unidad 8 Funciones lineales
|
|
|
- Purificación Nieto Palma
- hace 7 años
- Vistas:
Transcripción
1 unidad 8 Funciones lineales Cuando dos magnitudes son proporcionales Página 1 Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado constante de proporcionalidad. Veamos un ejemplo: Las magnitudes x e ligadas por la relación = 3x son proporcionales. Puedes comprobar que al aumentar una (doble, triple, ), la otra aumenta del mismo modo; al disminuir una (mitad, tercera parte, ), la otra disminue de forma análoga. x = 3x ÄÄÄ constante de proporcionalidad actividades 1 Di, en cada caso, si el par de magnitudes son o no proporcionales: a) El coste de una bolsa de patatas su peso. b) El peso del agua en una garrafa el volumen que contiene. c) La longitud del lado de un cuadrado el área de este. d) El tiempo que lleva en marcha un tren con velocidad uniforme el camino que ha recorrido. e) La estatura de una persona su peso.
2 unidad 8 Funciones lineales Cómo se reresentan las relaciones de proporcionalidad Página Las funciones de proporcionalidad se representan mediante rectas que pasan por el origen de coordenadas. Veamos el ejemplo siguiente: Un kilo de patatas cuesta E. La representación de la función peso 8 coste es una recta. Cuando la x aumenta 1 kg, la aumenta E. La constante de proporcionalidad es ( E por cada kilo). Es la pendiente de la recta COSTE ( ) PESO (kg) actividades 1 Asocia cada una de las gráficas a uno de los siguientes enunciados: a) El peso en kilos del agua es igual a su volumen en litros. b) El espacio recorrido por un tren (en kilómetros) es igual a su velocidad (10 km/h) por el tiempo (en horas) que lleva en marcha Represéntalas en tu cuaderno, señala las escalas en los ejes di cuál es la constante de proporcionalidad en cada una de ellas
3 . Refuerza: función de proporcionalidad = mx Pág. 1 de 1 Completa las tablas, representa los puntos traza las rectas que determinan. a) = 1 x x 8 b) = 3 x 8 x Pendiente: m = Pendiente: m = c) = 3x 8 x d) = x 8 3 x Pendiente: m = Pendiente: m =
4 . Refuerza: función de proporcionalidad = mx Pág. de Observa cada recta escribe su pendiente (simplificada todo lo posible) su ecuación. a) b) Pendiente: m = Pendiente: m = Ecuación: = x Ecuación: = c) d) Pendiente: m = Pendiente: m = Ecuación: = Ecuación: =
5 3. Refuerza: función = mx + n Pág. 1 de 1 Representa las siguientes rectas completando previamente las tablas. Determina sus pendientes sus ordenadas en el origen. x a) = 3x + 8 b) = 1 x 1 8 x Pendiente: m = Pendiente: m = Ordenada en el origen: n = Ordenada en el origen: n = x c) = x 8 d) = 1 1 x 8 4 x Pendiente: m = Pendiente: m = Ordenada en el origen: n = Ordenada en el origen: n =
6 3. Refuerza: función = mx + n Pág. de Escribe la pendiente, la ordenada en el origen la ecuación de cada una de estas rectas. a) b) m = ; n = m = ; n = = x + = x + ( ) c) d) m = ; n = m = ; n = = x + ( ) = x +
7 UNIDAD 8 Funciones lineales 4. Refuerza: la ecuación punto-pendiente Pág. 1 de 1 Escribe la ecuación de la recta de pendiente m que pasa por P. a) m = 3 P (1, ) 8 = + (x ) b) m = 3 P ( 1, 3) 8 = + [x ( )] c) 1 m = 5 P (5, 0) 8 = + (x ) d) m = 1 P (, 1) 8 = + (x ) Determina la ecuación de las siguientes rectas: a) b) P P m = ; P (, ) m = ; P (, ) Ecuación: = + (x ) Ecuación: = + (x )
8 4. Refuerza: la ecuación punto-pendiente Pág. de c) d) P P m = ; P (, ) m = ; P (, ) Ecuación: = + (x ) Ecuación: = + (x )
