Integrales impropias (funciones no continuas sobre conjuntos acotados)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrales impropias (funciones no continuas sobre conjuntos acotados)"

Transcripción

1 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Integrales impropias (unciones no continuas sobre conjuntos acotados) Ejemplo Considere la unción (x, y) xy x 2 + y 2 En este caso si nos acercamos a cero por la recta x por lo que (, y) (, y) (x,y) (,) Por otro lado si nos acercamos a cero por la recta y x se tiene por lo que (x, x) x2 2x 2 2 (x,y) (,) (x, x) 2 de manera que esta unción no es continua en cero. Sin embargo xy x 2 + y 2 dx 2 ln(2) Dado que las integrales dobles ueron denidas para unciones continuas, lo que haremos es restringir el dominio de la unción a una región ' en la cual la unción sea continua y sin problema podamos calcular Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz

2 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados En este caso podemos denir y en si es continua por lo que [, ] [, ] xy x 2 dx + y2 ( 2 ln(2 + y 2 )y + 2 ln(y2 + )y ) 4 ln(22 ) ln(22 ) 2 4 ln(2 + ) 2 4 ln(2 + ) 4 ln(2 + ) 2 4 ln(2 + ) + 2 ln(2) Acercandonos a cero 4 ln(22 ) ln(22 ) 2 4 ln(2 + ) 2 4 ln(2 + ) 4 ln(2 + ) 2 4 ln(2 + ) + 2 ln(2) 2 ln(2) Teorema. Condición necesaria y suciente de convergencia de integrales impropias de unciones positivas. Si en, y si existe una sucesión de conjuntos en n, tal que n L entonces es convergente a L Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz 2

3 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Demostración. Necesidad Considérese el conjunto de área A() y una sucesión de subconjuntos cerrados n cuyas áreas A( n ) tienden hacia A(). Aquí los n se amplian monótonamente en el interior de 2 n Se supone que la unción es continua en cada n. Es más debe existir una constante µ tal que n dx µ para toda n. Las integrales para cada n prman una sucesión creciente y acotada y, por tanto tiene un ite. Por el criterio de convergencia de Cauchy, para cada > puede hallarse n() tal que, para cada m > n > n() dx dx dx m n m n dx < m n para m > n > n() se concluye existe. Suciencia Basta probar que para subconjuntos n y (x, y) dx n de se cumple L L donde L I n I n L I n In Dado n compacto y como n es una sucesión de conjuntos en, entonces algún N (natural) tal que n n n > N podemos escribir n n n n H H n n siendo sobre H se tiene que I n n Intercambiando n con + n n n I n n resulta que L L L L H n > N L I n L L L Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz

4 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Ejemplo Evaluar linea y x Sol. da donde es el triángulo acotado por los ejes X y la linea x y la En la recta y x, da no esta denida por lo tanto escribimos x dx y notamos que la integral interior es impropia por lo que x y + da + x dx o x y + dx x + 2 xdx + 2 dx 2 [ + ] 2 x 2 x Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz 4

5 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Integrales impropias (unciones no acotadas) Sea el cuadrado unitario [, ] [, ] y sea : denida por (x, y) { x si x (, y) no está acotada en, pues conorme x se acerca a cero, se vuelve arbitrariamente grande. Sea i,j una partición regular de y ormemos las suma de iemann n n Sn (c ij ) x y Si invertimos el orden de integracón obtenemos el mismo valor. Asi en cierto i j Sea el subrectángulo que contiene a (, ) y escojamos algún C. Para n ja, podemos hacer S n tan grande como queramos al escoger C mas y mas cerca de (, ), entonces, S n no puede ser independiente de la selección de C ij sin embargo, evaluemos ormamelmente la integral iterada de, siguiendo las reglas para integrar una unción de una variable. (x, y) dx x 2 x 2 2 sentido, esta unción es integrable. La pregunta es en que sentido. Supongamos que la región D es del tipo y : D es continua y acotada exepto en ciertos puntos de la rontera. Y que es no negativa y D está descrita por a x b, φ (x) y φ 2 (x) Escogemos números δ, η > tales que D δη sea el subconjunto de D ormado por los puntos (x, y) con a + η x b η, φ (x) + δ y φ 2 (x) δ Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz 5

