MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN



Documentos relacionados
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

Nombre de la asignatura: Ecuaciones Diferenciales. Ingeniería Mecatrónica. Clave de la asignatura: MCM-0206

Demostración de la Transformada de Laplace

Carta al Estudiante. MA2210 Ecuaciones diferenciales Aplicadas Verano 2014

EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES

Sistemas de Ecuaciones Lineales

PROGRAMA DETALLADO DE LA ASIGNATURA MATEMÁTICA III (transición)

1. SISTEMAS DE ECUACIONES DIFERENCIALES

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

FACULTAD DE INGENIERÍAS Y ARQUITECTURA SÍLABO

Ecuaciones Diferenciales

14.1 Introducción Caso 1: Area bajo una curva.

Funciones lineales y no lineales (páginas )

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Aplicaciones de las integrales dobles

dx orden 2 e y' dx dx GUIA Nº 2 Ecuaciones Diferenciales Ordinarias (EDO)

Tema 2. Sistemas de ecuaciones lineales

SISTEMAS DE ECUACIONES LINEALES

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Nombre de la asignatura : Matemáticas IV. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9304

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. José de Jesús Angel Angel.

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN HORAS SEMANA

4 Ecuaciones diferenciales de orden superior

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

Lección 13: Resolución algebraica de sistemas de ecuaciones

+ = 0, siendo z=f(x,y).

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES

CAPÍTULO. Conceptos básicos

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

Tema 1. Álgebra lineal. Matrices

Clase 9 Sistemas de ecuaciones no lineales

SISTEMAS DE ECUACIONES Y DE INECUACIONES

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

MOVIMIENTO ARMÓNICO AMORTIGUADO

TEMA 5 FUNCIONES ELEMENTALES II

PROGRAMA ANALITICO DE LA ASIGNATURA

INTRODUCCIÓN. Se denomina ecuación diferencial a la relación de igualdad que contiene derivadas o diferenciales.

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL

Funciones de varias variables

El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS

VII. ECUACIÓN GENERAL DE SEGUNDO GRADO

CARRERA PROFESIONAL DE CONTABILIDAD SILABO

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma

Grado en Química Bloque 1 Funciones de una variable

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 =

Carrera: Ingeniería Química. Asignatura: Ecuaciones Diferenciales. Área del Conocimiento: Ciencias Básicas de marzo 20003

Ecuaciones de segundo grado

INSTITUTO TECNOLÓGICO DE TIJUANA ECUACIONES DIFERENCIALES. Portafolio Parte 2

Cálculo diferencial DERIVACIÓN

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización

mediante la ecuación, Q la cantidad de radio es función del tiempo t; de modo que Q = Q(t).

Curvas en paramétricas y polares

Anexo C. Introducción a las series de potencias. Series de potencias

Conceptos fundamentales en Termodinámica

Unidad 2. Las Ecuaciones Diferenciales de Primer Orden y Sus Soluciones. Definición. Se dice que una ecuación diferencial de primer orden de la forma

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo.

C U R S O : MATEMÁTICA

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

INSTRUCCIONES GENERALES Y VALORACIÓN

Clase 9 Sistemas de ecuaciones no lineales

Universidad Icesi Departamento de Matemáticas y Estadística

TEMA 1: Funciones elementales

LA INTEGRAL COMO ANTIDERIVADA

2 Métodos de solución de ED de primer orden

MATEMÁTICAS I. 6 horas a la semana 12 créditos Primer semestre

I IDENTIFICACION DE LA ASIGNATURA

Métodos de solución de ED de primer orden

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

ASIGNATURA: ANALISIS MATEMATICO APLICADO

1.3. ORDEN DE UNA ECUACIÓN DIFERENCIAL

Ecuaciones diferenciales lineales con coeficientes constantes

Sistemas de ecuaciones lineales

FORMATO ELABORACIÓN DE SYLLABUS SYLLABUS DE ECUACIONES DIFERENCIALES. Horas de trabajo directo con el docente

Sistemas de Ecuaciones y Matrices

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería

TEMA N 2 RECTAS EN EL PLANO

Tema 1 Las Funciones y sus Gráficas

UNIVERSIDAD DE SONORA

ECUACIONES DIFERENCIALES

GEOMETRÍA ANALÍTICA: CÓNICAS

Matrices, determinantes, sistemas de ecuaciones lineales.

