Tema 6: Problemas Especiales de Programación Lineal



Documentos relacionados
Tema 7: Optimización sobre Redes Muchos de los problemas de Investigación Operativa pueden modelizarse y resolverse sobre un grafo: conjunto de

El Problema del Transporte

Problemas de Programación Entera

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

MODELADO CON REDES ELISA SCHAEFFER. Programa de Posgrado en Ingeniería de Sistemas (PISIS) INVESTIGACIÓN DE OPERACIONES

Notas de Clase. Prof. Juan Andrés Colmenares, M.Sc. Instituto de Cálculo Aplicado Facultad de Ingeniería Universidad del Zulia. 21 de febrero de 2004

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

Unidad 1 números enteros 2º ESO

NÚMEROS NATURALES Y NÚMEROS ENTEROS

5 Ecuaciones lineales y conceptos elementales de funciones

Ejercicios de Programación Lineal

ANÁLISIS FINANCIERO VERTICAL

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías

Clase martes 27 de noviembre 2007 (problemas de repaso)

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres

Cómo ingresar a la Sucursal Electrónica?

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MODELO DE ASIGNACIÓN $A$15:$D$15 < = $A$4:$D$4 $E$11:$E$13 = $E$1:$E$3 METODO DE TRANSPORTE ING. José Luís Albornoz Salazar Máxi

PROBLEMAS RESUELTOS DE INVESTIGACIÓN DE OPERACIONES

EL MODELO DE ESTRATIFICACIÓN POR CAPAS DE TCP/IP DE INTERNET

Tema 5. Diseño detallado.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Montos y Plazos Créditos por Distribuidores

PROBLEMAS RESUELTOS DE TRANSPORTES.

Colección de Problemas IV

ESQUEMAS DE SISTEMAS VOIP CON ALTA DISPONIBILIDAD Y ALTO RENDIMIENTO

EJERCICIO DE OFERTA Y DEMANDA. ENUNCIADO. a) Indique cuáles serán el precio y la cantidad de equilibrio en ese mercado.

Unidad II: Análisis de Redes

Vectores en R n y producto punto

FUNCIONES DE PROPORCIONALIDAD

Programación Lineal. Programación Lineal

Algorítmica y Lenguajes de Programación. Ordenación (i)

x

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

LÍMITES Y CONTINUIDAD

Tema 5: Sistemas Monetarios Internacionales

Capitulo V Administración de memoria

Soporte lógico de computadoras

El modelo EOQ básico (Economic Order Quantity) es el más simple y fundamental de todos los modelos de inventarios.

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema:

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

Documentación del Terminal

Versión 4 - Tutoriales

Nuevas tecnologías aplicadas a la vida: Smartphone, Tablet e Internet

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

El rincón de los problemas

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Ejercicios resueltos con acumuladores. Pseudocódigo y diagramas de flujo. Bucle desdesiguiente (for-next). (CU00160A)

Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

Unidad III: Programación no lineal

MANUAL DE AYUDA MÓDULO GOTELGEST.NET PREVENTA/AUTOVENTA

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA

Polí tica de la OIE sobre Conflictos de Intere s

Escuela Universitaria Politécnica Grado en Ingeniería Informática Fundamentos de Programación II ENUNCIADO DE PRÁCTICAS CONVOCATORIA DE SEPTIEMBRE

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Revisión del Universo de empresas para la Estimación de los Datos Del Mercado Español de Investigación de Mercados y Opinión.

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

LAS ASOCIACIONES Y LA REFORMA FISCAL 2015

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

LÍMITES DE FUNCIONES. CONTINUIDAD

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

Introducción a los certificados digitales

FRACCIONES. Es un decimal exacto: los únicos factores primos que aparecen en el denominador son el dos y el cinco.

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

Módulo III. Aprendizaje permanente Tema 4: Aprendizaje de actividades laborales Entrevista. El papel de las familias como impulsoras del empleo

Tema 2 Límites de Funciones

INFORME ESPECIAL SOBRE PERSONAL SINAPA DEL MINISTERIO DE DESARROLLO SOCIAL Y MEDIO AMBIENTE

En él se deja claro nuestro RECHAZO a la aprobación de esta medida, tildándola de explotadora de los trabajadores porque:

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

Actividades Complementarias.

Matrices Invertibles y Elementos de Álgebra Matricial

Álgebra Lineal Ma1010

INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE HARDWARE DE RED

TEMA 7: DIAGRAMAS EN UML

Problemas de Arquitectura de Redes, Sistemas y Servicios 2 o Grado en Ingeniería en Tecnologías de Telecomunicación Conjunto de problemas 6

MANUAL DE USUARIO SECTOR PRIVADO (RESUMEN)

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

Tema 8: El Problema de Programación Lineal Entera. Modelización y Resolución

VALOR DEL DINERO EN EL TIEMPO

U.D.5: Diagramas de Gantt y PERT

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Anglo American. Estimados Señores

Partida doble. Veamos los siguientes ejemplos:

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

proporción de diabetes = = % expresada en porcentaje

Proceso Transaccional

1. INVERSA DE UNA MATRIZ REGULAR

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B

Adivinanza o logaritmos?

