Tema 2: Variables Aleatorias Unidimensionales

Documentos relacionados
Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Tema 3: Funcio n de Variable Aleatoria

Procesos estocásticos

Tema 4: Variable Aleatoria Bidimensional

Introducción al Diseño de Experimentos.

Tema 5 Modelos de distribuciones de Probabilidad

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

3. Variables aleatorias

Tema 3. Probabilidad y variables aleatorias

Repaso de Teoría de la Probabilidad

Estadística I Tema 5: Modelos probabiĺısticos

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

TEMA 3: Probabilidad. Modelos. Probabilidad

Transformaciones y esperanza

Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL

Material introductorio

Notas de clase. Prof. Nora Arnesi

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Probabilidad y Procesos Aleatorios

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Variables aleatorias

Resumen de Probabilidad

Variables aleatorias unidimensionales

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

Modelos Básicos de Distribuciones Discretas y Continuas

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria

Ruido en los sistemas de comunicaciones

VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Estadística I Tema 5: Modelos probabiĺısticos

Técnicas Cuantitativas para el Management y los Negocios I

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Curso de Probabilidad y Estadística

TEMA 2.- VARIABLES ALEATORIAS

Estadística Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

Definición de probabilidad

Variables aleatorias continuas

Probabilidad y Estadística

Modelos de distribuciones discretas y continuas

Variables Aleatorias y Principios de Simulación.

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Prof. Eliana Guzmán U. Semestre A-2015

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística aplicada al Periodismo

EvAU 2018 Propuesta A

Capítulo 5: Probabilidad e inferencia

Tema 4: Probabilidad y Teoría de Muestras

VARIABLES ALEATORIAS CONTINUAS

Tema 5: Modelos probabilísticos

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística I Tema 4: Probabilidad y modelos probabiĺısticos

Tema 6: Modelos de probabilidad.

Unidad 3. Probabilidad

TEMA 3.- MODELOS DISCRETOS

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

VARIABLES ALEATORIAS CONTINUAS

Sesión 2: Teoría de Probabilidad

Modelos de distribuciones discretas y continuas

Variables aleatorias

Tema 2 Modelos de probabilidad

ANALISIS DE FRECUENCIA EN HIDROLOGIA

DISTRIBUCIONES DE PROBABILIDAD

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

Variables aleatorias continuas, TCL y Esperanza Condicional

Distribución de probabilidad

Probabilidad y Procesos Aleatorios

Modelo de Probabilidad

GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO CICLO BÁSICO DE INGENIERÍA ASIGNATURA

Universidad Nacional de La Plata

Funciones generadoras de probabilidad

Tema 4: Variables Aleatorias

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Transcripción:

Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Concepto de Variable Aleatoria Variable aleatoria Intuición: Una variable aleatoria X es una función que asocia números a cada posible resultado de un experimento aleatorio. X: Ω R S Ω X(S) R Propiedades X ha de cumplir las siguientes condiciones: Un solo valor para cada resultado. El conjunto {X x} es un suceso x. P ({X = }) = P ({X = }) =. Rango de una v.a.: Conjunto de números reales que tienen asociado un resultado del espacio muestral Ω X = {x R S Ω, X(S) = x}

Concepto de Variable Aleatoria Ejemplos ε: Observación de una carta de la baraja española extraída al azar Ω = { as de oros, dos de oros,..., rey de bastos } Ω = 4 1 X( n o de palo ) = n o Ω X = {1, 2,..., 7, 1, 11, 12} 2 X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} 3 X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} Ω S 4 S 3 S 2 S 1 X x 1 x 2 x 4 x 3 R Ω X

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Definición Función Distribución Definición: Sea < Ω, F, P > ligado a ε y X una v.a. Se define la Función de Distribución F X : R R x R F X (x) = P ({X x}) La función de distribución F X contiene toda la información probabilística de la variable aleatoria X. Ejemplo Baraja española: Ω X = {1, 2, 3, 4, 5, 6, 7, 1, 11, 12} x = 3 F X ( 3) = P ({X 3}) = P ( ) = x = 1 F X (1) = P ({X 1}) = P ({1}) = 1/1 x = 1.5 F X (1.5) = P ({X 1.5}) = P ({1}) = 1/1 x = 2 F X (2) = P ({X 2}) = P ({1, 2}) = 2/1

