PRÁCTICO: : POLINOMIOS
|
|
|
- Antonio Henríquez Farías
- hace 9 años
- Vistas:
Transcripción
1 Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en Hotelería, Lic. en Turismo Profesor: Prof. Mabel Susana Chrestia Semestre: 1ero - Año: 01 EXPRESIONES ALGEBRAICAS Definición Una Epresión Algebraica EA es una combinación de letras y números relacionados entre sí por operaciones aritméticas. Por ejemplo: 8 a 1 ab ; m ; y ; a ab b ; ; 1 z Las EA nos permiten hallar áreas y perímetros de figuras, volúmenes de cuerpos, costos de fabricación de un artículo, ingresos por ventas de un artículo, distancia a la que se encuentran dos móviles, etc. Consideremos por ejemplo la siguiente epresión: π r, donde r es el radio de una circunferencia y π,11... Esta EA nos permite encontrar la longitud L de la circunferencia de radio r. Podemos decir entonces que la variable es r, o, en otras palabras, la longitud depende del valor del radio r. Entonces escribimos: L r π r Valor numérico de una EA Siguiendo el ejemplo anterior, podemos darle un valor al radio. Por ejemplo, sea longitud de la circunferencia será L π 6 π 18, 8 cm Entonces: r cm. Entonces la El valor numérico de una EA es el valor que se obtiene al reemplazar cada letra por un número dado. El valor numérico de la EA anterior cuando r es 18, 8. Ejercicio Nro. 1 Dadas las siguientes EA, hallar sus valores numéricos para los valores de las variables indicados: a A 8 A A 1 A b B ; y y y 1 B 0 ;1 B ; 1 1 B ; c M a; b; c a 1 b c M 1; 1; 1 M 1; ; M 0 ; 8 ; Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
2 Página: MONOMIOS Definición Un monomio es una EA en la cual solamente aparecen entre las variables y los números, las operaciones de producto, cociente y/o potenciación. 8 6 a Por ejemplo: ab ; m ; y ; a m z ;. Partes de un monomio En un monomio distinguimos el coeficiente el número y la parte literal las letras, Por ejemplo, en el monomio a m z el coeficiente es y la parte literal es a m 6 z. Grado de un monomio Es un número que se obtiene sumando todos los eponentes de las variables. Por ejemplo, en los monomios del ejemplo anterior, los grados de cada uno son, 1,, y 1, respectivamente. Monomios Semejantes Dos monomios son semejantes cuando sus partes literales son iguales. Por ejemplo, los monomios Ejercicio Nro. Completar la siguiente tabla: mnt y 1mnt son semejantes. Monomio Coeficiente Parte Literal Grado 8 a bm e f g p m Operaciones con Monomios Suma y Resta Dos monomios semejantes pueden sumarse y/o restarse entre sí. Se obtiene un nuevo monomio cuya parte literal es la misma que los monomios dados, y cuyo coeficiente es la suma o resta de los coeficientes de los monomios dados. Ejemplo: dados mnt y 1mnt, la suma entre ambos es: entre ambos es: mnt 1mnt 16mnt. mnt 1mnt 8mnt y la diferencia Producto de un número por un Monomio En este caso se multiplican el número y el coeficiente del monomio entre sí. La parte literal no varía. mnt 0mnt Ejemplo: Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
3 Página: Producto entre Monomios En este caso se multiplican entre sí los coeficientes de ambos monomios, y la parte literal resultante se obtiene sumando los eponentes de letras iguales. Por ejemplo, el producto entre yz a y 6 y mt es 1a y z mt División entre Monomios En este caso se dividen entre sí los coeficientes de ambos monomios, y la parte literal resultante se obtiene restando los eponentes de letras iguales. Por ejemplo, el cociente entre Potencia de un Monomio yz a y y es a y z m t mt az y mt En este caso se eleva todo el monomio coeficiente y parte literal a la potencia dada. Se debe aplicar la propiedad de la potenciación potencia de otra potencia en la cual se multiplican entre sí los eponentes. 6 Por ejemplo, Ejercicio Nro. a yz a y z a y z Realizar las operaciones indicadas: a mn a mn a 1 b y z y z c y z d y 6 z 6 e t m vq t am q POLINOMIOS Definición Un polinomio es una EA de la forma siguiente: donde: es la variable ; P a a n n1 n n an 1 an... a a a1 a i R son los coeficientes ; a n es el coeficiente principal ; polinomio ; a 0 es el término independiente : a1 es el término lineal ; 0 n N es el grado del a es el término cuadrático. Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