Normas para el envío de resúmenes de comunicaciones

La Evaluación como Proceso Comparación de Costos y Beneficios. Pedro Misle Benítez / Gustavo Briceño Torres

Análisis de redes PERT-CPM

A continuación pasaremos a detallar cuáles son los elementos más relevantes dentro de la comunicación y pondremos ejemplos aplicados a la venta.

Ingeniería de Software I

Consejos para enseñar a tu hijo a ser tolerante ante la frustración

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS OTRAS REDES PÚBLICAS. Índice 1. INTERNET SERVICIOS DE RADIO BUSQUEDA...

Transcripción:

Tema 6: Problemas Especiales de Programación Lineal Transporte Asignación Transbordo Tienen una estructura especial que permite modelizar situaciones en las que es necesario: Determinar la manera óptima de transportar mercancías o bienes Programar y Secuenciar la Producción Asignar personas a tareas La mayor parte de los coeficientes de la matriz de restricciones son iguales a cero y el resto, son 1 o -1 Su estructura ha permitido desarrollar algoritmos específicos más eficientes que el algoritmo del Simplex. Se resuelven problemas de hasta 63 millones de variables. 1

6.1 El Problema del Transporte Situaciones: Enviar un bien desde unos puntos de origen a unos puntos de destino. Objetivo: Determinar las cantidades que hay que enviar desde cada origen a cada destino para satisfacer todas las demandas sin superar los límites que establece la oferta y de forma que se minimice el coste total de distribución. Hipótesis: El coste del envío por una determinada ruta es proporcional al número de unidades enviadas por esa ruta. 2

Ejemplo 6.1: Un Problema de Transporte (Taha, pág.- 180) La compañía Sunray Transport Company envía camiones cargados de grano desde tres silos a cuatro molinos. La oferta y la demanda, junto con los costes del transporte por carga de camión en las diferentes rutas, se resumen en la siguiente tabla, en donde la oferta y la demanda vienen dadas en términos de camiones cargados y los costes en cientos de euros. Molino 1 Molino 2 Molino 3 Molino 4 Oferta Silo 1 10 2 20 11 15 Silo 2 12 7 9 20 25 Silo 3 4 14 16 18 10 Demanda 5 15 15 15 Determina qué cantidad de camiones, x ij, hay que enviar desde cada silo i a cada molino j para conseguir que el coste total del transporte sea lo menor posible. 3

Red o Grafo Bipartido en el que: Modelización Los m + n vértices representan los m puntos de origen y los n puntos de destino Las aristas (i, j), los caminos entre cada origen i y cada destino j Cada vértice origen tiene asociada una oferta a i, i = 1,...,m Cada vértice destino tiene asociada una demanda b j, j = 1,...,n Cada arista, un coste c ij que representa el coste de enviar una unidad de demanda de i a j Oferta total Demanda total ( m i=1 a i n j=1 b j) Si Oferta total < Demanda total es posible modelizar el problema para determinar las demandas que quedarían por servir. 4

Si x ij = n o de unidades que se envían desde el origen i al destino j Min m i=1 n j=1 c ijx ij sa: n j=1 x ij = a i, i = 1, 2,...,m m i=1 x ij = b j, j = 1, 2,...,n x ij 0, (i, j) 5

Si x ij = n o de camiones de grano que se envían desde el silo i al molino j Min 10x 11 + 2x 12 + 20x 13 + 11x 14 + 12x 21 + 7x 22 + 9x 23 + 20x 24 + 4x 31 + 14x 32 + 16x 33 + 18x 34 sa: x 11 + x 12 + x 13 + x 14 = 15 Silo 1 x 21 + x 22 + x 23 + x 24 = 25 Silo 2 x 31 + x 32 + x 33 + x 34 = 10 Silo 3 x 11 + x 21 + x 31 = 5 Molino 1 x 12 + x 22 + x 32 = 15 Molino 2 x 13 + x 23 + x 33 = 15 Molino 3 x 14 + x 24 + x 34 = 15 Molino 4 x ij 0, (i, j) 6

Propiedades Propiedad de las Soluciones Posibles: un problema de transporte tiene solución sii Oferta total Demanda total, es decir: m a i i=1 n j=1 b j Propiedad de las Soluciones Enteras: si todas las ofertas a i y todas las demandas b j son enteras, todas las soluciones posibles básicas toman valores enteros. 7

El modelo se dice que está desequilibrado cuando: Oferta total Demanda total Solución: Añadir vértices y aristas ficticias a la red. Si Oferta total < Demanda total: el problema es imposible Si Oferta total > Demanda total: añadir un destino ficticio n + 1 cuya demanda sea b n+1 = Oferta total Demanda total Unir el destino ficticio con todos los orígenes mediante aristas de coste cero. Si se desea que se agote la oferta de un determinado origen se puede asignar un coste positivo suficientemente grande a la arista que conecta el destino ficticio con dicho origen. El equilibrado es necesario para poder aplicar el Algoritmo del Transporte: adaptación especial del Símplex al problema del transporte. 8