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

Pauta Examen Final - Ecuaciones Diferenciales

Plan de Estudios de la Carrera de Licenciatura en Turismo. Código MAT 1. Ciclo Académico: Área Curricular: Básica UVA 4

LOGARITMOS Y APLICACIONES

RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.

Notas del curso de Introducción a los métodos cuantitativos

Transcripción:

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE PRIMER ORDEN 1. Definición. Ecuaciones Diferenciales de Variables Separables y Reducidas (a) Homogéneas (b) Lineales (Ecuación de Bernoulli) (c) Eactas (Factor de Integración) (d) Aplicación de las Ecuaciones Diferenciales de Primer Orden (i) Problemas Ortogonales (ii) Problemas de Temperatura (iii) Problemas de Crecimiento (iv) Problemas de Caídas de los Cuerpos (v) Problemas de Diluciones Químicas (vi) Problemas de Circuitos Eléctricos Simples (vii) Otros. Ecuación Diferencial No-Resuelta (a) Ecuación de Primer Grado y Orden n f y, y = 0 (b) Ecuación de la Forma (c) Ecuación de la Forma f (, y ) = 0 (d) Ecuación de La Grange (e) Ecuación de Clairout UNIDAD # ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 1. Definición. Clasificación (a) Ecuaciones Diferenciales que admiten la reduccion de orden (b) Ecuaciones Diferenciales Lineales (i) Ecuaciones Diferenciales Lineales con Coeficientes Constantes a. Homogéneas Método de Solución b. No Homogéneas i. Método de los Coeficientes Indeterminados ii. Método de Variación de Parámetros o de las Constantes Diego Arredondo - 1-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales iii. Método Abreviado iv. Otros Métodos (ii) Ecuaciones Diferenciales Lineales con Coeficientes a. Homogéneas i. Ecuación de Euler ii. Ecuación Diferencial si se conoce una Solución Particular iii. Otras b. No Homogéneas i. Ecuación de Euler ii. Ecuación Diferencial si se conoce una Solución Particular iii. Otras (iii) Sistemas de Ecuaciones Diferenciales Lineales. Aplicación de las Ecuaciones Diferenciales de Orden Superior UNIDAD #4 TRANSFORMACIONES DE LA PLACE EVALUACION 1. Definición. Teoremas de La Place. Transformaciones Inversas de La place 4. Teoremas de Transformaciones Inversas de La place 5. Solución de una Ecuación Diferencial por Transformadas de La Place 1º.PARCIAL 0% Unidades: #1 y # sin aplicaciones º.PARCIAL 0% Aplicación de las Ecuaciones Diferenciales de 1º orden y Ecuaciones Diferenciales que Admiten la Reducción del Orden º.PARCIAL 0% Ecuaciones Diferenciales Lineales de Orden Superior FINAL 0% Nota: El 40% de las Preguntas en los eámenes serán del práctico. BIBLIOGRAFIA Ecuaciones Diferenciales Eduardo Espinoza Diego Arredondo - - 1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales Ecuaciones Diferenciales con Aplicaciones Denis Zill Problemas y Ejercicios de Análisis Matemático Deminovich Ecuaciones Diferenciales Chungara Ecuaciones Diferenciales Rainville Ecuaciones Diferenciales Frank Ayres Problemas de las Ecuaciones Diferenciales Ordinarias Makerenko Diego Arredondo - - 1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales Tema Nro. 1 Ecuaciones Diferenciales Definición: Es una igualdad donde están relacionadas la variable independiente, la variable dependiente y y sus derivadas. A una relación en la cual la variable independiente se relaciona con la variable dependiente y, también llamada función buscada y sus derivadas, es una ecuación diferencial. Ejemplo Si y = f ( ) Ecuación Normal dy y dy = d; y = d Ecuacion Diferencial d En forma implícita una ecuación diferencial podemos representarla de la siguiente n forma f (, y, y, y, y,..., y ) = 0. Si la función buscada o variable dependiente es de una sola variable independiente entonces la Ecuación Diferencial es Ordinaria. Si la función buscada o variable dependiente es de dos o más variables independientes, entonces la Ecuación Diferencial es parcial. Nota: En el presente curso se verán solamente las ecuaciones diferenciales ordinarias. EJEMPLO DE ECUACIONES DIFERENCIALES y 1. = 0 Ec. Diferencial ordinaria º orden grado 1 y. y + y = 4 Ec. Diferencial ordinaria 1º orden grado 4 w w. uw 0 Ec. Diferencial Ordinaria º orden grado = u u 4. Q L + R Q + Q = 0 Ec. Diferencial Ordinaria º Orden grado1 t t C y + y + y y + y = 0 Ec. Diferencial Ordinaria º orden grado 1 5. y 6. e y + y = 0 Ecuacion Diferencial Ordinaria º orden no tiene grado 7. P P = 4 P + Ecuacion ordinaria º orden grado 4 Q θ Diego Arredondo - 4-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales z z 8. = z+ ecuacion diferencial parcial y 9. z z y 4 + = + y Ecuacion diferencial parcial 4 10. ( y ) ( y ) 4 1 + = 0 Ecuacion Diferencial Ordinaria º Orden Grado 9 ORDEN DE UNA ECUACION DIFERENCIAL: El orden de una Ecuación Diferencial es el orden de la mayor derivada. Ejemplo: y = 1 Ecuacion diferencial de 1º Orden y = Ecuacion Diferencial de º Orden GRADO DE UNA ECUACION DIFERENCIAL: El grado de una ecuación diferencial que puede escribirse como un polinomio respecto a las derivadas, es el grado de la derivada de mayor orden que interviene en ella. Es decir: Ecuacion polinomica Esto quiere decir que: para escribirse como una ecuación n a n +... + a + a + a+ a0 = 0 polinómica, las derivadas no deben estas elevadas a donde: n= 1,..., n; n cualquier otro número que no sea natural Ejemplo de epresiones a ecuaciones polinómicas 1 + + = 0 + = 0 ln + = 0 e + + 5= 0 sen = 0 SOLUCIÓN DE LAS ECUACIONES DIFERENCIALES: El problema de las ecuaciones diferenciales consiste esencialmente en encontrar la función llamada primitiva que dio origen a la ecuación diferencial. A esta primitiva se le llama solución como también podemos llamarle, integral de la ecuación diferencial, o función buscada. Ejemplo y = Hallamos su Primitiva y= d y C = + Solucion Diego Arredondo - 5-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales En otras palabras, resolver una ecuación diferencial de orden n es hallar una relación entre las variables, conteniendo n constantes arbitrarias independientes que junto con las derivadas obtenidas de ella satisface a la ecuación diferencial. EJEMPLO y = 0 Ecuacion Diferencial y = A + B+ C Primitiva La primitiva es solución de la ecuación diferencial? dy d y d y Es solución de la ecuación diferencial A, B y C son = A+ B; = A = 0 d d d constantes arbitrarias o constantes de integración. SOLUCIÓN GENERAL, SOLUCIÓN PARTICULAR: La solución general es el conjunto de todas las soluciones (es un conjunto de soluciones), normalmente esta solución se la epresa mediante las constantes de integración. Geométricamente esta solución representa una familia de curvas en el plano. Ejemplo: Ecuación diferencial: dy = su solucion es: y = + C d donde: C = constante de integracion Si: C = 0; y = C = y = + 1; 1 C = y = 1; 1 C=1 C=0 C=-1 Familia de parábolas es la solución general. Una solución particular es una solución cualquiera y se obtiene de la solución general dando valores definidos a las constantes arbitrarias. Normalmente una solución particular la anotamos f, y = 0 Solucion particular ó y = f Diego Arredondo - 6-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales Ejemplo dy Si primitiva: y C d = = + Solucion particular si C = 0 y = Generalmente la solución particular se obtiene obteniendo el valor de las constantes arbitrarias que dependen de ciertas condiciones de un problema en particular. Ejemplo: y = arcsen y satisface la ecuación diferencial: 1. Mostrar que: y + y = y y Ecuación Diferencial: y + y = y y Primitiva: y = arcsen( y) 1ro Diferenciamos la primitiva Hacemos esto para ver si esta satisface a la ecuación diferencial. y = arcsen( y) Reemplazando i en la ecuación diferencial. y = 1 y y y + y = y y ( y + y) y y y = y y y y = y + y Queda demostrado y = arcsen y Sen y = y i y cos yy + y y y cos y = y y y = ii cos y 1 y = y y y i Podríamos proceder también de esta manera: Reemplazando ii en la ecuación diferencial y + y = y y y y + y = y cos y cos y y + y ycos y y = y.cos y cos y Diego Arredondo - 7-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales ycos y = y y cos 1 ; como dice: cos y =. Mostrar que la función Ecuación Diferencial. Ecuación Diferencial: sen y cos y = cos y cos y = cos y Queda demostrado y = y i sen y = y sen y = es una solución particular de la siguiente y + y = cos Primitiva: y = sen( ) sen Si y = y = sen Diferenciando: y + y = cos y + y = cos y i Reemplazando i en la ecuación diferencial. cos y + y = cos cos = cos Queda demostrado ORIGEN DE LAS ECUACIONES DIFERENCIALES: Las ecuaciones diferenciales nacen como respuesta a problemas geométricos, problemas físicos o cualquier problema que da respuesta a definiciones utilizadas en ingenieria, economía, etc. también vemos que una ecuación diferencial matemáticamente nace una primitiva, así por ejemplo: Ejemplos: 1. Dada la primitiva, hallar la ecuación diferencial sen( ) cos sen Primitiva: y = Ecuación Diferencial dy = d cos sen dy = dy cos sen = d d sen Como: y = y = cos y y = cos sen. Hallar la ecuación diferencial de la familia de curvas: donde: A, B, C = cttes arbitrarias y = A + B+ C Como la familia de curvas tiene constantes arbitrarias, entonces para encontrar la ecuación diferencial de º orden: teniendo en cuanta que al realizar cada derivada, deben eliminarse las constantes de Integración. Diego Arredondo - 8-1/08/008

MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales y = A + B+ C y = A+ B y = A y = 0 esta es la ecuacion diferencial. NOTA: Al derivar se deben eliminar las constantes arbitrarias, no así las constantes fijas del problema. El orden de las constantes arbitrarias determina el orden de la ecuación diferencial. Así por ejemplo: Ejemplo: Encontrar la ecuación diferencial de la familia de curvas: = Asen( ωt + B) ω = es una ctte fija donde: AB, = ctte arbitraria Diferenciando: = cos( ω + ) d A t B ωdt d = cos + dt sin t B ( ω + ) ( ωt B) ω d ω ω = tan ( ωt+ B) = dt tan ( ωt + B) 1 ω ωt = tan ω ( ) ω ω ( ) + = ω ω + = 0 es la Ecuacion Diferencial ω = 1 + ω = w ( ) ω ω ω ( ) ( ) + ω ( ) CLASIFICACION DE LAS ECUACIONES DIFERENCIALES Las ecuaciones Diferenciales por su orden se clasifican en: a) Ecuaciones Diferenciales de Primer Orden a.1) Ecuaciones Diferenciales de Variables Separables y Reducibles a Variables a.) Ecuaciones Diferenciales Homogéneas y Reducibles a Homogéneas a.) Ecuaciones Diferenciales Lineales y Reducibles a Lineales a.4) Ecuaciones Diferenciales Eactas y Reducibles a Eactas a.5) Ecuaciones Diferenciales No Resueltas respecto a la Primera Derivada a.5.1) Ecuaciones Diferenciales de Primer Orden y Grado n a.5.) Ecuaciones Diferenciales de la forma f ( y, y ) = 0 y f (, y ) = 0 a.5.) Ecuaciones Diferenciales de La Grange y Clairout b) Ecuaciones Diferenciales de Orden Superior Diego Arredondo - 9-1/08/008