Ejemplos Ejemplo Función Distribución. P(X x) 1.9.8.7.6.5.4.3.2.1 Función Distribución. Ejemplo 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 x

Ejemplos Otros Ejemplos X( n o de palo ) = 1 n o Ω X = {1, 2,..., 7, 1, 11, 12} Función Distribución. P(X x) 1.9.8.7.6.5.4.3.2.1 Función Distribución. Ejemplo 2 2 4 6 8 1 12 14 16 x

Ejemplos Otros Ejemplos X( n o de palo ) = { si es de oros 1 si no es de oros Ω X = {, 1} 1 Función Distribución. Ejemplo 3 Función Distribución. P(X x) 3/4 1/2 1/4 3 2 1 1 2 3 4 5 x

Interpretación frecuencial Interpretación frecuencial n realizaciones n valores x 1, x 2,..., x n n x: n o de resultados x 1 n x def. frec. lím = P (X x) = F n X(x) n Función Distribución. Interpretación Frecuencial P(X x).9.8.7.6.5.4.3.2.1 4 3 2 1 1 2 3 4 x

Propiedades Función Distribución. Propiedades 1 F X ( ) = lím x F X (x) = F X ( ) = lím x F X (x) = 1 2 FD es no decreciente 3 FD es continua por la derecha x 1 < x 2 F X (x 1 ) F X (x 2 ) F X (x + ) = lím F X (x + ɛ) = F X (x) ɛ ɛ> 4 P ({X = x }) = F X (x ) F X (x ) F X(x ) = lím ɛ,ɛ> F X (x ɛ) 5 x 1 < x 2 P (x 1 < X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 X x 2 ) = F X (x 2 ) F X (x 1 ) P (x 1 < X < x 2 ) = F X (x 2 ) F X(x 1 ) P (x 1 X < x 2 ) = F X (x 2 ) F X(x 1 ) *Observación: si x 1 < x 2 y F X (x 1 ) = F X (x 2 ) (x 1, x 2 ) Ω X = 6 P (X > x) = 1 F X (x)

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Clasificación de Variables Aleatorias Variables Aleatorias Continuas Definición: X v.a. continua F X(x) continua { F X(x) = F X(x + ) = F X(x ) } Si X es continua Ω X es infinito no numerable Propiedad: P (X = x ) = F X (x ) F X (x ) = Ejemplo Un circuito requiere un resistencia de valor (91Ω 19Ω) Se emplea una resistencia estándar de 1KΩ y tolerancia 1 % x < 9 x 9 F X(x) = 9 x 11 2 1 x > 11 Probabilidad: P (91 < X 19) = F X(19) F X(91) =.9

Clasificación de Variables Aleatorias Variables Aleatorias Discretas Definición: X v.a. discreta F X(x) escalonada, Ω X discreto N N F X(x) = P (X = x i) u(x x i) P (X = x i) = F X( ) = 1 }{{} i=1 i=1 función escalón Propiedades: P (X = x i) = F X(x i) F X(x i ) P (x i 1 < X < x i) = F X(x i ) FX(xi 1) = (xi 1, xi) ΩX = Ejemplo: Baraja española Variables Aleatorias Mixtas Mezcla de las dos anteriores Función Distribución no escalonada pero con discontinuidades. Ω X continuo. x, P (X = x ) = F X(x ) F X(x ) Ejemplos?

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Definición Función densidad de probabilidad (fdp) Definición: Dada una F X (x) ligada a una v.a. X, se define la fdp como f X (x) = df X(x) dx Casos particulares: Si X v.a. continua No hay problemas con la derivada. a Si X v.a. discreta No existe la derivada en Ω X f X (x) = N i=1 P (X = x i ) du(x x i) dx = N i=1 P (X = x i ) δ(x x i ) }{{} Delta de Dirac a Aunque en ciertos puntos no sea derivable, dichos puntos carecen de interés.