4 Página: Grado de un polinomio El grado de un polinomio es el mayor eponente al que se encuentra elevada la variable. Tipos de polinomios Según el grado los polinomios pueden ser de: Primer Grado P 1 Segundo Grado P 6, Tercer Grado P 1 Cuarto Grado P 8 1 etc. Según la cantidad de términos los polinomios pueden ser: Monomios P Binomios P Trinomios P 1 Cuatrinomios P Además, si un polinomio tiene todos los coeficientes iguales a cero, se llama nulo. Por ejemplo: P Si un polinomio tiene todos sus términos, desde el término independiente hasta el término de mayor grado, se dice que está completo. Sino, se dice que está incompleto. Por ejemplo: P está completo pero P está incompleto. Un polinomio está ordenado si está escrito de manera que el grado de sus términos va de mayor a menor. Por ejemplo: P está ordenado. Ejercicio Nro. Unir: P Ordenado Completo P 0,1,,1 Primer grado Segundo grado P 1 Tercer grado Binomio Trinomio P Cuatrinomio Valor Numérico de un polinomio Es el resultado que se obtiene al sustituir la variable por un número dado. Ejemplo: si P 1 y entonces P 1 8. Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
5 Página: Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01 Operaciones con Polinomios Suma y Resta de Polinomios En este caso, se suman o restan solamente los términos semejantes entre sí. Por ejemplo: sean P ; Entonces: 10 6 P 1 P Producto de un número por un Polinomio En este caso se multiplica el número por cada uno de los coeficientes del polinomio. Por ejemplo: si P entonces P Producto entre Polinomios Se aplica la propiedad distributiva, teniendo en cuenta los signos y que los eponentes de iguales bases se suman. Por ejemplo: sean P ;. Entonces: P División entre Polinomios Sólo veremos el caso de división en la cual el polinomio divisor es un binomio del tipo a o a. Para esto aplicamos la conocida por Regla de Ruffini. Veamos un ejemplo. * Supongamos que queremos realizar / P siendo P y Primero se completa y ordena el polinomio dividendo. En nuestro ejemplo quedará: 0 0 P Luego armamos una tabla colocando en la parte superior los coeficientes del dividendo y en la parte inferior izquierda el opuesto del término independiente del divisor. Se baja el primer coeficiente. Multiplicamos ese coeficiente por el divisor y lo colocamos debajo del coeficiente del siguiente término. * El ejemplo ha sido tomado de
6 Página: 6 Sumamos los dos coeficientes, y escribimos el resultado debajo de la línea. Repetimos el proceso anterior. Y otra vez. El último número obtenido es el resto de la división. En este caso, 6. El cociente es un polinomio de un grado inferior al polinomio dividendo. En este caso será de grado. Se forma por todos los coeficientes que están debajo de la línea. C 6 18 Por lo tanto la división entre P y es C 6 18 y el resto es 6. En el caso de ser el resto cero, se dice que la división es eacta. Ejercicio Nro. 1 Dados P 8 ; M ; N ; hallar: P M M N P : N M Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
7 Página: Teorema del Resto El resto de dividir un polinomio P por otro del tipo a es el valor numérico del polinomio cuando a. Es decir, el resto es P a. Ejemplo: sean P 1 y. Entonces el resto de dividir P / es: Luego, el resto es 1. P Ejercicio Nro. 6 Hallar los restos de las siguientes divisiones, aplicando el Teorema del Resto: a P ; b P 0 ; FACTORIZACION DE EXPRESIONES ALGEBRAICAS Veremos los tres principales casos en los cuales una E.A. puede factorizarse, es decir, transformarse en un producto de varias E.A. o 1er Caso: Factor Común Consiste en etraer un coeficiente y/o letras que se encuentren en todos los términos de una E.A. Por ejemplo: Sea 6ab c 8a b a b c. Vemos que el es un coeficiente común en los tres términos y las letras ab también. Por lo tanto nos queda: 6ab c 8a b a b c ab c 8a a bc o do Caso: Binomio al cuadrado Veamos a qué es igual un binomio elevado al cuadrado. a b a b a b a ab ba b a ab b a b a b a b a ab ba b a ab b Entonces: a b b a ab ; a b a ab b Nota: Cuando un binomio se eleva al cuadrado se obtiene un Trinomio cuadrado perfecto. o er Caso: Diferencia de cuadrados Veamos a qué es igual una diferencia entre dos cuadrados. a b a ab ab b a a b b a b a b a b Entonces: a b a b a b Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
8 Página: 8 Ejercicio Nro. a Etraer factor común: 6 1 m an t 0an t 1 a b cd 6 6 a m t c b n m a b Desarrollar los siguientes binomios al cuadrado: y mn a 1 c Factorizar las siguientes diferencias de cuadrados: 1 m n a 100z 8 1 p q Raíces de Polinomios Una raíz de un polinomio es el valor de la variable que hace que el valor numérico del polinomio sea cero. En otras palabras, es el valor que hace que el polinomio sea nulo. Es decir: sea P un polinomio. Entonces si cuando a sucede que P a 0 diremos que a es una raíz de P. Ejemplo: Sea P 8. Veamos que si 1 o el polinomio se anula. P ; P Luego, 1 y son raíces de P 8. Ejercicio Nro. 8 a Encuentra las raíces de los siguientes polinomios de primer grado: 1 P 8 ; P ; P 6 ; P 1 b Encuentra las raíces de los siguientes polinomios de segundo grado: P 1 ; 1 P 1 ; P ; P Apunte Prof. Mabel Chrestia RRP Lic. en Admin., Lic. en Economía, Lic. en Hotelería, Lic. en Turismo UNRN 01
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Instituto San Marcos MATEMATICA 4 Año Expresiones algebraicas, polinomios, operaciones Docente responsable: Fernando Aso
Epresiones algebraicas enteras Instituto San Marcos MATEMATICA Año Una epresión algebraica es una combinación cualquiera de números, de letras o de números y letras, unidos entre sí por las operaciones
POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.
RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
UNIDAD 2: Expresiones Algebraicas
UNIDAD : Epresiones Algebraicas Unidad Epresiones Algebraicas A - DEFINICIONES Epresión literal: Es la reunión de letras (variables) y cifras (números reales) combinados entre sí y sometidos a operaciones
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.
Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
5. Producto de dos binomios de la forma: ( ax + c)( bx d )
PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición
Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente
CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas
TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:
IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y
1 of 18 10/25/2011 6:42 AM
Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.
Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y
3. POLINOMIOS, ECUACIONES E INECUACIONES
3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números
5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.
POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:
1. Expresiones polinómicas con una indeterminada
C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009
Lección 6: Factorización de Casos Especiales Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán polinomios que representan una Diferencia de
5 Operaciones. con polinomios. 1. Polinomios. Suma y resta
5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma
IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES
TRABAJO DE REFUERZO OPERACIONES CON EXPRESIONES ALGEBRAICAS Y GEOMETRIA PERIODO Chía, Mayo de 07 Señores Estudiantes Grados 0,07,0, a continuación encontrarán una serie de ejercicios que han sido bajados
DESCOMPOSICIÓN FACTORIAL
6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes
Ecuaciones de primer grado
Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?
REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los
4º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:
, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas.
1.- POLINOMIOS Y OPERACIONES Expresiones algebraicas Una expresión algebraica está formada por números y letras relacionados por operaciones aritméticas. Por ejemplo, 3x 3x1 x +, a 3 b, y 3, 5m + n 1 son
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
Multiplicación y división de polinomios
Semana 4 4 Empecemos! En esta sesión daremos continuidad al estudio de las operaciones de polinomios, la multiplicación y división. Para avanzar satisfactoriamente en este tópico debes recordar la propiedad
TEMA 5: ÁLGEBRA EXPRESIONES ALGEBRAICAS
1 TEMA 5: ÁLGEBRA EXPRESIONES ALGEBRAICAS Una expresión algebraica es un conjunto de números y letras unidos entre sí por las operaciones de sumar, restar, multiplicar, dividir y/o por paréntesis. Las
5 REPASO Y APOYO OBJETIVO 1
5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL
TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente
Desarrollo Algebraico
Capítulo 4 Desarrollo Algebraico E n el presente capítulo aprenderás técnicas para simplificar expresiones algebraicas, reduciendo la mayor cantidad de términos de cada expresión para lograr una apariencia
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor
Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término
La descomposición de una expresión algebraica en otra más sencilla se llama factorización.