6 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados donde η y δ se escogen lo sucientemente pequeños para que D ηδ D. Como es continua y acotada en D ηδ existe la integral da ahora siempre que da existe, decimos que la integral D ηδ (η,δ) (,) D ηδ de sobre D es convergente o que es integrable sobre D y denimos Como es integrable sobre D ηδ podemos aplicar ubini. D ηδ da Entonces si es integrable sobre D tenemos b η φ2(x) δ a+η D da (x, y)dx φ (x)+δ b η (η,δ) (,) a+η D φ2(x) δ φ (x)+δ (η,δ) (,) (x, y)dx D ηδ Ejemplo Calcular donde [, ] [, ] xy Solución Elegimos {(x, y) 2 x, y } En se tiene ( dx xy ) ( dx x ) y ( ) ( 2 x 2 ) 2 y 2 ( 2 ) ( ) 2 2 Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz 6

7 Unidad Integrales Múltiples. Funciones no continuas sobre conjuntos acotados Ahora tomando limite por lo tanto ( 2 ) ( ) dx 9 xy 4 Ejemplo Calcular donde {(x, y) 2 x 2 + y 2 } dx x2 + y2 Solución Elegimos {(r, θ) 2 r, θ 2π} En se tiene haciendo cambio de variables a coordenadas polares x r cos(θ), y r sen(θ) 2π r dθ dr r Ahora tomando limite por lo tanto 2π dr 2π( ) 2π( ) 2π dx 2π x2 + y2 Cálculo Dierencial e Integral IV Pro. Esteban ubén Hurtado Cruz 7

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I 5. Prueba M de Weierstrass Teorema. Criterio de Cauchy para Convergencia Uniorme de sucesiones de unciones. Una sucesión de unciones { n } denidas en I, converge uniormemente si y solo si ɛ > 0, eists

Más detalles

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES

INTEGRALES DE FUNCIONES DE VARIAS VARIABLES INTEGALES DE FUNCIONES DE VAIAS VAIABLES [Versión preliminar] Prof. Isabel Arratia Z. Integrales dobles sobre rectángulos La integral de iemann para una función f de dos variables se define de manera similar

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Integrales impropias múltiples

Integrales impropias múltiples Integrales impropias múltiples ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Caracterización de la integrabilidad impropia 2 3.

Más detalles

Medida Cero y Contenido Cero

Medida Cero y Contenido Cero Medida Cero y Contenido Cero Ejemplo.- Sea f : [0, 1] [0, 1] definida como 1 si x o y Q f(x, y) = 0 si x y y / Q Mostrar que f Sea P cualquier partición de y i cualquier subrectángulo inducido por esta

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2004) * El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Capítulo La integral de Riemann

Capítulo La integral de Riemann Capítulo 5 Integración 1. La integral de iemann Empecemos por recordar la integral de iemann de una función acotada f : [a, b]. Una partición P de [a, b] es un subconjunto finito P [a, b] tal que a, b

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Medida Cero y Contenido Cero. U i. v(u i ) < ) I k y v(i k ) = ɛ. y para la suma de los volumenes se tiene

Medida Cero y Contenido Cero. U i. v(u i ) < ) I k y v(i k ) = ɛ. y para la suma de los volumenes se tiene Denición 1. Si f : A R R. Denotamos por D fa al conjunto de discontinuidades de F en A, es decir D fa = {x A f es discontinua en x} Corolario 1. Sea f : A R R integrable sobre R. Entonces D fr tiene interior

Más detalles

Solución Tercera Prueba Intermedia (11/04/2018) Curso 2017/18

Solución Tercera Prueba Intermedia (11/04/2018) Curso 2017/18 Problema 1. Indica si los siguientes enunciados son VERDADEROS o FALSOS, justicando la respuesta. (a) Dos curvas de nivel diferentes de un mismo campo escalar f(x, y) no pueden tener puntos en común. (b)

Más detalles

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 32: Algunas ideas sobre la integral doble. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 32: Algunas ideas sobre la integral doble Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Idea de integral doble - Teorema de Fubini - Cambio a coordenadas polares Integral doble

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

Teorema 1. Sea f : [a, b] R, f acotada en [a,b], si f es continua en [a,b] excepto en un conjunto nito de puntos, entonces f es integrable.