Definición Delta de Dirac δ(x)dx = 1 g(x) δ(x) = g(x) g(x) = δ(t)g(x t)dt u a (x) u(x) 1 1 a/2 a/2 x δ a (x) x δ(x) 1/a a/2 a/2 x x

Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Resistencia de 1K ± 1 % F X (x) = x < 9 x 9 2 9 x 11 1 x > 11 f X (x) = x < 9 1 2 9 < x < 11 x > 11 Función Distribución. P(X x) Función Densidad de Probabilidad (fdp) 1 1/2 8 9 1 11 12 x 8 9 1 11 12 x

Ejemplos Función Densidad de Probabilidad (fdp) Ejemplo: Baraja española Ω X = {1, 2,..., 7, 1, 11, 12} F X (x) = x i Ω x 1 1 u(x x i) f X (x) = x i Ω x 1 1 δ(x x i) 1.9.8.7.6.5.4.3.2.1 Función Distribución. P(X x) 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 x 1/1 Función Densidad de Probabilidad (fdp) 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 x

Propiedades Función Densidad de Probabilidad (fdp) Propiedades: 1 f X(x) x R 2 fx(x)dx = 1 3 F X(x) = x fx(t)dt 4 P (x 1 < X x 2) = F X(x 2) F X(x 1) = x 2 f X(x)dx 5 Si X es una v.a. continua f X(x) = dfx(x) dx x 1 def. deriv. F X(x + x) F X(x) = lím = x x x> P (x < X x + x) Prob. intervalo = lím = x x long. intervalo x>

Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx.4.35.3.25.2.15.1.5 N=1, Δx=1 Histograma fdp 4 3 2 1 1 2 3 4 x

Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx.4.35.3.25.2.15.1.5 N=1, Δx=.5 Histograma fdp 4 2 2 4 x

Propiedades Función Densidad de Probabilidad (fdp) Interpretación frecuencial: N realizaciones de v.a. X n x: n o de resultados pertenecientes a un intervalo de longitud x P X (x X x + x) f X (x) x n x/n P(x X x+δx)/δx.4.35.3.25.2.15.1.5 N=1, Δx=.1 Histograma fdp 4 2 2 4 x

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Distribuciones Continuas Distribución Uniforme f X(x) = { 1 x 2 x 1 x 1 x x 2 resto Ω X = [x 1, x 2 ] x < x 1 x x F X(x) = 1 x 2 x 1 x 1 x x 2 1 x > x 2 Distribución uniforme (fdp) Distribución uniforme (FD) K 1 x1 x x2 x1 x x2

Distribuciones Continuas Distribución Exponencial Ω X = [, ) parámetro c { ce cx x f X(x) = x < { 1 e cx x F X(x) = x < Distribución exponencial (fdp) Distribución exponencial (FD) c 1 1/c 2/c 3/c 4/c 5/c x 1/c 2/c 3/c 4/c 5/c x

Distribuciones Continuas Distribución Gaussiana o Normal Ω X = (, ) parámetros η, σ N (η, σ) f X(x) = 1 x e (x η)2 2σ 2 F X(x) = f(u)du 2πσ.6.4 Distribución Gaussiana (fdp) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 =.5 1.75 Distribución Gaussiana (FD) η=, σ 2 =1 η=, σ 2 =.5 η=, σ 2 =2 η=2, σ 2 =.5.5.2.25 4 2 2 4 x 4 2 2 4 x

Distribuciones Continuas Distribución Gaussiana o Normal Caso Particular: η =, σ = 1 Caso General: N (η, σ) F X(x) = 1 2πσ x F X(x) = G(x) = 1 2π x e (u η)2 2σ 2 du = t= u η σ e u2 2 du x η 1 σ 2π e t2 2 dt = G( x η σ ) Otras funciones Función error: erf(x) = 1 x e t2 2 dt = G(x) 1 2π 2 Función Q: Q(x) = 1 e t2 2 dt = 1 G(x) = G( x) 2π x

Distribuciones Continuas G(x) Segunda cifra decimal del valor de x x..1.2.3.4.5.6.7.8.9..5.54.58.512.516.5199.5239.5279.5319.5359.1.5398.5438.5478.5517.5557.5596.5636.5675.5714.5753.2.5793.5832.5871.591.5948.5987.626.664.613.6141.3.6179.6217.6255.6293.6331.6368.646.6443.648.6517.4.6554.6591.6628.6664.67.6736.6772.688.6844.6879.5.6915.695.6985.719.754.788.7123.7157.719.7224.6.7257.7291.7324.7357.7389.7422.7454.7486.7517.7549.7.758.7611.7642.7673.774.7734.7764.7794.7823.7852.8.7881.791.7939.7967.7995.823.851.878.816.8133.9.8159.8186.8212.8238.8264.8289.8315.834.8365.8389 1..8413.8438.8461.8485.858.8531.8554.8577.8599.8621 1.1.8643.8665.8686.878.8729.8749.877.879.881.883 1.2.8849.8869.8888.897.8925.8944.8962.898.8997.915 1.3.932.949.966.982.999.9115.9131.9147.9162.9177 1.4.9192.927.9222.9236.9251.9265.9279.9292.936.9319 1.5.9332.9345.9357.937.9382.9394.946.9418.9429.9441 1.6.9452.9463.9474.9484.9495.955.9515.9525.9535.9545 1.7.9554.9564.9573.9582.9591.9599.968.9616.9625.9633 1.8.9641.9649.9656.9664.9671.9678.9686.9693.9699.976 1.9.9713.9719.9726.9732.9738.9744.975.9756.9761.9767 2..9772.9778.9783.9788.9793.9798.983.988.9812.9817 2.1.9821.9826.983.9834.9838.9842.9846.985.9854.9857 2.2.9861.9864.9868.9871.9875.9878.9881.9884.9887.989 2.3.9893.9896.9898.991.994.996.999.9911.9913.9916 2.4.9918.992.9922.9925.9927.9929.9931.9932.9934.9936 2.5.9938.994.9941.9943.9945.9946.9948.9949.9951.9952 2.6.9953.9955.9956.9957.9959.996.9961.9962.9963.9964 2.7.9965.9966.9967.9968.9969.997.9971.9972.9973.9974 2.8.9974.9975.9976.9977.9977.9978.9979.9979.998.9981 2.9.9981.9982.9982.9983.9984.9984.9985.9985.9986.9986 3..9987.9987.9987.9988.9988.9989.9989.9989.999.999 3.1.999.9991.9991.9991.9992.9992.9992.9992.9993.9993 3.2.9993.9993.9994.9994.9994.9994.9994.9995.9995.9995 3.3.9995.9995.9995.9996.9996.9996.9996.9996.9996.9997 3.4.9997.9997.9997.9997.9997.9997.9997.9997.9997.9998

Distribuciones Discretas Distribución de Bernoulli Ω X = {, 1} P (X = x) = { p x = 1 q = 1 p x = f X(x) = qδ(x) + pδ(x 1) F X(x) = qu(x) + pu(x 1) Distribución de Bernoulli (fdp) Distribución de Bernoulli (FD) 1 p q q 1 x 1 x

Distribuciones Discretas Distribución Binomial n ensayos de Bernoulli independientes. Suceso A con p cte. en todos los ensayos. (q = 1 p). X v.a. binomial cuenta el n o de veces que se verifica el suceso A. f X (x) = n k= X = n k= Xi B(n, p) ΩX = {, 1, 2,..., n} ( n k) p k q n k δ(x k) F X (x) = n k= ( n k) p k q n k u(x k) Distribución Binomial (fdp). n=1, p=.4 1 Distribución Binomial (FD). n=1, p=.4.25.8.2.6.15.1.4.5.2 2 4 6 8 1 x 2 4 6 8 1 x

Distribuciones Discretas Distribución Binomial Propiedades: F X(n) = 1 (a + b) n T a Binomial = Aproximación: p constante y n : n k= ( n k) a k b n k p + q = 1 Aproximable por N (η = np, σ = npq) p, n, np = a = cte: Aproximable por Poisson de parámetro a

Distribuciones Discretas Distribución de Poisson f X (x) = Ω X = {, 1, 2,...} = N + parámetro a > P(a) k= P (X = k) = e a a k k! a ak e k! δ(x k) F X (x) = a ak e u(x k) k! k= Distribución de Poisson (fdp). a=4 1 Distribución de Poisson (FD). a=4.25.8.2.6.15.1.4.5.2 2 4 6 8 1 x 2 4 6 8 1 x

Distribuciones Discretas Distribución de Poisson Propiedades: F X( ) = 1 k= a ak e k! = e a e a = 1 Aproximación de la distribución Binomial: ( n lím p n k) k q n k n(n 2) (n k + 1) = lím n k! p np=a = ak k! = ak k! lím n lím n n n 1 n n n k + 1 n ( 1 a ) n = e a ak n k! ( a n ) k ( 1 a n ) n k = ( 1 a ) k ( 1 a ) n = n n Regla heurística: n 1, p 1 y a = np < 5

Distribuciones Discretas Ejemplo Distribución Binomial Distribución Binomial B(n = 1, p =.3) B(n = 1, p =.2) Aproximación: P(3) Aproximación: N (2, 4).25.2 Distribución Binomial (fdp) Binomial B(1,.3) Poisson P(3).1.8 Distribución Binomial (fdp) Binomial B(1,.2) N(2,4).15.6 fdp fdp.1.4.5.2 1 2 3 4 x 1 2 3 4 x

Distribuciones Discretas Ejemplo Dispositivo electrónico: n componentes con fallos independientes. Componentes con tiempo de vida exponencial de parámetro c Distribución del n o de componentes que fallan en [, t ] X i v.a. fallo componente i-ésimo { 1 fallo X i = no fallo Ω Xi = {, 1} n repeticiones independientes ensayo Bernoulli (prob. cte.) X v.a. n o fallos: Binomial B(n, p) X = N i=1 Xi T v.a. tiempo de vida de un componente { ce ct t f T (t) = p = P (T t t < ) = F T (t ) = 1 e ct P (X = k) = ( ) n (1 e ct ) k ( e ct ) n k k =, 1,..., n k

Distribuciones Discretas Ejemplo Prob. de fallo de un componente en un año es 1 3, Prob. de que de 1 componentes ninguno falle en 2 años?: P (T 1 año) = 1 3 = F T (1) = 1 e c c 1 3 años 1 P (T 2 años) = F T (2) = 1 e 2 1 3 = 2 1 3 = p X B(n, p) con n = 1, p =.2 P ( fallos en 2 años ) = P (X = ) = ( ) n p q n = e 2.135 Aproximación mediante v.a. Y Poisson (n 1, p 1, a 2 < 5) P (Y = k) = e a a k k! P (Y = ) = e a = e 2

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Distribuciones Condicionales Distribución Condicional Definición: Se define la Función Distribución Condicional de una v.a. X dado que se verifica el suceso M como F X(x M) = P ({X x} M) = P ({X x} M) P (M) Función Densidad de Probabilidad (fdp) Condicional Definición: f X(x M) = dfx(x M) dx P ({x < X x + x} M) = lím x x x> Propiedades Ambas funciones cumplen todas las propiedades de las funciones distribución y densidad

Distribuciones Condicionales Ejemplo Variable aleatoria X. Se verifica el suceso M = {b < X a}. F X(x M) = F X(x b < X a) = Función Distribución Condicionada x a: P ({X x} {b < X a}) P ({b < X a}) {X x} {b < X a} = {b < X a} F X (x M) = 1 b x < a: x < b: {X x} {b < X a} = {b < X x} F X (x M) = P ({b < X x}) P ({b < X a}) = F X(x) F X (b) F X (a) F X (b) {X x} {b < X a} = F X (x M) =

Distribuciones Condicionales Ejemplo fdp condicionada: f X(x b < x a) = f X(x) F X(a) F X(b) b x < a.8.7.6.5.4.3.2.1 fdp condicionada f X (x)=n(,1) f X (x b<x a) b= 1 a=.5 x

Teoremas de la Probabilidad Total y de Bayes Recordemos... P (B) A i partición = P (B A i)p (A i) i P (A B) = P (B A)P (A) P (B) Analizemos P (A B) = P (B A)P (A)/P (B) B = {X x} B = {x 1 < X x 2} B = {X = x} P (A X x) = FX(x A) F X(x) P (A) P (A x 1 < X x 2) = FX(x2 A) FX(x1 A) P (A) F X(x 2) F X(x 1) fx(x A) P (A X = x) = lím P (A x < X x + x) = x f P (A) X(x)

Teoremas de la Probabilidad Total y de Bayes Teorema de la Probabilidad Total Teorema: Sea < Ω, F, P > ligado a ε y {A 1, A 2,..., A N } partición de Ω F X(x) = B={X x} i=1 N N F X(x A i)p (A i) f X(x) = f X(x A i)p (A i) i=1 Teorema de la Probabilidad Total (Versión continua) P (A) = P (A X = x)f X(x)dx Teorema de Bayes (Versión continua) f X(x A) = P (A X = x) f X(x) = P (A) P (A X = x)f X(x) P (A X = x)fx(x)dx

Teoremas de la Probabilidad Total y de Bayes Ejemplo T : v.a. exponencial tiempo de vida de un componente { ce ct t f T (t) = t < { 1 e ct t F T (t) = t < P ({ fallo antes de t 1 segundos }) = P (T t 1) = F T (t 1) = 1 e ct 1 En un instante t se comprueba que un componente sigue funcionando. Cual es la probabilidad de que falle antes de t 1 segundos adicionales? P (t < T t + t 1 T > t ) = P ({t < T t + t 1 } {T > t }) P (T > t ) = P (t < T t + t 1 ) 1 P (T t ) = e ct (1 e ct 1) e ct La v.a. exponencial es Sin Memoria = = F T (t + t 1 ) F T (t ) 1 F T (t ) = 1 e ct 1 = F T (t 1 ) =

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Media y Varianza de Variables Aleatorias Media de una Variable Aleatoria Definición: Dada una v.a. X se define su media como η = E[X] = xf X(x)dx Interpretación frecuencial η = i p i x i i n xi n x i = 1 n n xi x i i Media Condicional E[X M] = xf X (x M)dx Otras medidas: Moda: Valor x m que maximiza f X(x m). Mediana: x m Ω X es mediana de X sii F X(x m) = 1/2

Media y Varianza de Variables Aleatorias Varianza de una Variable Aleatoria Definición: Dada una v.a. X se define su varianza como σ 2 = Var[X] = E[(X η) 2 ] = (x η) 2 f X(x)dx Se puede ver como una medida de la dispersión en torno a la media. Además: σ 2 = (x η) 2 f X (x)dx = (x 2 + η 2 2xη)f X (x)dx = = x 2 f X (x)dx η 2 Desviación típica: σ = Var[X] (unidades de X)

Ejemplos Variables aleatorias continuas Variable Aleatoria Uniforme: { 1 f X(x) = x 2 x 1 x 1 x x 2 resto Media: η = xf X (x)dx = x2 x 1 1 1 x 2 x 2 x dx = x 2 x 1 x 2 x 1 2 = x 1 + x 2 x 1 2 Varianza: x2 σ 2 = x 2 f X (x)dx η 2 = x 2 1 dx (x 1 + x 2 ) 2 = x 1 x 2 x 1 4 Interpretación: = x3 2 x3 1 3(x 2 x 1 ) (x 1 + x 2 ) 2 = = (x 2 x 1 ) 2 4 12 fdp simétrica media en el centro A menor (x 2 x 1) menor dispersión menor σ 2

Ejemplos Variables aleatorias continuas Variable Aleatoria Exponencial: { ce cx x f X(x) = x < Media: η = xf X (x)dx = c Varianza: σ 2 = x 2 f X (x)dx η 2 = c Interpretación: xe cx Int. partes dx = 1 c x 2 e cx 2 Int. partes 1 dx η = c 2 Al aumentar c f X(x) decrece más rápidamente. Al aumentar c valores más probables en torno a cero. Al aumentar c menor dispersión.

Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) f X(x) = 1 e (x a)2 2b 2 2πb Media: η = 1 2πb = 1 2π = ag( ) = a xe (x a)2 2b 2 dx bte t2 2 dt }{{} por impar t= x a b = + 1 (bt + a)e t2 2 bdt = 2πb ae t2 2 dt = a 1 2π e t2 2 dt =

Ejemplos Variables aleatorias continuas Variable Aleatoria Gaussiana: N (a, b) Varianza: Sabemos que: 1 e (x a)2 2b 2 dx = 1 2πb derivando respecto a b Finalmente: Interpretación: (x a) 2 b 3 e (x a) 2 2b 2 dx = 2π σ 2 = (x a) 2 1 e (x a)2 2b 2 dx = b 2 2πb Gaussiana centrada en η = a σ = b controla la dispersión en torno a a e (x a)2 2b 2 dx = 2πb

Ejemplos Variables aleatorias discretas Variable Aleatoria de Bernoulli: Ω X = {, 1} P (X = 1) = p P (X = ) = q = 1 p f X(x) = qδ(x) + pδ(x 1) Media: Varianza: η = xf X (x)dx = i σ 2 = i p i x i = q + p1 = p p i x 2 i η2 = q 2 + p1 2 p 2 = pq Interpretación: Media en p Máxima varianza para p = 1 2

Ejemplos Variables aleatorias discretas Binomial: B(n, p) Ω X = {, 1,..., n} P (X = k) = Partiremos del Binomio de Newton: derivando respecto a p: y multiplicando por p (p + q) n = n(p + q) n 1 = np(p + q) n 1 = n k= n k= ( n k) p k q n k ( n k) kp k 1 q n k n k= ( n k) kp k q n k ( ) n p k q n k k

Ejemplos Variables aleatorias discretas Binomial: B(n, p) Media: η = n ( n kp k) k q n k n 1 p+q=1 = np(p + q) = np k= Para obtener la varianza volvemos a derivar y multiplicar: n ( n(p + q) n 1 + np(n 1)(p + q) n 2 n = k k) 2 p k 1 q n k Varianza: Observaciones: k= np [ (p + q) n 1 + p(n 1)(p + q) n 2] n ( n = k k) 2 p k q n k σ 2 p+q=1 = n k= k= ( n k) k 2 p k q n k η 2 = np(1 p) = npq Media y varianza como Bernoulli multiplicadas por n Técnica de derivar y multiplicar frecuente en el cálculo de η y σ 2

Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + Partimos del desarrollo en serie derivando y multiplicando por a Media: e a = P (X = k) = e a a k k= η = k ak 1 k! k= e a = k= a k k! k! a ae a = k =, 1,... k= a ak ke k! = e a ae a = a k ak k!

Ejemplos Variables aleatorias discretas Poisson: P(a) Ω X = N + P (X = k) = e a a k k! k =, 1,... Para obtener la varianza volvemos a derivar y multiplicar Varianza: Interpretación e a + ae a = k= σ 2 = i k 2 ak 1 k! p i x 2 i η2 = a ae a (1 + a) = k= = e a ae a (1 + a) a 2 = a k 2 a ak e k! a2 = Al disminuir a f X(x) se concentra en torno a Aproximación de B(n, p), np = a k= k 2 ak k!

Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función Densidad de Probabilidad 5 Distribuciones Prácticas 6 Distribuciones Condicionales 7 Media y Varianza de Variables Aleatorias 8 Desigualdad de Chebychev

Desigualdad de Chebychev Desigualdad de Chebychev Sea X una variable aleatoria con media η y varianza σ 2, se tiene P ( X η ɛ) σ2 ɛ 2 ɛ En función del suceso contrario: P ( X η < ɛ) 1 σ2 ɛ 2 ɛ=kσ P ( X η < Kσ) 1 1 K 2 Aproximación general pero muy conservadora. Demostración: η ɛ P ( X η ɛ) = f X (x)dx + f X (x)dx = f X (x)dx η+ɛ x η ɛ σ 2 = (x η) 2 f X (x)dx (x η) 2 f X (x)dx x η ɛ ɛ 2 f X (x)dx = ɛ 2 P ( X η ɛ) x η ɛ

Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Desigualdad de Chebychev: Distribución Gaussiana N (η, σ) P ( X η < Kσ) 1 1 K 2 P ( X η < Kσ) = P (η Kσ < X < η + Kσ) = = F X (η + Kσ) F X (η Kσ) = = G(K) G( K) = 2G(K) 1

Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Distribución Uniforme en [x 1, x 2] x < x 1 x x F X (x) = 1 x 1 + x 2 x x 2 x 1 < x < x 2 1 η = 2 1 x > x 2 Asumimos entonces: P ( X η < Kσ) = F X (η + Kσ) F X (η Kσ) { η + Kσ x2 η Kσ x 1 σ 2 = (x 2 x 1 ) 2 12 P ( X η < Kσ) = η + Kσ x 1 η Kσ x 1 = 2Kσ = K x 2 x 1 x 2 x 1 x 2 x 1 3 { K 3 < K < 3 P ( X η < Kσ) = 1 K > 3

Desigualdad de Chebychev Ejemplo Desigualdad de Chebychev 1.86 P( X η <Kσ).68 Chebychev Dist. Uniforme Dist. Gaussiana 1 1.5 2 K 3 4

Resumen Matemáticas Desarrollo en serie Binomio de Newton Límite: e a = (p + q) n = k= n k= a k k! ( ) n p k q n k k ( lím 1 a ) n = e a n n

Resumen Matemáticas Serie Geométrica: a k+1 = a k r con r < 1 a k = an 1 r k=n Progresión Aritmética: a k+1 = a k + d Integración por partes. n a k = k=1 an + a1 n 2 Derivar y multiplicar (media y varianza de v.a. discretas).