Investiga en el texto básico, la web u otras fuentes bibliográficas acerca de los casos de factorización y redacta un informe escrito donde expliques el procedimiento para factorizar cada caso y plantea
UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS
Ingreso 019 Matemática Unidad 3-1 UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebraicas Enteras...... 3 Polinomios..... 3 Actividades... 4 Valor Numérico del
I.E.S. MARE NOSTRUM Departamento de Matemáticas MÁLAGA 3º ESO Académicas - Curso TEMA Expresiones algebraicas
TEMA Expresiones algebraicas ÍNDICE ÍNDICE...1 1. INTRODUCCIÓN...2 2. EXPRESIÓN ALGEBRAICA. VALOR NUMÉRICO...2 3. MONOMIOS...3 3.1 Operaciones con monomios...3 4. POLINOMIOS...4 5. OPERACIONES CON POLINOMIOS...4
UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS
Matemática Unidad 3-1 UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebraicas Enteras...... 3 Polinomios..... 3 Actividades... 4 Valor Numérico del polinomio........
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
UNIDAD 2.- Polinomios (tema 2 del libro)
UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen
Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador
Guía 4 TIPOS DE POLINOMIOS NOTA: término independiente de un polinomio con relación a una letra es el término que no contiene dicha letra. ENTEROS: si cada término del polinomio es entero Ejemplo: mn +
Tema 3: Expresiones algebraicas
Tema 3: Expresiones algebraicas Monomios y polinomios Un monomio es una expresión algebraica en las que las únicas operaciones que aparecen son la multiplicación y la potenciación de exponente natural.
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?
POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.
CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO
CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún Taller: Operaciones Algebraicas, Productos Notables y Factorización MARCO TEÓRICO - CONCEPTUAL Una expresión
Curs MAT CFGS-18
Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar
Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.
Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c)
Polinomios Qué tienes que saber? 58 QUÉ tienes que saber? Ten en cuenta Un monomio es una epresión algebraica formada por el producto de un número, llamado coeficiente, y una o más variables con eponente
Como se vio anteriormente un binomio es una expresión algebraica de dos términos.
Como se vio anteriormente un binomio es una epresión algebraica de dos términos. Ejemplos: 1) a+b ) ²-4yz ) -ab³-b³ 4) 1+4⁴ 5) -1-a²b La factorización de binomios es un proceso muy importante en álgebra.
En las expresiones algebraicas las letras NO PUEDEN TENER EXPONENTES NEGATIVOS, razón por la cual no existirán letras en los denominadores
ALGEBRA DE POLINOMIOS 1 El álgebra de polinomios se refiere al trabajo de expresiones matemáticas que involucran letras y números. A estas expresiones se las llama expresiones algebraicas, por lo que:
4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:
Recordar las principales operaciones con expresiones algebraicas.
Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números
Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)
Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar
Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?
REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir
Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos
Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos 7ax³ y² 3x²y ; - ; 4a²b³c 5 Todo término algebraico se compone de un factor literal (letras)
[email protected]
Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: [email protected]
Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra
Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que
POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las
POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
EXPRESIONES ALGEBRAICAS
Matemática EXPRESIONES ALGEBRAICAS Unidad N OBJETIVOS GENERALES Convertir las frases del lenguaje coloquial al lenguaje algebraico viceversa Identificar a las epresiones algebraicas según sean racionales
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
Polinomios II. I. Regla de Ruffini
Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas
83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»
83 ESO «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 6 4 10 ÍNDICE: 1. DIVISIÓN DE POLINOMIOS POR MONOMIOS. DIVISIÓN ENTERA DE POLINOMIOS 3. REGLA DE RUFFINI
FACTORIZACIÓN. Factorizar es escribir o representar una expresión algebraica como producto de sus factores.
FACTORIZACIÓN Factorizar es escribir o representar una epresión algebraica como producto de sus factores. Ejemplo: 5 ( 5)( 5) Una epresión queda completamente factorizada cuando se representa como el producto
EXPRESIONES ALGEBRAICAS.
EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