6.2 El Problema de Asignación Situaciones: Asignar recursos a tareas cuando: Número de recursos = Número de Tareas = n Cada recurso se debe asignar a una única tarea exactamente Cada tarea debe tener asignado exactamente un único recurso Para cada pareja (recurso, tarea) se conoce el coste que supone realizar la tarea utilizando dicho recurso. Objetivo: Determinar cómo deben hacerse las n asignaciones para que el coste total de la asignación sea mínima. El Problema de Asignación es un caso particular del Modelo del Transporte. 9

Ejemplo 6.2: Un Problema de Asignación Los tres hijos de Jacinto García, Juan, Pepe y Lucía, quieren ganar algún dinero para cubrir sus gastos de telefonía móvil del mes actual. El Sr. García ha elegido tres tareas para sus hijos: podar el césped, pintar el garage y lavar los tres coches de la familia. Para evitar las peleas entre hermanos les pidió que entregaran una nota secreta indicando el pago (en euros) que ellos considerarían justo por cada una de las tareas. Los hijos se pusieron de acuerdo en aceptar la asignación de tareas que finalmente hiciese su padre. A la vista de las notas entregadas (tabla siguiente) qué asignación debería hacer el Sr. García para tener que pagar lo mínimo posible? Podar Pintar Lavar Juan 15 10 9 Pepe 9 15 10 Lucía 10 12 8 10

Definiendo: x ij = 1 si i se asigna a j 0 en otro caso Min n i=1 n j=1 c ijx ij sa: n j=1 x ij = 1, i = 1, 2,...,n n i=1 x ij = 1, j = 1, 2,...,n x ij 0, (i, j) 11

Si x ij = 1 si el hijo i realiza la tarea j i = 1 (Juan) i = 2 (Pepe) i = 3 (Lucía) j = 1 (Podar) j = 2 (Pintar) j = 3 (Lavar) Min 15x 11 + 10x 12 + 9x 13 + 9x 21 + 15x 22 + 10x 23 + 10x 31 + 12x 32 + 8x 33 sa: x 11 + x 12 + x 13 = 1 x 21 + x 22 + x 23 = 1 x 31 + x 32 + x 33 = 1 x 11 + x 21 + x 31 = 1 x 12 + x 22 + x 32 = 1 x 13 + x 23 + x 33 = 1 x ij 0, (i, j) 12

Propiedades x ij 0 n j=1 x ij = 1 x ij 1 Transporte x ij entera x ij {0, 1} Todas las spb son degeneradas. Solamente n de las 2n 1 variables básicas pueden ser distintas de cero. El Algoritmo del Transporte no explota estas propiedades. El Método Húngaro está diseñado para tener en cuenta el alto grado de degeneración, se trata de un algoritmo específico para el problema de asignación. 13

6.3 El Problema del Transbordo Situaciones: Enviar un bien desde unos puntos de origen a unos puntos de destino pero pudiendo pasar por puntos intermedios. Reconoce que a veces en la vida real resulta más económico enviar mercancías a través de puntos intermedios en lugar de hacerlo directamente desde el origen hasta el destino. Los vértices del grafo pueden ser de varios tipos: Orígenes puros: Solo pueden enviar bienes. De ellos solamente pueden salir arcos. Destinos puros: Solo pueden recibir bienes. A ellos solamente pueden llegar arcos. Transbordos: Pueden enviar y/o recibir mercancías. A ellos pueden llegar arcos y/o de ellos pueden salir arcos. Puede transformarse en un problema de transporte. Pero es un caso particular de Problemas de Flujos (siguiente tema...) 14

Ejemplo 6.3: Un Problema de Transbordo El siguiente grafo corresponde a una red de ordenadores en la que los nodos O1 y O2 representan los servidores de correo electrónico de los ordenadores de varias ciudades europeas, T1 y T2 son nodos de distribución intermedios y D1, D2 y D3 representan los servidores de correo que dan servicio a los ordenadores de varias ciudades americanas. Se estima que a O1 llegan 1000 mensajes al día, y 1200 a O2. Sin embargo, D1 solamente puede dar salida a 800 mensajes diarios, D2 a 900, y D3 a 500. Se supone que no hay problemas de capacidad en las líneas que conectan estos nodos, por lo que por cada tramo se pueden transmitir tantos mensajes como sean necesarios. Los números indicados en la red representan el tiempo que tarda en milésimas de segundo la transmisión del mensaje por ese tramo de la red. Modelizar y resolver el problema de programación lineal que permite transmitir los mensajes en el menor tiempo posible. 15

D1 800 8 1000 O1 3 T1 5 4 6 7 D2 900 2 4 1200 O2 5 T2 3 9 D3 500 16

800 D1 800 1000 O1 T1 1000 400 D2 900 1200 1000 1200 O2 T2 500 D3 500 17