBAR ª evaluación: N OS REALES. POTENCIAS Y RADICALES Escribe cuatro números racionales y cuatro
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones.
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones. Actividades para preparar el examen: Estudia si las afirmaciones siguientes son verdaderas: I.- CUESTIONES TEÓRICAS: 1) Una sucesión de números
Definición. Progresiones Aritméticas
www.matebrunca.com Profesor Waldo Márquez González Progresiones Aritméticas 1 Progresiones Aritméticas Un tipo particular de sucesión son la que se denominan progresiones; las más conocidas son las aritméticas
Tópicos de Álgebra Enero 2016
Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices. 4 3 5 2 4 0 0 A = ( 2 4 1 ) B = ( 1 5 8) C = ( 4 0 6 7 6 3 1 2 2 1 ) 1 D = ( 3 2 1 5 4 ) E = (
CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO
CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO UNIDAD 1 1.1. Simplifica y compara fracciones y las sitúa de forma aproximada sobre la recta. 1.2. Realiza operaciones aritméticas con números fraccionarios.
Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.
Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones
Programa de Asignatura ÁLGEBRA
Orientado por Objetivos de Aprendizaje Programa de Asignatura ÁLGEBRA A. Antecedentes Generales 1. Unidad Académica FACULTAD DE ECONOMÍA Y NEGOCIOS 2. Carrera INGENIERÍA COMERCIAL 3. Código ECM113 4. Número
TEORIA MATEMATICAS 5 PRIMER PARCIAL
Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:
1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.
EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {
Raíz Numérica y Radicales Capítulo Preguntas
Raíz Numérica y Radicales Capítulo Preguntas 1. Cuáles son las propiedades de un cuadrado? 2. Qué relación tienen la raíz cuadrada y el área de superficie?. Por qué ayuda saber de memoria los cuadrados
PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001
INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión
UD 1: NÚMEROS REALES Y COMPLEJOS
UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?
01. Identifica, en un conjunto de números, los que son enteros.
3.3.4 Criterios específicos de evaluación. 01. Identifica, en un conjunto de números, los que son enteros. 02. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos
1: LAS CUATRO OPERACIONES FUNDAMENTALES
ÍNDICE 1: LAS CUATRO OPERACIONES FUNDAMENTALES... 1 1.1 El sistema de los números reales... 1 1.2 Definiciones básicas... 5 1.3 Adición y sustracción... 6 1.4 Símbolos de agrupación... 8 1.5 Multiplicación...
REACTIVOS MATEMÁTICAS I. Unidad I Introducción al Álgebra. Indica la respuesta correcta a los siguientes planteamientos,
REACTIVOS MATEMÁTICAS I Unidad I Introducción al Álgebra Indica la respuesta correcta a los siguientes planteamientos, 0.- En un puesto de verduras del mercado, un cliente realizó la siguiente compra:.5
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
Orden Operaciones básicas, adición, sustracción, ecuaciones multiplicación, división y problemas. OPERACIONES CON NUMEROS NATURALES
AREA MATEMATICAS 2016 TEMAS PROMOCIÓN ANTICIPADA GRADO SEXTO LOGICA Y CONJUNTOS Proposiciones simples y compuestas. Conjuntos Operaciones SISTEMAS DE NUMERACION Romano Binario NUMEROS NATURALES. Orden
Utiliza los números ordinales al resolver problemas planteados de manera oral.
1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos. Utiliza los números ordinales al resolver problemas
Cálculo Integral Enero 2015
Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones
Potencias de exponente racional. Propiedades
INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: POTENCIAS Y RAICES EN LOS NUMEROS REALES Área: MATEMÁTICAS Asignatura: Matemáticas
11 Secuencias, Series y Probabilidad
Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #0: lunes, 7 de junio de 06. Secuencias, Series y Probabilidad. Continuación:
PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d
Indicador: Relaciona los elementos de una progresión. PROGRESIONES Dentro de las sucesiones existen dos modelos muy importantes y corresponden al nombre genérico de progresiones. PROGRESIONES ARITMÉTICAS
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real.
1.6 Criterios específicos de evaluación. 01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real. 02. Realiza operaciones aritméticas con números decimales y francionarios.
Polinomios y fracciones
3 Polinomios y fracciones algebraicas Ejercicios y problemas. Binomio de Newton 6 Desarrolla el siguiente binomio aplicando la fórmula de Newton: ( y) 3 8 3 y + 6y y 3 7 Desarrolla el siguiente binomio
Matemáticas de Nivelación
José Manuel Enríquez De Salamanca García Escuela Superior de Ingeniería. Cádiz Departamento de Matemáticas Turno I 24, 25, 26 y 30 de Septiembre y, 1 y 2 de Octubre Turno II 3, 4, 8, 9, 10 y 11 de Octubre
TÍTULO: MATEMÁTICA EXPERIMENTAL V9
TÍTULO: MATEMÁTICA EXPERIMENTAL V9 Disponibilidad Revisión de conceptos y repaso 12 Preguntas y respuestas sobre los números reales 12 Cómo esta constituido el conjunto de los números reales y como se
Relaciones de recurrencia
MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A
EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:
OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un
TALLERES 9 COLEGIO LUIS CARLOS GALÁN SARMIENTO
TRABAJO GEO No. 10 Identifique la figura y a que sólido geométrico pertenece, dibuje al frente el sólido que le corresponde señalándole las partes que posee. 1. 2. 3. 4. 5. 6. 7. 8. TRABAJO GEO No. 11
FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA
SILABO ASIGNATURA: INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES CODIGO: 3B0027 1. DATOS GENERALES 1.1DEPARTAMENTO : Ingeniería Electrónica e Informática 1.2 ESCUELA PROFESIONAL : Ingeniería Informática 1.3
Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2
Ecuaciones Ecuación cuadrática Ejercicios resueltos 1. Resolver la ecuación: ( 3)( + 4) = 1( ) ( 3)( + 4) = 1( ) + 5 1 = 1 4 8 + 15 = 0 coeficientes de la ec. cuadrática: a = 1, b = 8, c = 15 Discriminante
Matrices triangulares y descomposición LU
Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente
CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas.
Progresiones Contenidos 1. Sucesiones Definición. Regla de formación Término general 2. Progresiones Aritméticas Definición Término general Suma de n términos 3. Progresiones Geométricas Definición Término
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8
Nombre: Curso: 1.- Aplica el algoritmo de la raíz cuadrada para calcular Hazle la prueba a) + - b)
Departamento de Matemáticas. Curso 2010/11. PRUEBA INICIAL PARA 3ºESO. Nombre: Curso: 1.- Aplica el algoritmo de la raíz cuadrada para calcular 3219. Hazle la prueba. 2.- Calcula y simplifica: 3 1 5 4
INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO
INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de
CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas.
CURSO 2009-2010 DEPARTAMENTO: MATEMÁTICAS CURSO: 1º ESO ÁREA: MATEMÁTICAS Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. Cálculo del m.c.d. y m.c.m.
2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
1. Halle el décimo término de la progresión: %ß (ß "!ß Þ Þ Þ 2. Determine cuántos términos consecutivos a partir de ), en la progresión ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (ACADÉMICAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general
Ejercicios Aritmética - Álgebra. Elementos de Aritmética Operaciones aritméticas con números racionales
Ejercicios Aritmética - Álgebra Elementos de Aritmética Operaciones aritméticas con números racionales 1. Simplifica las siguientes fracciones: 1.0 a). 00.00 b) 6 18 c) 1. 0. Escriba como decimal finito
PRÁCTICA FINAL. Mª Esther Ruiz Morillas
PRÁCTICA FINAL Mª Esther Ruiz Morillas Repasamos Números x y =z y Álgebra Logaritmos Sucesiones: Aritméticas Geométricas Ecuaciones: De primer grado De segundo grado De grado superior Algebraicas Irracionales
BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES
BLOQUE 5 SUCESIONES Y SERIES DE NÚMEROS REALES Sucesiones de números reales - Límite de una sucesión - Cálculo de límites Series de números reales Progresiones aritméticas y geométricas Series geométricas
1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico
1º ESO 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico decimal. 2-Potencias y raíces. 3-Divisibilidad 7.- Las fracciones. 8.- Operaciones con fracciones.