Teorema 1. Sea f : [a, b] R, f acotada en [a,b], si f es continua en [a,b] excepto en un conjunto nito de puntos, entonces f es integrable. Unidad Integral de nida 5 Teorema del Valor Medio Teorema Sea f : a, b] R, f acotada en a,b], si f es continua en a,b] excepto en un conjunto nito de puntos, entonces f es integrable Demostración Sean

Más detalles

Teoremas de Tonelli y Fubini

Teoremas de Tonelli y Fubini Teoremas de Tonelli y Fubini Objetivos. Demostrar teoremas de Tonelli y Fubini, conocer contraejemplos que muestran la importancia de algunas condiciones de estos teoremas. Requisitos. Definición del producto

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D Universidad de la República - Facultad de Ingeniería - IMERL Cálculo Solución - Examen 2 de julio de 206 Múltiple Opción Respuestas Sean {a n } y {b n } dos sucesiones... 2 3 4 5 A A D C E Para cada a

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a)

En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a) Capítulo 6 Cambio de variable 1. Particiones de la Unidad En este capítulo extenderemos la conocida ecuación (6.1) g(b) g(a) f = b a f g g, válida para funciones iemann-integrables f y funciones diferenciables

Más detalles

Integración doble. introducción

Integración doble. introducción introducción La integral de una función de dos variables f : D 2, llamada integral doble, es una generalización del concepto de integral de iemann en una variable y se denota por: f(x, y) da D Comenzamos

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN CAPÍTULO 13. INTEGRACIÓN SOBRE CONJUNTOS ACOTADOS.

UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN CAPÍTULO 13. INTEGRACIÓN SOBRE CONJUNTOS ACOTADOS. Índice Pág. UNIDAD DIDÁCTICA 4 Cálculo integral CAPÍTULO 12. LA INTEGRAL MÚLTIPLE DE RIEMANN... 13 1. Introducción. La integral doble... 17 2. Integral múltiple... 21 3. Medida cero y contenido cero...

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

CÁLCULO INTEGRAL. HOJA 9.

CÁLCULO INTEGRAL. HOJA 9. CÁLCULO INTEGRL. HOJ 9. EL TEOREM DEL CMIO DE VRILES. 1. Teorema (del cambio de variables). Sea g : U V un difeomorfismo de clase C 1 entre dos abiertos de R n, sea f : V R medible. Entonces f g es medible

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES 1 1. CONTINUIDAD EN VARIAS VARIABLES 1.1. PRIMERAS DEFINICIONES. LÍMITES Definición 1.1. Sea A R n. Una función real de varias variables es una aplicación f : A R n R m con f(x 1,..., x n ) = (y 1,...,

Más detalles

5. Integrales dobles de Riemann.

5. Integrales dobles de Riemann. 68 Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras. 19 Julio 2006. 5. Integrales dobles de Riemann. El desarrollo de la teoría de integrales múltiples de Riemann lo haremos con

Más detalles

Relación de ejercicios. Topología en R N

Relación de ejercicios. Topología en R N Relación de ejercicios. Topología en R N Abraham Rueda Zoca Ejercicio. Sea N un número natural. Demostrar que dados x, y R N se cumple que x y x y. Indicación: Utilizar la desigualdad triangular. Ejercicio

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0.

MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas. f n (z)dz = 0. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 1 Rodrigo Vargas 1. Si f n : Ω C analítica y {f n } converge uniformemente en compactos de Ω, entonces

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (2)

TEORIA ELECTROMAGNETICA FIZ 0321 (2) TEORIA ELECTROMAGNETICA FIZ 0321 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Solución de problemas de electrostática Ecuación de Laplace Coordenadas

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES CÁLCULO VECTORIAL 17 Salomón Alarcón Araneda Salomón Alarcón Araneda APUNTES MAT 4 CÁLCULO INTEGRAL EN VARIAS VARIABLES. CÁLCULO VECTORIAL.. Esta versión

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Series. Denición y Ejemplos de Series. a n o bien a n

Series. Denición y Ejemplos de Series. a n o bien a n 7. Denición y ejemplos de sucesiones y series convergentes y no convergentes. Series Denición y Ejemplos de Series Denición. Al sumar los términos de una sucesión innita {a n } forma a + a + a + + a n

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1 CÁLCULO I (26/27). Problemas -6.. Encontrar todos los reales para los que: a) 2 +2 b) 3 < 5 c) 5π 4π d) 4 7 = 4 2 e) 2 f) 3 + 2 > 2 g) 2 < h) + 3 5 2. Precisar si los siguientes subconjuntos de R tienen

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 207 Práctica 2: Funciones de R n en R m. Describir y gracar el dominio de denición para cada una de las siguientes funciones:

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

8. FUNCIONES DE VARIAS VARIABLES.

8. FUNCIONES DE VARIAS VARIABLES. 8. FUNCIONES DE VARIAS VARIABLES. En este tema comenzamos el análisis de funciones de varias variables reales. Comenzaremos estudiando el espacio euclídeo n-dimensional para continuar el estudio (sencillo)

