Tema 3. Polinomios y fracciones algebraicas

Documentos relacionados
Tema 3. Polinomios y fracciones algebraicas

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Tema 2 Polinomios y fracciones algebraicas 1

POLINOMIOS Y FRACCIONES ALGEBRAICAS

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

MATEMÁTICAS 1º DE ESO

RESUMEN DE CONCEPTOS

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n a n - 2 x n

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

CASO I: FACTORIZACION DE BINOMIOS

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

TEMA 4: EXPRESIONES ALGEBRAICAS.

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

PRÁCTICO: : POLINOMIOS

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

1. NUMEROS REALES a. Los Números Reales

Expresiones algebraicas

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ECUACIONES.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

Institución Educativa Distrital Madre Laura

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

RESUMEN ALGEBRA BÁSICA

Expresiones Algebraicas Racionales en los Números Reales

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables...

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Simplificación de fracciones algebraicas

UNIDAD IV CONTENIDO TEMÁTICO

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5

EXPRESIONES RACIONALES

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

EJERCICIOS PROPUESTOS. Calcula el valor numérico pedido para las siguientes expresiones algebraicas.

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

El Teorema Fundamental del Álgebra

TEMA 4: LAS FRACCIONES

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario

4º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

Tema 6 Lenguaje Algebraico. Ecuaciones

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8

Operaciones de números racionales

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

EXPRESIONES ALGEBRAICAS RACIONALES

TEMA 5. Expresiones Algebraicas

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Definición 3 (Polinomio) Se llama polinomio a la suma algebraica de varios monomios de distinto grado:

Sumar y restar radicales

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

Apuntes de matemáticas 2º ESO Curso Lenguaje algebraico.

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES

DESCOMPOSICIÓN FACTORIAL

UNIDAD DE APRENDIZAJE II

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Tema 2: Polinomios. factorización de polinomios y algunas aplicaciones de dicha factorización.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor

Ejercicios Resueltos del Tema 4

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

FACTORIZACIÓN GUÍA CIU NRO:

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

Tema 4. Ecuaciones e Inecuaciones.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :


a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

27/01/2011 TRIGONOMETRÍA Página 1 de 7

Transcripción:

Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto. Criterios de divisibilidad por -a.. Propiedades de divisibilidad... Polinomios irreducibles... Número de raíces y divisores primer grado de un polinomio.. Descomposición factorial de un polinomio. Máimo común divisor y mínimo común múltiplo de polinomios. Fracciones algebraicas.. Definición.. Simplificación.. Reducción a común denominador.. Operaciones

Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones Un monomio es una epresión del tipo a n donde: - a R y se denomina coeficiente - : es la variable puede ser otra letra y z. Esta letra puede tomar cualquier valor real - n N es el grado del monomio - n se denomina parte literal Ejemplos: -/y z -π - Coeficiente Grado Variable -/y -/ y z z -π -π - - 0 -- Los monomios de grado 0 son los números reales -- 0 Definición: monomios semejantes son todos aquellos que tiene misma parte literal es decir misma variable y grado. Ejemplo: - π -.. Operaciones con monomios Suma y resta: sólo se pueden sumar los monomios semejantes sumándose y restándose los coeficientes: a n ±b n a±b n Ejemplo: -7-6 ; 8 8 Multiplicación: se multiplican los coeficientes y se suman los eponentes de las variables iguales: a n b m a b nm Ejemplos: - - 6 ; -y -6 y 6 6 y y y y 08 y ; División: se dividen los coeficientes y se restan los eponentes de variables iguales: a n :b m a:b n-m Ejemplo: : 6 Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Potencia: se eleva el coeficiente y se multiplica el eponente por el grado del número. a n m n m a m Ejemplos: 6 ; -y -7y. Polinomios.. Definiciones Definición: se llama polinomio de variable a la epresión algebraica que resulta de sumar o más monomios de variable siendo del tipo: Pa n n a a a 0 Donde: - a 0 a a n R y son los coeficientes y a 0 término independiente - n es el grado del polinomio el grado mayor de los monomios - a n n a a 0 son los términos del polinomio Ejemplo: P-6 - es un polinomio de variable de grado con coeficientes a -6 a a 0 a - a y a0. Siendo el término independiente. Observa las siguientes epresiones que no son polinomios: ; ; -y Otras definiciones: - polinomio de grado cero: son los números reales - polinomio nulo: es el cero 00 - polinomio completo: es aquel donde todos los coeficientes desde el de mayor grado al término independiente son distintos de cero. Ejemplo: P- - Valor numérico de un polinomio: resulta de sustituir una variable por un número obteniendo el correspondiente valor numérico. Ejemplo: P - - P - -- ; P00-0 0-- Raíz de un polinomio P: es todo número real a R tal que su valor numérico es cero es decir Pa0 Ejemplo: P7 - el - es una raíz de P P--7-0. En siguientes apartados veremos cuantas y como calcular las raíces de los polinomios. Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas.. Operaciones con polinomios Suma y diferencia: se suman y restan los monomios semejantes como vimos en el apartado anterior. Ejemplo: P - - y Q6-6- PQ - -6-6-6 - - 9-7 P-Q - --6-6- - --6-6 -6 7 - - Definición: polinomios opuestos son los que sumados el resultado es el polinomio nulo. El opuesto de P se denota como P. Ejemplo: P - -P- - Multiplicación: la multiplicación de dos polinomios resulta de multiplicar cada monomio del primer polinomio por todos los monomios del segundo. Ejemplo: - -7 - - -- - -0 Potencia de polinomios: la potencia n-esima de un polinomio P se denota como P n y resulta de multiplicar P n veces por si mismo: P n P P P n-veces Ejemplo: P P 6 7 90 8 Identidades notables: - Cuadrado de la suma de monomios: ab a abb. Demostración: ab ab aba abbab a abb Ejemplo: 09 - Cuadrado de la diferencia de monomios: a-b a -abb. Demostración: a-b a-b a-ba -ab-bab a -abb Ejemplo: - - -09 - Suma por diferencia: ab a-ba -b Demostración: ab a-ba -abba-b a -b Ejemplo: - - -9 Ejercicio calcular a 9 6 b a / a a/ c - - 9 d a b a -b a 6 -b e - - - 6 8 - - Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Sacar factor común: cuando todos los términos del polinomio P son múltiplos de un monomio m podemos sacarlo factor común. Ejemplo: 6-9 - - - Ejercicio sacar factor común: a 90-0 900 9-907- b / -/0 // -/ División de polinomios: veamos como se divide a partir de un ejemplo 6 6 P X 8 7 7 7 7 0 0 resto 8 R Q 6 7 C cociente PQ CR Si la división es eacta se cumple R0 PQ C luego P múltiplo de Q y C o estos divisores de P. Ejercicio: decir si A - -- es múltiplo de B y C Dividiendo tenemos que la división entre la división no es eacta no múltiplo La división entre la división es eacta es múltiplo. Factorización de un polinomio.. Teorema del resto. Criterio de divisibilidad por -a Un polinomio P será múltiplo del polinomio de primer grado de la forma -a con a Z si se cumple que la división P:-a es eacta es decir el resto es cero. Eisten diversos teoremas que nos facilitan saber si -a es divisor de P sin necesidad de realizar la división. Veámoslos Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Teorema : Sea Pa n n a a a 0 con coeficientes enteros a n a a 0 Z para que -a con a Z sea divisor de P es necesario que el término independientea 0 sea múltiplo de a. Esta condición es necesaria pero no suficiente es decir a puede ser divisor de a 0 y en cambio -a no ser divisor. Ejemplo: Sea el polinomio P - - los posibles divisores de la forma -a con a nº entero son los siguientes compruébalo dividiendo: - a - si dividimos la división es eacta - divisor de P - a - si dividimos la división es eacta - divisor de P - a - si dividimos la división no es eacta resto6 - a- si dividimos la división no es eacta resto6 - a- si dividimos la división es eacta divisor de P - a- - si dividimos la división no es eacta resto-60 Teorema del resto: el resto de dividir P entre -a es igual al valor numérico de Pa restopa. Ejemplo: comprobémoslo en el polinomio anterior P - - y los factores anteriores: - a - restop0 - a - restop0 - a - restop6 - a- restop-6 - a- restop-0 - a- - restop--60 A partir del teorema del resto podemos saber si un polinomio es múltiplo de P de -a sin necesidad de dividir simplemente calculando Pa: a Si Pa0 entonces -a divisor de P pues el resto es 0 b Si Pa 0 entonces -a no es divisor de P pues el resto no es cero. Relación entre raíces de un polinomio soluciones ecuación y divisibilidad por -a: Recordemos todos los teoremas y definiciones vistas anteriormente para relacionarlas entre si sea P a n n a a a 0 a es raíz si Pa0 a solución a la ecuación a n n a a a 0 -a divisor de P pues el resto de la división rpa0. Luego todas las siguientes afirmaciones son equivalentes: - a es raíz del polinomio P - a solución de la ecuación a n n a a a 0 0 - -a divisor de P Página realizada por José Luis Lorente lorentejl@gmail.com 6

Tema. Polinomios y fracciones algebraicas Teorema fundamental del álgebra: sea un polinomio de P de grado n el número máimo de raíces es n y por tanto el número máimo de polinomios de la forma -a divisores y de soluciones a la ecuación a n n a a a 0 0 Ejercicio: Sean el polinomio P -- Q - -9 calcular a Los posibles polinomios -a con a Z divisores de P b El número máimo de ellos que puede ser divisores de P c Cuales son los divisores d Calcular las soluciones de la ecuación de --0 Solución: P -- a Pueden ser a -; a -; a- ; a- b Como mucho sólo pueden ser divisores de P c No hace falta dividir simplemente calcular el resto es decir Pa: - - rp--0 divisor - - rp88-- no divisor - rp---0 divisor - rp--88-0 divisor d El número máimo de soluciones de la ecuación es de son - - Q - -9 a Pueden ser a -; a -; a -; a9-9; - a- ; a- ; a- ; a9 9; b Como mucho sólo pueden ser divisores de P c No hace falta dividir simplemente calcular el resto es decir Pa: - - rp7 no divisor - - rp0 divisor - - rp0 divisor - - rp806 no divisor - rp-8 no divisor - rp-0 divisor - rp--60 no divisor - rp--00800 no divisor d El número máimo de soluciones de la ecuación es de son - Soluciones cuando a no es un número entero: hasta ahora sólo hemos considerado las raíces enteras habiendo visto que estas deben de ser divisores del término independiente. Pero estás no son las únicas que pueden ser raíces veamos algún ejemplo: Página realizada por José Luis Lorente lorentejl@gmail.com 7

Tema. Polinomios y fracciones algebraicas Ejemplos: a P6 - Las únicas raíces enteras pueden ser a y a- pero estas no son raíces P6 y P- entonces - y no son divisores de P. entonces no tiene raíces ni divisores?. Veamos como si. Las raíces de P serán también soluciones de 6-0 que como bien sabemos podemos calcular a partir de las soluciones de ecuaciones de segundo grado. ± ± Luego / y -/ son divisores de P pues P-/0 y P/0. b P -- Las únicas raíces enteras pueden ser a y a- a y a- pero estas no son raíces P 0 P- 0 P 0 y P- 0 entonces - - y - no son divisores de P. entonces no tiene raíces ni divisores?. Veamos como si. Las raíces de P serán también soluciones de --0 que como bien sabemos podemos calcular a partir de las soluciones de ecuaciones de segundo grado. ± 9 ± Luego - y - y P 0. son divisores de P pues P 0 Regla de Ruffini: cuando dividimos un polinomio P entre un binomio de la forma -a podemos aplicar la regla de Ruffini que es más sencillo que la división Ejemplos: - -: 0 8 6 C -8 r-9 8 9 - -:-/ 0 8 C - r 9 8 9 8 Página realizada por José Luis Lorente lorentejl@gmail.com 8

Tema. Polinomios y fracciones algebraicas.. Propiedades de la divisibilidad... Polinomios irreducibles Definición: un polinomio se dice irreducible cuando no tiene ningún otro polinomio divisor de grado inferior siempre es posible encontrar uno del mismo grado Teorema: los únicos polinomios irreducibles son los de er grado y los de segundo grado con soluciones no reales. Ejemplos: P- Q H I - J Nota: darse cuenta que es divisible por pero este polinomio es del mismo grado. Ejercicio decir cuales de los siguientes polinomios son irreducibles: - 6 7-/ - ± 9 ± - divisores -- - - No al ser de tercer grado divisores raíz - ± 6 no sol Irreducible no raíces ni divisores - 7-/ es irreducible al ser de primer grado Proposición: desde el punto de vista de la divisibilidad todos dos polinomios son equivalentes si son proporcionales P equivalente a Q si PK Q Ejemplos: 9 6 Nota: de todos los polinomios equivalentes se toma el que tiene el coeficiente de mayor grado igual a la unidad. Ejemplos: / ; - -... Número de raíces y divisores de primer grado de un polinomio. Teorema: un polinomio P tiene a lo sumo n raíces y por tanto n divisores de primer grado siendo n el grado del polinomio. Demostración: supongamos que P n a a 0 tiene n raíces a a a n entonces P se puede poner como P-a -a n y sería entonces de grado n y no degrado n. Definición: una raíz a de un polinomio P tiene multiplicidad si P es divisible por -a multiplicidad si es divisible por -a etc. Ejemplos: P luego a- es raíz doble Q - -- luego a es raíz triple. Nota: a la hora de contar el número de raíces las raíces dobles cuentan como raíces triples como etc. De esta forma un polinomio de grado no podrá tener raíces dobles pues sería como raíces Página realizada por José Luis Lorente lorentejl@gmail.com 9

Tema. Polinomios y fracciones algebraicas.. Descomposición factorial de un polinomio Definición: la descomposición factorial de un polinomio consiste en epresarlo como producto de polinomios irreducibles de er grado y de º sin soluciones. Diferentes métodos de sacar factor común a Sacar factor común: cuando el término independiente es nulo pudiendo sacar factor común m siendo m el grado del monomio de menor grado. De esta forma a0 es raíz de multiplicidad m. Ejemplo: P - -9 - -9 a0 es raíz doble. b Buscar divisores de la forma -a por Ruffini: por Ruffini sólo buscaremos divisores donde la raíz a es entera. Recordar que entonces a debe de ser divisor del término independiente. Ejemplo: Q - -9 9 6 0 0 P Q-- Luego el polinomio P del ejemplo anterior es P -- c A partir soluciones de ecuación de º grado: cuando las raíces no son enteras no es fácil encontrarlas a partir de Ruffini. Si tenemos una ecuación de º grado podemos obtener las raíces a partir de sus soluciones. Ejemplo: P - - 0 P ± 6 ± -- - P- - - Ejercicio factorizar: a P P raíz - b Q -8- Q - raíz ± c H 0 H / raíz - y -/ d I -- I - raíz - y - e J J raíz 0 f K - K- raíz g L L raíz 0 y - doble h M - - M - - raíz 0- Página realizada por José Luis Lorente lorentejl@gmail.com 0

Tema. Polinomios y fracciones algebraicas A partir de los teoremas visto hasta ahora decir si están bien o mal factorizadas los siguientes polinomios. Decir por que. a P - - Falso y no son divisores de b Q - - Falso raíces dos de multiplicidad doble y grado c H - -6- -. Verdadero raíces HH-H0 d I 60 - Falso. I---60 0 e S. Falso falta multiplicar por. Decir el polinomio que cumple las siguientes propiedades a El polinomio P cumple: i Solo tiene dos raices: El - es una raiz simple multiplicidad El es una raiz doble multiplicidad ii Es de grado iii El coeficiente de mayor grado es b El polinomio Q cumple. i Solo tiene dos raices: El es una raiz simple multiplicidad El - es una raiz simple multiplicidad ii Es divisible por iiiel coeficiente de mayor grado es iv De todos los posibles es el de menor grado P - Q- Decir el valor de a para que a sea divisible por P--- a0 a. Máimo común divisor y mínimo común múltiplo.. Máimo común divisor Definición: el máimo común divisor de o más polinomios es otro polinomio que cumple: a es divisor de todos ellos b de todos ellos es el de mayor grado con coeficiente de mayor grado la unidad. Veamos como calcular el máimo común divisor: descomponer factorialmente cada polinomio en polinomios irreducible el máimo común divisor es el polinomio cuya descomposición factorial esta formada por los polinomios irreducibles comunes a todos los polinomios con menor eponente. Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Ejemplo: mcd - --.. Mínimo común múltiplo Definición: mínimo común múltiplo de dos o más polinomios es otro polinomio que cumple: a es un polinomio múltiplo de todos los polinomios b de todos los polinomios múltiplos es aquel que tiene menor grado con coeficiente de mayor grado unidad. Veamos como calcular el mínimo común múltiplo: descomponer factorialmente cada polinomio en polinomios irreducible el mínimo común múltiplo es el polinomio cuya descomposición factorial esta formada por los polinomios irreducibles comunes y no comunes a todos los polinomios con mayor eponente. Ejemplo: mcd - - -- -- Ejercicio: calcular el máimo común divisor y el mínimo común múltiplo de los siguientes polinomios: a p - q - p - q- mcmpq- - - mcdpq- - b p - - q - - p - q - - mcmpq - - 6 - - - mcdpq - - Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Página realizada por José Luis Lorente lorentejl@gmail.com. Fracciones algebraicas.. Definición Definición : se llama fracción algebraica al cociente de dos polinomios es decir de la forma Q P. Ejemplos: Las fracciones algebraicas se comportan de forma semejante a las fracciones numéricas como veremos en siguientes apartados... Simplificación Si el numerador y el denominador de una fracción algebraica se pueden dividir por el mismo polinomio es decir son múltiplos de este polinomio al dividirlos se simplifica la fracción. Ejemplo: : Si dividimos numerador y denominador por el máimo común divisor de los dos polinomios se obtiene la fracción irreducible. Ejemplo:.. Reducción a común denominador Al multiplicar numerador y denominador de una fracción por el mismo polinomio se obtiene una fracción equivalente. Si tenemos varias fracciones y queremos obtener fracciones equivalentes con el mismo denominador tenemos dos opciones poner como denominador el producto de los dos denominadores o el mínimo común múltiplo de ambos. Ejemplos: 7 8 7 7 6 7 6 7

Tema. Polinomios y fracciones algebraicas.. Operaciones Suma y resta:se reduce a común denominador y se suman o restan los numeradores Ejemplo: 7 7 6 7 7 Producto: el resultado es una fracción algebraica cuyo numerador es el producto de los numeradores y su denominador el producto de los denominadores. Ejemplo: División: es una fracción algebraica donde el numerador es igual al producto del numerador de la primera por el denominador de la segunda y el denominador es igual al producto del denominador de la primera por el numerador de la segunda. Ejemplo: : 6 Nota: cuando multiplicamos o dividimos muchas veces al igual que con las fracciones numéricas estas pueden ser simplificables. Para que sea más sencilla la simplificación es mejor factorizar primero los polinomios y luego simplificar antes de multiplicar. Veamos un ejemplo: 7 0 6 6 / / 7 0 Ejercicios finales pag 8. Factorizar los siguientes polinomios: a -6-7 -7 b 7 d - - f -9-0 - 9 pag 8. Comprobar si las siguientes fracciones son equivalentes Dos métodos haremos cada apartado por uno. a y si son equivalentes se cumple - -6-6-6. 6 Si son equivalentes b y factorizamos y simplificamos y No son equivalentes Página realizada por José Luis Lorente lorentejl@gmail.com

Tema. Polinomios y fracciones algebraicas Página realizada por José Luis Lorente lorentejl@gmail.com. pag 8. A partir de los productos notables simplifica a e 0 h 6 pag 8. Decir las raíces de los siguientes polinomios a P - 0 -doble y / b Q- c R 0 d S -7 0 doble y 7 9 pag 9. Opera y simplifica a 9 : 9 : c : : : e 8 7 0 pag 9. Calcular en cada caso el polinomio oculto para que las fracciones sean equivalentes a P b P

Tema. Polinomios y fracciones algebraicas pag 9. El lado de un cuadrado aumenta en a cm. Formándose otro cuadrado. Suma las áreas de los rectángulos y cuadrados de la figura y comprueba que obtienes el área del cuadrado de lado a II IV a I III a Área cuadrado I Área cuadrado IV a Área rectángulo IIa Área rectángulo IIIa Área total aa a. Pag 9. Calcula el área del cuadrilátero A B C D mediante un polinomio en sabiendo que ABcm BCcm y AA BB CC DD D D C C A A B B área A B C D areaabcd- areabb C - areacc D - -- --- -- -8 6. pag 60. Hallar el mcd y el mcm a ; -; - ; - -; - - mcd ; -; - mcm ; -; - - - d ; ; - ; /; - -/ / -/ mcd; ; - mcm; ; - / -/ - Página realizada por José Luis Lorente lorentejl@gmail.com 6

Tema. Polinomios y fracciones algebraicas 7. Efectúa: a 8. Efectúa a. Calcula m para que el polinomio P -m - sea divisible por Si es divisible por entonces- es raíz de P es decir P---m--0 m-8. Calcular el valor de K si el resto de la división de k -76:- es -8 RestoP8k-6-8 8k- k-. Calcular m para que Pm - 9m sea divisible por Si P divisible por entonces P-0-8m--09m0 m 9. Escribir los polinomios de segundo grado con siguientes raíces a y - P- - b 0 y P - - c y P- - -6 d -6 y P6 - -6 0. Escribir polinomio de segundo grado cuya única raíz sea P-. Escribir polinomio de segundo grado sin raíces P 7. Inventa dos polinomios P y Q tal que mcmpq - P - Q -. Inventa dos polinomios P y Q tal que mcdpq - P - ; Q - Qué relación eiste entre el mcdpq y mcmpq? El mcmpq es múltiplo del mcdpq. Ya que el mcm tiene los polinomios irreducibles comunes y no comunes con mayor eponente y el mcd sólo los comunes y con menor eponente. Página realizada por José Luis Lorente lorentejl@gmail.com 7