9 5. Refuerza: ecuación de la recta que pasa por dos puntos Pág. 1 de 1 1 Calcula, en cada caso, la pendiente de la recta que pasa por los puntos P Q, escribe la ecuación de dicha recta usando el punto P. a) P (4, 6); Q (3, 3) m = = Ecuación: = + (x ) b) P (, 1); Q ( 4, 4) m = = Ecuación: = + (x ) c) P (, 4); Q ( 3, 1) m = = Ecuación: = + (x ) d) P ( 1, 1); Q (, 3) ( ) ( ) m = = Ecuación: = + [x ( )]
10 6. Refuerza: forma general de la ecuación de una recta Pág. 1 de 1 Representa las siguientes rectas completando previamente la tabla de valores: a) x +3 = 1 b) 4x = 3 = 8 x 1 5 = 8 x 1 0 c) x = 0 d) x = 0 = 8 x 6 = 8 x 1 4
11 6. Refuerza: forma general de la ecuación de una recta Pág. de Escribe la forma general de la ecuación de la recta para los datos que se ofrecen en cada apartado. a) P (5, ); Q (, 1) Ecuación general: b) P (, ); Q (, 1) Ecuación general: c) m = 1; P ( 3, ) Ecuación general: d) m = 3 ; P (3, 0) Ecuación general:
12 7. Auda para elegir escalas en los ejes Pág. 1 de 1 El coste de las llamadas provinciales en cierta compañía telefónica es de 0,30 de establecimiento de llamada más 0,05 /min. Dibuja la gráfica de la función que expresa el coste de las llamadas en euros al cabo de x minutos. COSTE ( ) 0,70 0,60 0,50 0,40 0,30 0,0 0, TIEMPO (min) El sueldo de Sara, vendedora de coches, es de fijos todos los meses más una comisión de 50 por cada coche que venda. Halla la función que expresa el sueldo de Sara un mes que haa vendido x coches dibuja su gráfica. = SUELDO ( ) N. DE COCHES
13 7. Auda para elegir escalas en los ejes Pág. de ACTIVIDADES 1 El coste de las llamadas a móviles en cierta compañía telefónica es de 0,80 de establecimiento de llamada más 0,50 /min. Dibuja la gráfica de la función que expresa el coste de las llamadas en euros al cabo de x minutos.,40 COSTE ( ),0,00 1,80 1,60 1,40 1,0 1,00 0, TIEMPO (min) La paga que le dan a Raquel sus padres es de 5 al mes más 0,50 cada día que haga la cama. Halla la función que expresa el dinero que recibe Raquel al final del mes habiendo hecho la cama x días dibuja su gráfica. = 10 PAGA ( ) N. DE VECES QUE HACE LA CAMA
14 UNIDAD 8 Funciones lineales 8. Refuerza: estudio conjunto de dos funciones Pág. 1 de 3 1 Un depósito contiene 40 l de agua recibe el caudal de un grifo que aporta 9 l por minuto. Un segundo depósito contiene 300 l recibe el caudal de un grifo que aporta 4 l por minuto. Cuánto tiempo pasará hasta que ambos depósitos tengan la misma cantidad de agua? Cantidad de agua (l ) en el primer depósito ( ) en función del tiempo (min) transcurrido (x ). 8 = + x 8 x Cantidad de agua (l ) en el segundo depósito ( ) en función del tiempo (min) transcurrido (x ). 8 = + x 8 x CANTIDAD DE AGUA (litros) TIEMPO (min) La reserva de agua se iguala en ambos depósitos transcurridos minutos.
15 UNIDAD 8 Funciones lineales 8. Refuerza: estudio conjunto de dos funciones Pág. de 3 Un depósito contiene 350 l de agua. Se le conecta una bomba que aporta 30 l por minuto a la vez que se abre un desagüe que evacúa 80 l por minuto. Cuánto tiempo tardará en vaciarse? Cantidad de agua (l ) que habría en el depósito ( ) en función del tiempo (min) transcurrido (x ) si no hubiera desagüe. 8 = + x 8 x 0 5 Cantidad de agua (l ) evacuada ( ) en función del tiempo (min) transcurrido (x ). 8 = x 8 x 0 5 CANTIDAD DE AGUA (litros) TIEMPO (min) Cuando la cantidad evacuada es igual a la que habría sin desagüe, el depósito estará vacío. El depósito se vacía en minutos.
16 UNIDAD 8 Funciones lineales 8. Refuerza: estudio conjunto de dos funciones Pág. 3 de 3 3 Un peatón sale a dar un paseo caminando a 4 km/h. Media hora más tarde sale en su busca un ciclista a 10 km/h. Cuánto tardará en darle alcance? Espacio recorrido por el peatón ( ) en función del tiempo transcurrido (x ) en horas. 8 = x 8 x 0 1 Espacio recorrido por el ciclista ( ) en función del tiempo transcurrido (x ) en horas. 8 = ( x ) 8 x 1/ 1 DISTANCIA (km) TIEMPO (min) (1 h) ( h ) El encuentro se produce cuando ambos haan recorrido la misma distancia. Por tanto, el encuentro se produce a los minutos de la salida del peatón.
unidad 8 Funciones lineales
Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado
Funciones lineales. DEBERÁS RECORDAR Cuándo dos magnitudes son proporcionales. Cómo se representan las relaciones de proporcionalidad.
Funciones lineales René Descartes (19-10), filósofo matemático francés, influó notablemente en el pensamiento de su época en el de siglos posteriores. GRUPO ANAA, S.A. Matemáticas. ESO. Material fotocopiable
PÁGINA El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste.
Soluciones a las actividades de cada epígrafe PÁGINA 7 1 El precio de un kilogramo de arroz es de 1,5. Representa, como en los ejemplos anteriores, la función peso 8 coste. COSTE ( ) 1 1 1 ARROZ 8 1 5
Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.
. RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)
PÁGINA Representa: a) y = 2x. b) y = 2 3 x. c) y = 1 4 x. d) y = 7 3 x. 2 Representa: a) y = 3 b) y = 2 c) y = 0. d) y = 5
Soluciones a las actividades de cada epígrafe PÁGINA 6 Pág. Representa: a) y = x y = x y = x 3 b) y = 3 x c) y = x y = x d) y = 7 3 x 7 y = x 3 Representa: a) y = 3 b) y = c) y = 0 y = 3 y = 0 y = d) y
Funciones. 1. De las gráficas siguientes, cuáles son funciones y cuáles no? Razona la contestación. a) b) c)
Funciones 1. De las gráficas siguientes, cuáles son funciones y cuáles no? Razona la contestación. a) b) c) f ) g) 2. Esboza una representación gráfica de las siguientes funciones: a) La altura a la que
BLOQUE III Funciones
BLOQUE III Funciones 0. Rectas e hipérbolas 0 Rectas e hipérbolas. Las funciones P I E N S A C A L C U L A Representa en unos ejes de coordenadas todos los puntos en que la ordenada sea el doble de la
8Soluciones a las actividades de cada epígrafe PÁGINA 160
PÁGINA 60 Pág. La compañía que suministra agua a una urbanización oferta dos posibles tarifas mensuales: TARIFA A fijos más 0,0 /m TARIFA B 0 fijos más 0,0 /m 0 COSTE ( ) Coste con B Coste con A 0 0 CONSUMO
TEMA 10. FUNCIONES. Cómo se representan?
Eje de ordenadas: y TEMA 10. FUNCIONES Qué son? Cómo se representan? Dónde se representan? Es una correspondencia (relación) entre dos variables de manera que a cada valor de la primera (variable independiente)
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Representación de rectas ESTÁ RESUELTO EN EL LIBRO Representa las rectas: a) y = x b) y = x c) y = x d) y = a) b) c) d) Representa las rectas: a) y = 0,8x b) y = x c) y =,6x d) y =
CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA
REPASO APOO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA OBJETIVO FUNCIÓN LINEAL función de proporcionalidad directa o función lineal se expresa de la forma: y m? x, siendo m un número cualquiera. representación
Estudio gráfico de funciones
Estudio gráfico de funciones 1. Indica si las siguientes funciones son continuas o discontinuas, y determina, en su caso, los puntos de discontinuidad. 2. Calcula los puntos de corte de las siguientes
Funciones y gráficas. Londres Atenas París Londres Múnich Barcelona. Países Hombres Mujeres
000 Atenas 96 París Londres Múnich Barcelona 94 94 97 99 Países Hombres Mujeres Londres 0 En enero hubo 00 clientes; en febrero, 50; en marzo, 00; en abril, 50; en mayo, 300; y en junio, 400. El total
Ámbito Científico-Matemático MATEMÁTICAS 3º E.S.O.
CUADERNILLO RECUPERACIÓN DE PENDIENTES CURSO 2017/2018 Ámbito Científico-Matemático MATEMÁTICAS 3º E.S.O. 3ª EVALUACIÓN Los ejercicios deben ser entregados en A4 blancos al profesor correspondiente en
Características globales de las funciones
Características globales de las funciones. Funciones Considera los rectángulos con un lado de doble longitud que el otro. Expresa el perímetro y el área en función del lado menor. P = (x + x) = x A = x
Podemos razonar de dos formas distintas: Resolución 1: Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n.
. Escribe la ecuación de esta recta: A Y Podemos razonar de dos formas distintas: Resolución : Hallamos la pendiente y la ordenada en el origen y utilizamos la forma y = mx + n. Pendiente: cuando x aumenta,
CUADERNILLO RECUPERACIÓN DE PENDIENTES
CUADERNILLO RECUPERACIÓN DE PENDIENTES CURSO 2017/2018 MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS APLICADAS 3º E.S.O. 3ª EVALUACIÓN Los ejercicios deben ser entregados en A4 blancos al profesor correspondiente
OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:
OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número
IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1
SOLUCIONES MÍNIMOS CURSO 1º ESO TEMA 6 PROPORCIONALIDAD Ejercicio nº 1.- Indica los pares de magnitudes que son directamente proporcionales (D.P.), los que son inversamente proporcionales (I.P.) y los
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. Página Completa la siguiente tabla: Nº- de vídeos 0 6 7 8 9 0 Coste no socios 0, 7, 0, 7, 0, Coste socios 6 7 8 9 0 Completa en tu cuaderno la gráfica de la derecha, representando los resultados con
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
Funciones. Rectas y parábolas
0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
Recuerda lo fundamental
8 Funciones lineales Recuerda lo fundamental Curso:... Fecha:... FUNCIONES LINEALES FUNCIÓN DE PROPORCIONALIDAD Su ecuación es y =... Su gráfica es una...... que pasa por... EJEMPLO: FUNCIÓN y = mx + n
COLEGIO SAN ALBERTO MAGNO. Matemáticas. Educación Secundaria 3 1 EXAMEN DE LA UNIDAD 1: FRACCIONES Y DECIMALES
COLEGIO SAN ALBERTO MAGNO Matemáticas Educación Secundaria 1 EXAMEN DE LA UNIDAD 1: FRACCIONES Y DECIMALES 0 10 14 Ejercicio nº 1.- [ PUNTOS] Opera y simplifica el resultado: 1 1 1 1 1 : 5 10 5 1 1 : +
I.E.S. HAYGÓN CURS 2011/2012 NOM Y APELLIDOS FICHA RECUPERACIÓN VERANO 2012
I.E.S. HAYGÓN CURS 0/0 NOM Y APELLIDOS FICHA RECUPERACIÓN VERANO 0. Calcula: a 9 0 ()) b 4 c 7 4 4 d) 7 4. ( puntos) Simplifica aplicando las propiedades de las potencias:. 9 4 4. 7. 7 4.. Los /7 de las
TEMA 8. FUNCIONES. 2. Esta es la gráfica de la variación de altura de los cestillos de una noria a lo largo del tiempo.
TEMA 8. FUNCIONES. 1. La siguiente gráfica muestra el volumen de aire que entra y sale de los pulmones en una prueba de espirometría realizada a un paciente. a) Cuáles son las variables independiente y
8. Características globales de las funciones
9 SOLUCIONARIO 8. Características globales de las funciones. FUNCIONES PIENSA CALCULA Considera los rectángulos con un lado de doble longitud que el otro. Expresa el perímetro y el área en función del
3º ESO. ACTIVIDADES DE RECUPERACIÓN
º ESO. ACTIVIDADES DE RECUPERACIÓN. Opera: [ 7 ( )] (7 ) ( ) :( ) ( ) f) 7 9 c) d) e) 9 : 9 : g) h). Calcula utilizando las propiedades de las potencias. Deja el resultado en forma de potencia: 8 9 9 c)
EJERCICIOS REPASO MATEMÁTICAS 3º E.S.O. 1 =
EJERCICIOS REPASO MATEMÁTICAS º E.S.O. 1. Opera y simplifica: 5 1 a) + b) + 8 5 8 5 1 5 1 c). d) 6 1 1 1 1 e) : f) : 5 10 8 1 g) 1 + + 1 + + h) +. 1 6 1 6 i). +. k). 1 + 5 5. Dados los siguientes números
12 ACTIVIDADES DE REFUERZO
2 ACTIVIDADES DE REFUERZO. Representa estas funciones utilizando los mismos ejes de coordenadas, e indica su pendiente y su ordenada en el origen. a) y = x 2 b) y = 2 c) y = 2x d) y = 2x 2. Determina la
La segunda coordenada se mide sobre el eje de ordenadas, y se le llama coordenada y del punto u ordenada del punto.
Coordenadas de un punto Para representar los puntos en el plano, necesitamos dos rectas perpendiculares, llamados ejes cartesianos o ejes de coordenadas: El eje horizontal se llama eje X o eje de abscisas.
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales.
UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales. GRADO DE DIFICULTAD BAJO 1. Dos variables son directamente proporcionales si: A) Al aumentar un valor de una de ellas el valor correspondiente
CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional.
Funciones Contenidos 1. Relaciones funcionales Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2. Representación gráfica A partir de tabla o fórmula Unos símbolos muy útiles 3. Propiedades generales
Funciones elementales
CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones elementales Contenidos 1. Funciones polinómicas Función de proporcionalidad directa Funciones afines Funciones cuadráticas 2. Otras funciones Función de proporcionalidad
TAREA DE VERANO MATEMÁTICAS REFUERZO 3º ESO
TAREA DE VERANO MATEMÁTICAS REFUERZO º ESO Realiza las siguientes operaciones: 7 8 7 0 0 0 8 Calcula el valor de las siguientes epresiones: : Realiza las siguientes operaciones: 7 Un embalse está lleno
CUADERNO Nº 12 NOMBRE: FECHA: / / Funciones. Comprender, distinguir y valorar el concepto de función.
Funciones Contenidos 1. Relaciones funcionales Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2. Representación gráfica A partir de tabla o fórmula Unos símbolos muy útiles 3. Propiedades generales
CUADERNILLO RECUPERACIÓN DE PENDIENTES
CUADERNILLO RECUPERACIÓN DE PENDIENTES CURSO 2017/2018 MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 3º E.S.O. 3ª EVALUACIÓN Los ejercicios deben ser entregados en A4 blancos al profesor correspondiente
Departamento de Matemáticas IES Poeta Julián Andúgar-Santomera 4º 4º ESO MATEMÁTICAS A TRABAJO DE VERANO
4º 4º ESO MATEMÁTICAS A TRABAJO DE VERANO UNIDAD 1. Departamento de Matemáticas NÚMEROS ENTEROS Y RACIONALES 1) Calcula: a) 9 ( 10 + 4 ( ) + ( )) ) b) ( 4) ( ) : + ( 8 c) + [ 7 + ( 4) ( ) 8 : 4] d) ( 1)
Función grado 1. a) b) c) x y x y x y 2 5 3 3 2 3 3 7,5 7 7 3 4 7 17,5 9 9 5 6. 1 Proporcionalidad
Función grado 1 1 Proporcionalidad 1 Qué son variables proporcionales? Sabiendo que Kgs de fruta cuestan 500 Pts haz una tabla con 4 valores que relacione precio con kilos de fruta. Cuánto vale la constante
EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO
NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número
x = = y = TEMA 7: SISTEMAS DE ECUACIONES ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS
TEMA 7: SISTEMAS DE ECUACIONES ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Este tipo de ecuaciones reciben el nombre de ecuaciones lineales y se pueden escribir de la forma ax + by = c donde a, b y c
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
DISTINGUIR RELACIONES FUNCIONALES ENTRE MAGNITUDES
DISTINGUIR RELACIONES FUNCIONALES ENTRE MAGNITUDES REPASO APOO OBJETIVO Magnitud es cualquier característica que puede ser medida y su valor expresado mediante un número. relación entre dos magnitudes
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. PÁGINA 9 EJERCICIOS Primeras ecuaciones 7 8 5 5 0 0 0 5 + 5 0 0 5 5 + 6 6 0 7 7 7 5 6 9 7 8 6 9 5 + + 6 5 5 0 0 Cualquier solución es válida. Pág. 0 8 + 5 6 8 5 5 7 + + + 6 9 8 + + 8 9 7 + 7 + 8 +
Ficha de Repaso: Proporcionalidad
Ficha de Repaso: Proporcionalidad 1. Indica en las siguientes afirmaciones, cuales son las magnitudes que se relacionan. Escribe esa relación en forma de razón: a) Una paella para 4 personas necesita medio
1 Función de proporcionalidad y = mx
Unidad. Funciones lineales y cuadráticas Función de proporcionalidad y = mx Página. Dibuja sobre unos ejes cartesianos, en papel cuadriculado, dos rectas que pasen por el origen y que tengan pendientes
Gráfica a) Gráfica b)
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO CURSO: 4º ESO FUNCIONES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos
Ecuaciones de 1er y 2º grado
Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:
UNIDADES 9 y 10 FUCIONES ELEMENTALES
Pág. 1 de 8 UNIDADES 9 y 10 FUCIONES ELEMENTALES 1. FUNCIONES LINEALES Actividades de clase 1.1. Obtén la pendiente y la ordenada en el origen de las siguientes rectas. Son todas funciones? a. y = 2x +
UNIDAD 5 FUCIONES ELEMENTALES
Pág. 1 de 8 UNIDAD 5 FUCIONES ELEMENTALES 1. FUNCIONES LINEALES Actividades de clase 1.1. Obtén la pendiente y la ordenada en el origen de las siguientes rectas. Son todas funciones? a. y = 1 2x b. y =
RELACIÓN DE ACTIVIDADES PARA PREPARAR LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE. 1º ESO. CURSO
RELACIÓN DE ACTIVIDADES PARA PREPARAR LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE. 1º ESO. CURSO 2016-2017 1. Realiza las siguientes operaciones: a) 8 12 + (25 : 5 + 7) b) 2 1 9 : 7 + (5 5) : 2 c) 6 + 16 5
9. Rectas e hipérbolas
08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente
ACTIVIDADES MATEMÁTICAS APLICADAS DE 4º ESO
ACTIVIDADES MATEMÁTICAS APLICADAS DE 4º ESO Ejercicio nº 1.-Calcula: a) ( 12) : ( 2) + ( 3) ( 4) + ( 7) b) 8 + 3 [5 4 + ( 2) ( 3) 7] c) ( 10) ( 1) ( 2) : 2 + ( 9) d) 7 2 [4 8 : ( 1) + ( 3)] 2 e) ( 8) [4
MATEMÁTICAS 9. TALLER DE FUNCIONES No 1
MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina
1 A la vista de la siguiente representación gráfica, encuentra el dominio y el recorrido de la función.
1 A la vista de la siguiente representación gráfica, encuentra el dominio y el recorrido de la función. A la vista de la siguiente gráfica de la aceleración de un vehículo a partir de un determinado instante
FUNCIONES Ejercicios de refuerzo Matemáticas 3º ESO
FUNCIONES Ejercicios de refuerzo Matemáticas º ESO. Determina el domino el recorrido para las siguientes funciones. Son funciones continuas? Indica, si los tiene los puntos de discontinuidad. - - - - -
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO
Pág. ENUNCIADOS Indica si los siguientes pares de magnitudes son directa o inversamente proporcionales: a) La distancia recorrida por un caminante, a velocidad constante, y la duración del paseo. b) El
SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD
SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura
Pendientes de Matemáticas de 1º ESO Relación 6. Proporcionalidad.
Pendientes de Matemáticas de 1º ESO Relación 6. Proporcionalidad. NOMBRE 1) Calcula el término que falta en cada caso: a) 5 = 15 b) 6 x 35 20 = c) = d) x = 5 8 x 9 15 x 12 30 25 2) Entre estos pares de
EXAMEN DEL TEMA 9. cuadráticas: sin tabla de valores. Esbòzala solamente.) (1 p)(# 1.8 p) (0.5 p)
EXAMEN DEL TEMA 9 Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta. d) Es una hoja
PÁGINA Averigua cuáles de los siguientes pares de valores son soluciones de la ecuación 3x 4y = 8. x = 4 y = 1. x = 3 y = 2.
Soluciones a las actividades de cada epígrafe PÁGINA 156 1 Averigua cuáles de los siguientes pares de valores son soluciones de la ecuación 3x 4y = 8. a) x = 4 y = 1 b) x = 3 y = c) x = 0 y = d) x = 1
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la
UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:
UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente
Gráfica a) Gráfica b)
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (APLICADAS) CURSO: 4º ESO FUNCIONES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE. A los padres del alumno/a.. de 2º
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE A los padres del alumno/a.. de º de ESO Puesto que su hijo no ha superado los objetivos de º de ESO en el área de Matemáticas, es necesario que
4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16
REPASO NÚMEROS REALES, POTENCIAS Y RAÍCES 3ºESO Alumno/a : 1. Dibuja un diagrama que exprese las relaciones existentes entre cada uno de los conjuntos numéricos. Indica el conjunto numérico más pequeño
Constante de proporcionalidad. Propiedades de las proporciones. En una proporción del producto de los medios es igual al
Definición de proporción Proporción es una igualdad entre dos razones. Constante de proporcionalidad Propiedades de las proporciones En una proporción del producto de los medios es igual al producto de
1.- Cuántas botellas con una capacidad de ¾ l se pueden llenar con 0,45 dam³ de agua?
EJERCICIO 1 CUERPOS GEOMÉTRICOS 1.- Halla el área total de los siguientes cuerpos: EJERCICIO 1 MEDIAS DE VOLUMEN 1.- Cuántas botellas con una capacidad de ¾ l se pueden llenar con 0,45 dam³ de agua? EJERCICIOS
15 Funciones de proporcionalidad inversa
ACTIVIDADES DE REFUERZ 5 Funciones de proporcionalidad inversa. Dada la función, halla su dominio sus asíntotas. Confecciona una tabla de valores haz su represen tación gráfica.. De cierta función f()
Interpretación de gráficas 1
Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.
GRÁFICOS Y FUNCIONES.
GRÁFICOS Y FUNCIONES. COORDENADAS DEL PLANO Para representar los puntos en el plano, necesitamos dos rectas perpendiculares, llamados ejes cartesianos o ejes de coordenadas: El eje horizontal se llama
Funciones polinómicas, racionales y exponenciales
008 _ 06-08.qd 9/7/08 9:07 Página 6 Funciones polinómicas, racionales eponenciales INTRODUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos
8. Ecuaciones de 1. er y 2. o grado
0 Solucionario. Ecuaciones de. er y. o grado. Ecuaciones de. er grado piensa y calcula Resuelve mentalmente: a) + = b) = c) = d) = a) = b) = c) = d) = CARNÉ CALCULISTA, : C =,; R = 0, APLICA LA TEORÍA
La subida ha durado 55 minutos, y la bajada, 32 minutos.
7Soluciones a los ejercicios problemas 16 Un ciclista sube un puerto, después, desciende por el mismo camino. Sabiendo que en la subida ha tardado 23 minutos más que en la bajada que la duración total
P RACTICA. 1 Es 3 o 2 solución de alguna de las siguientes ecuaciones? Compruébalo. 3 Resuelve mentalmente y explica el proceso que has seguido.
Pág. P RACTICA Ecuaciones: soluciones por tanteo Es 3 o 2 solución de alguna de las siguientes ecuaciones? Compruébalo. a) 3 x + x 5 3 3 b) 2 x + 2 x 2 x + 4 c) (2 x) 3 +3x x 2 d) 4 x 4 3 Resuelve mentalmente
Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES Nombre y Apellidos: Grupo: 1ºB Fecha: 21/04/2009 CALIFICACIÓN: Ejercicio
8 FUNCIONES EJERCICIOS
FUNCIONES EJERCICIOS Traza en tu cuaderno unos ejes de coordenadas representa en ellos los puntos A(, ), B(0, ), C(, ), D(, 0) E(, ). D E A Encuentra las coordenadas del vértice D del rectángulo ABCD,
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Aplicaciones. 1. Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la edad del padre tres veces mayor que la edad del hijo?
PLAN DE REPASO CONTENIDOS MÍNIMOS
MATEMÁTICAS 1º ESO IES LOS CARDONES 2016-2017 PLAN DE REPASO CONTENIDOS MÍNIMOS BLOQUE I: Resolución de problemas BLOQUE II: Representación y ordenación de números enteros, fracciones y decimales. Cálculo
CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA
0 REPASO APOO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA OBJETIVO Una función de proporcionalidad directa, se epresa de la forma: y = m, siendo m un número cualquiera. La representación gráfica de
GUIA DE TRABAJO #39-A Materia: Matemáticas. Tema: Geo. Analítica. Función afín (Santillana 8vo. grado). Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO #9-A Materia: Matemáticas. Tema: Geo. Analítica. Función afín (Santillana 8vo. grado). Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.
a Cuál o cuáles de estos números son múltiplos de 12? Explica por qué
Ejercicio nº 1.- Responde a las preguntas y justifica tu respuesta: a Cuál o cuáles de estos números son múltiplos de 1? Explica por qué. 96 8 84 99 b Cuál o cuáles de estos números son divisores de 96?
1. Números naturales y enteros
. Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. PÁGINA Con los datos de la ilustración, calcula la distancia que recorre cada vehículo en una hora. Coche de caballos en min 0 km en 0 min Coche utilitario 0 km en min 0 km en min 00 km en 0 min Bólido
Problemas de 3º de la ESO para alumnos de 4º ESO con la asignatura suspensa del curso anterior.
Problemas de º de la ESO para alumnos de º ESO con la asignatura suspensa del curso anterior. Ejercicio nº.- a) Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan:
CHICOS x; CHICAS y CHICOS + CHICAS = 29 CHICAS = CHICOS + 3 x + y = 29 y = x + 3 x = 13 y = 16 En la clase hay 13 chicos y 16 chicas.
2º ESO - PROBLEMAS UNIDAD 7: ECUACIONES II 1 En una clase hay 29 alumnos y alumnas, pero el número de chicas supera en tres al de chicos. Cuántos alumnos y cuántas alumnas hay en la clase? CHICOS x; CHICAS
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
PLAN DE TRABAJO PARA EL VERANO PROGRAMA Pre-PEMAR 2º ESO. (IES Canarias Cabrera Pinto curso 15/16)
PLAN DE TRABAJO PARA EL VERANO PROGRAMA Pre-PEMAR 2º ESO (IES Canarias Cabrera Pinto curso 15/16) 0 CUADERNILLO DE REPASO MATEMÁTICAS ALUMNO/A... GRUPO 2º E (PRE-PMAR) VERANO 2016 1 IMPORTANTE: Las actividades