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen del 14 de Septiembre de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen del de Septiembre de Primera parte Ejercicio. Un flan tiene forma de tronco de paraboloide de revolución, siendo r y r losradiosdesusbasesyh su

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Guía Semana 7 Teorema de la función inversa. Sea f : Ω Ê N Ê N, Ω abierto, una función de clase

Más detalles

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard Apuntes de Ecuaciones Diferenciales Ordinarias II Método Iterativo Teorema de Picard Octavio Miloni 1 Soluciones por Iteración Vamos a resolver ecuaciones diferenciales a partir de un esquema iterativo,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

1 Espacios de Banach:

1 Espacios de Banach: Ecuaciones Diferenciales - 2 cuatrimestre 2003 Resultados preliminares parte II Espacios de Banach: Sea X un IR-espacio vectorial. Definición. Una función : X [0, + ) se dice una norma si. x + y x + y

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt.

MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas. { 1 para 0 < θ < π r 1 1 para π < θ < 2π. P(r, θ t)u(e it )dt. PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 6 Rodrigo Vargas 1. Halle una función armónica u(z) definida en D tal que { 1 para < θ < π lím u(reiθ

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Superior

Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Superior Concurso Nacional de Matemáticas Pierre Fermat Edición 2009 Guía Problemario Nivel Superior Problema 1 Comience con el segmento [0, 1], después divida el segmento en cinco partes y remueva la segunda y

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Extremos de funciones de varias variables R. Álvarez-Nodarse Universidad de Sevilla Cuándo una función f (x) de una variable tiene extremo? Cuándo una función f (x) de una variable tiene extremo? Definición

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Ingeniería Matemática Guía Semana 3 Diferenciabilidad y derivadas. Sean Ω

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

Curso Propedéutico de Cálculo Sesión 7:

Curso Propedéutico de Cálculo Sesión 7: Curso Propedéutico de Cálculo Sesión 7: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 Esquema 1 2 3 4 Hasta ahora nos hemos enfocado en funciones

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

TEMA 3: Funciones de varias variables: ĺımites y continuidad

TEMA 3: Funciones de varias variables: ĺımites y continuidad TEMA 3: Funciones de varias variables: ĺımites y continuidad Cálculo Ingeniero de Telecomunicación Cálculo () TEMA 3 Ingeniero de Telecomunicación 1 / 69 1 Funciones Elementales 2 El conjunto R n Estructuras

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

Espacios Conexos Espacio Conexo

Espacios Conexos Espacio Conexo Capítulo 4 Espacios Conexos Una forma natural de construir nuevos espacios topológicos es pegando en forma disjunta, es decir. Sean (X,T X ),(Y,T Y ) dos espacios topológicos, luego definimos Z = X {0}

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencial e integral 4 http://academicos.fciencias.unam.mx/nataliajonard/calculo-4 menos que indiquemos lo contrario, R siempre denotará un rectángulo de la forma con a i < b i. R = [a 1, b 1

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2.

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2. Licenciatura en Matemáticas Soluciones del examen final de de septiembre de 00 Ejercicio 1. (a) Calcular: lím n sena + 4sen(a/) + 9sen(a/3) + + n sen(a/n) n (a + 1)(a + ) (a + n) (b) Estudiar la convergencia

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad - Fernando Sánchez - - 6 Funciones Cálculo II de Rn en Rm Límites y continuidad En este capítulo se van a estudiar funciones f : A R n R m donde A es un conjunto en R n, f = (f 1,..., f m ), x = (x 1,...,

Más detalles

Integrales paramétricas

Integrales paramétricas 5 Integrales paramétricas Página 1 de 29 1. uchas de las funciones que se manejan en Análisis atemático no se conocen mediante expresiones elementales, sino que vienen dadas a través de series o integrales.

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II. Funciones. Límites y continuidad - Fernando Sánchez - - 6 Funciones Cálculo II de Rn en Rm Límites y continuidad En este capítulo se van a estudiar funciones f : A R n m donde A es un conjunto en R n, f = (f 1,..., f m ), x = (x 1,...,

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico Matemáticas Estudio de la Convergencia de Sucesiones Dobles y Algunas de sus aplicaciones Tesis que para obtener el título de: Licenciada

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012 Pauta Auxiliar N Aplicaciones de la Integral I Viernes de Junio de P.- (P Examen Adicional - ) Sea A la región delimitada por las rectas y = x, y = ax, y = ax, a a) Calcule el área de A y el volumen del

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles