RESOLUCIÓ DE PROBLEMES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESOLUCIÓ DE PROBLEMES"

Transcripción

1 RESOLUCIÓ DE PROBLEMES MOVIMENT UNIFORMEMENT ACCELERAT 1.- Llegir el problema. 2.- Fer-se una idea de la situació, dibuixar-la i col locar el sistema de referència. 3.- Buscar les constants del moviment: Posició inicial: r 0 Velocitat inicial: v 0 Acceleració: a Totes tres constants les hem d escriure en coordenades cartesianes. 4.- Substituir les constants a les equacions del MUA. Així tindrem les equacions en funció del temps. 5.- De tots els punts pels que passa la partícula el problema ens dirà i ens demanarà alguna cosa d un o més d ells, a cadascun d aquests punts els hi direm punt problema A, B... resoldrem cadascun d aquests punts per separat Punt problema A: buscarem en aquest punt quin valor concret agafen les tres variables: Posició: r Velocitat v Temps: t La posició i la velocitat en coordenades cartesianes Substituir els valors de les variables a les equacions en funció del temps i resoldre el sistema d equacions que quedi. Punt problema B: els mateixos passos que l A. EXEMPLE Es llança una bola de neu des d una altura de d 1,80 m a una velocitat de 8 m/s, que forma un angle de 30º amb l horitzontal. Calcula a) On cau la bola a terra i quina velocitat (mòdul i direcció) té la bola en arribar a terra. b) El punt d altura màxima. r 0 Constants: Posició inicial: r 0 = 1,80 j m Velocitat inicial: està en coordenades polars, s ha de passar a cartesianes. v 0x = v 0 cos φ = 8 cos 30º = 6,93 m/s

2 v 0y = v 0 sin φ = 8 sin 30º = 4 m/s v 0 = 6,93 i + 4 j m/s Acceleració: és la gravetat: vertical, cap a baix de mòdul 10 m/s 2 a = -10 j m/s 2 Equacions en funció del temps Substituïm les tres constants a les equacions del MUA r = r 0 + v 0 t +½ a t 2 = 1,80 j + (6,93 i + 4 j) t + ½ (-10 j ) t 2 Operant i traient factor comú r = 6,93 t i + ( 1,8 + 4 t 5t 2 ) j m equació de la posició en funció del temps v = v 0 + a t = 6,93 i + 4 j +( -10 t j) Operant i traient factor comú v = 6,93 i + (4 10 t) j m/s equació de la velocitat en funció del temps Punts problema: Punt problema A: punt d arribada a terra. Buscarem en aquest punt quin valor concret agafen les tres variables: Posició: r = x i + 0 j m. (El vector de posició del punt d arribada a terra és un vector horitzontal, per tant la seva component y val zero) Velocitat v: desconeguda Temps t: desconegut. Com l únic valor numèric el tenim al vector de posició, substituïm a l equació de la posició en funció del temps: x i + 0 j = 6,93 t i + ( 1,8 + 4 t 5t 2 ) j Si dos vectors són iguals ho han de ser component a component, per tant tindrem dues equacions escalars: x = 6,93 t 0 = 1,8 + 4 t 5t 2 Resolent l equació de segon grau i rebutjant la solució negativa tenim el temps d arribada a terra. t = 1,12 s Substituint aquest valor de temps a la primera equació del sistema tindrem la coordenada x del punt d arribada a terra x = 6,93 t = 6,93 1,12 = 7,76 m Per calcular la velocitat amb què arriba a terra (seguim estant al punt A) només cal substituir el temps 1,12 s a l equació de la velocitat en funció del temps: v = 6,93 i + (4 10 t) j = 6,93 i + (4 10 1,12) j = 6,93 i 7,2 j m/s D aquest vector hem de calcular el mòdul:

3 v v x + v = 6,93 + ( 7,2) = 9,99 m/s = y I la direcció: ϕ = arc tg v v y x = arc tg 7,2 = -46,09º 6,63 Punt problema B: punt d altura màxima. Buscarem en aquest punt quin valor concret agafen les tres variables: Posició: r desconeguda Velocitat v = v x i + 0 j (Al punt d altura màxima la partícula no està pujant ni baixant, per tant la component y de la velocitat ha de ser zero) Temps t: desconegut Com l únic valor numèric el tenim al vector velocitat, substituïm a l equació de la velocitat en funció del temps: v x i + 0 j = 6,93 i + (4 10 t) j Si dos vectors són iguals ho han de ser component a component, per tant tindrem dues equacions escalars: v x = 6,93 Aquesta equació és trivial, la component x de la velocitat és constant. 0 = 4 10 t Resolent aquesta equació tenim el temps que triga en arribar al punt d altura màxima. t = 0,4 s Substituint aquest valor de temps a l equació de la posició en funció del temps tindrem el vector de posició del punt d altura màxima. r = 6,93 t i + ( 1,8 + 4 t 5t 2 ) j = (6,93 0,4) i + [1, ,4 5 (0,4) 2 ] j = = 2,77 i + 2,6 j m TROBADA ENTRE DOS MÒBILS Fer els passos 1,2,3,4 fins a tenir les equacions en funció del temps per cada mòbil (òbviament tots dos amb el mateix sistema de referència) Per buscar la trobada igualem la posició d un amb la posició de l altre: r 1 = r 2 i resolem les equacions que quedin. Al moviment circular sempre hi ha trobada entre dos mòbils, però de vegades en igualar les dues posicions arribem a una solució impossible físicament. La causa és que al moviment circular dues partícules estan al mateix lloc (es troben) no únicament quan ϕ 1 =ϕ 2 sinó també quan una li treu una (o més) voltes, per exemple ϕ 1 =45º i ϕ 2 = 405º és el mateix lloc encara que els valors de ϕ siguin diferents.

4 Per resoldre les trobades al moviment circular farem servir: ϕ ràpid - ϕ lent = n. 2π El valor n= 0 és equivalent a ϕ 1 =ϕ 2, si no apareix una solució s ha de provar n=1 (si aquí tampoc no aparegués cap solució estem resolent malament el problema). Les successives trobades apareixerien amb els següents valors de n. DINÀMICA D UNA PARTÍCULA Apliquem la dinàmica d una partícula als problemes en els que: Hi ha una única partícula Hi ha dues o tres partícules que es mouen unides (perquè estan en contacte, unides amb una corda...). Les partícules d aquests conjunts sempre tenen el mateix mòdul d acceleració. Les forces mútues que es fan aquestes partícules compleixen la 3a Llei de Newton i apareixeran com a dada o incògnita del problema. Un cop hem identificat el problema: 1.- Dibuixar totes les forces que actuen sobre cada partícula. 2.- Dibuixar l acceleració de cada partícula. L acceleració de la partícula sempre té la mateixa direcció que la velocitat (la direcció del moviment). Si la partícula està augmentant de velocitat (accelerant), el sentit de l acceleració és el mateix que el de la velocitat; si la partícula està disminuint de velocitat (frenant), l acceleració té el sentit contrari a la velocitat 3.- Dibuixar el sistema de referència: el més adequat és el que fa coincidir la direcció i el sentit de l eix X amb els de l acceleració. 4.- Escriure tots els vectors en coordenades cartesianes. 5.- Aplicar la 2a Llei de Newton a cada partícula i resoldre el conjunt d equacions. (Si havíem suposat el sentit de l acceleració i l acceleració ens dóna positiva la suposició era correcta, si ens dóna negativa l acceleració està en sentit contrari a com l havíem dibuixada) CINEMÀTICA DINÀMICA A les equacions de cinemàtica apareixen les magnituds posició, velocitat, acceleració i temps. A les equacions de dinàmica apareixen les magnituds força, massa, acceleració, coeficient de fregament i constant elàstica. Si en llegir un problema ens apareix (entre dades i incògnites) una barreja de magnituds de cinemàtica i de dinàmica per resoldre l s ha de fer servir la cinemàtica i la dinàmica. Per on començar? depèn de la incògnita. Si la incògnita és una magnitud de la dinàmica es comença per resoldre la part cinemàtica del problema amb l objectiu de calcular l acceleració (que és l única magnitud comuna a la cinemàtica i la dinàmica), després es resol la part dinàmica.

5 Si la incògnita és una magnitud de la cinemàtica es comença per resoldre la part dinàmica del problema amb l objectiu de calcular l acceleració (que és l única magnitud comuna a la cinemàtica i la dinàmica), després es resol la part cinemàtica. ENERGIA L energia és una magnitud que fem servir per resoldre problemes de moviment en els que actua alguna força que depèn de la posició (com ara la força elàstica). Si hi ha present una força d aquestes, el conjunt Cinemàtica-Dinàmica és incapaç de resoldre el problema de moviment. CÀLCUL DE TREBALLS Distingirem entre el treball que fa una força (treball individual) i el treball conjunt que fan entre totes les forces que actuen sobre una partícula (treball global). Treball individual: hi ha dues opcions: el producte de força per desplaçament per cosinus i la variació d energia. W = F x cos (no serveix per calcular el treball de la força elástica) Variació d energia: depèn si la força és conservativa o no conservativa. v Si és conservativa: W C = - E P v Si es no conservativa W NC = E M Treball global: hi ha dues opcions, la suma dels treballs individuals o la variació d energia. Suma dels treballs individuals: W G = W 1 + W W n Variació d energia: W G = E C PROBLEMES DE MOVIMENT L energia es fa servir per resoldre problemes de moviment en els que intervenen forces que depenen de la posició. Si hi ha forces d aquest tipus el problema no es pot resoldre per cinemàtica-dinàmica. Hi ha forces d aquest tipus en: circumferències verticals, rampes no rectes i molles. Un fet a tenir en compte en les equacions d energia és que no apareix el temps. Un cop hem identificat el problema: 1.- Dibuixar la situació i identificar totes les forces que actuen (encara que només actuen en una part del recorregut) 2.- Mirar si hi ha forces que siguin perpendiculars a la trajectòria (en tot el recorregut) aquestes forces com no fan treball no afecten a l energia de la partícula. 3.- De les forces que queden mirar si són conservatives o no. Si són totes conservatives: energia mecànica constant, igualarem l energia mecànica que té la partícula en dos punts diferents.

6 E MA = E MB quedarà una equació amb una incògnita. Si hi ha una força no conservativa: igualarem el treball de la no conservativa amb la variació de l energia mecànica. W NC = E M Calculem independentment els dos membres de la igualtat: W NC = F NC x cos E M = E MB - E MA I igualem els dos resultats. Quedarà una equació amb una incògnita que pot ser de primer o de segon grau XOCS Un xoc és una interacció per contacte, molt curta, entre dues partícules que modifica la velocitat de totes dues. En un xoc la força que actua és una força interna per tant en un xoc sempre es conserva el moment lineal. Segons l energia perduda o no en el xoc es poden classificar en: Xoc elàstic (o perfectament elàstic): no es perd energia en el xoc. El problema es resol amb la constància del moment lineal i l energia Ec sistema abans del xoc = Ec sistema després del xoc Si el xoc és frontal queda un sistema de dues equacions amb dues incògnites i si és no frontal queda un sistema de tres equacions amb tres incògnites Xoc inelàstic: es perd energia al xoc. El problema es resol: Ec sistema després del xoc - Ec sistema abans del xoc = Ec Si el xoc és frontal queda un sistema de dues equacions amb dues incògnites i si és no frontal queda un sistema de tres equacions amb tres incògnites Xoc perfectament inelàstic: es perd energia al xoc i després del xoc les dues partícules es mouen unides (per tant tenen la mateixa velocitat). El problema es resol: Si el xoc és frontal queda una equació amb una incògnita i si és no frontal queda un sistema de dues equacions amb dues incògnites.

7 Si el problema demanés l energia perduda: Ec sistema després del xoc - Ec sistema abans del xoc = Ec

4.7. Lleis de Newton (relacionen la força i el moviment)

4.7. Lleis de Newton (relacionen la força i el moviment) D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit

Más detalles

2.5. La mesura de les forces. El dinamòmetre

2.5. La mesura de les forces. El dinamòmetre D11 2.5. La mesura de les forces. El dinamòmetre Per mesurar forces utilitzarem el dinamòmetre (NO la balança!) Els dinamòmetres contenen al seu interior una molla que és elàstica, a l aplicar una força

Más detalles

2 m. L = 3 m 42º 30º TREBALL I ENERGIA. 0,1 kg. 3,4 m. x 1 m. 0,2 m. k = 75 N/m. 1,2 m 60º

2 m. L = 3 m 42º 30º TREBALL I ENERGIA. 0,1 kg. 3,4 m. x 1 m. 0,2 m. k = 75 N/m. 1,2 m 60º 2 m L = 3 m 42º 30º TREBALL I ENERGIA 0,1 kg k = 75 N/m x 1 m 3,4 m 0,2 m 1,2 m 60º ÍNDEX 3.1. Concepte de treball 3.2. Tipus d energies 3.3. Energia mecànica. Principi de conservació de l energia mecànica

Más detalles

Tema 1. MOVIMENT ÍNDEX

Tema 1. MOVIMENT ÍNDEX Tema 1. MOVIMENT Tema 1. MOVIMENT ÍNDEX 1.1. Les magnituds i les unitats 1.2. Moviment i repòs 1.3. Posició i trajectòria 1.4. Desplaçament i espai recorregut 1.5. Velocitat i acceleració 1.6. Moviment

Más detalles

j Introducció al càlcul vectorial

j Introducció al càlcul vectorial FÍSICA 00 9 j Introducció al càlcul vectorial j Activitats finals h Qüestions 1. La suma dels vectors unitaris i, j és un altre vector unitari? Justifiqueu la resposta fent un gràfic. Els vectors unitaris

Más detalles

Proves d accés a la Universitat per a més grans de Qüestió 1 Assenyala les respostes correctes encerclant la lletra de cadascuna

Proves d accés a la Universitat per a més grans de Qüestió 1 Assenyala les respostes correctes encerclant la lletra de cadascuna Pàgina 1 de 5 Sèrie 3 Qüestió 1 Assenyala les respostes correctes encerclant la lletra de cadascuna Una dona fa una força horitzontal constant sobre una caixa que llisca sobre el terra d una habitació

Más detalles

Treball. Per resoldre aquests problemes utilitzarem l equació:

Treball. Per resoldre aquests problemes utilitzarem l equació: Treball Per resoldre aquests problemes utilitzarem l equació: W = F d cosα Aquesta equació expressa el treball en termes de la força aplicada, del desplaçament que aquesta força provoca i del cosinus de

Más detalles

INTERACCIÓ GRAVITATÒRIA

INTERACCIÓ GRAVITATÒRIA INTERACCIÓ GRAVITATÒRIA REPÀS FÓRMULES DE MOVIMENT MRU MRUA CAIGUDA LLIURE MRUA on MCU LLEIS DE KEPLER 1ª. Tots els planetes es mouen al voltant del sol seguint òrbites el líptiques. El Sol està a un dels

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

PART II: FÍSICA. Per poder realitzar aquest dossier cal que tinguis a mà el llibre de Física i Química 2.

PART II: FÍSICA. Per poder realitzar aquest dossier cal que tinguis a mà el llibre de Física i Química 2. PART II: FÍSICA Per poder realitzar aquest dossier cal que tinguis a mà el llibre de Física i Química 2. UNITAT 1: INTRODUCCIÓ AL MOVIMENT Posició i desplaçament 1- Marca la resposta correcta en cada cas:

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

Inferència de Tipus a Haskell

Inferència de Tipus a Haskell Inferència de Tipus a Haskell Mateu Villaret 21 d abril de 2008 1 Exemple d inferència de tipus Considerem la definició en Haskell de la funció map Haskell Code 1 map f [] = [] 2 map f (x: xs) = (f x)

Más detalles

Física Sèrie 1 INSTRUCCIONS

Física Sèrie 1 INSTRUCCIONS Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2014 Física Sèrie 1 SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

CAMPS DE FORÇA CONSERVATIUS

CAMPS DE FORÇA CONSERVATIUS El treball fet per les forces del camp per a traslladar una partícula entre dos punts, no depèn del camí seguit, només depèn de la posició inicial i final. PROPIETATS: 1. El treball fet pel camp quan la

Más detalles

TEMA 4: Equacions exponencials i logarítmiques

TEMA 4: Equacions exponencials i logarítmiques TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem

Más detalles

Problemes de dinàmica:

Problemes de dinàmica: Problemes de dinàmica: 1- Sobre una massa M = 5 kg, que es troba en repòs a la base del pla inclinat de la figura, s'aplica una força horitzontal F de mòdul 50 N. En arribar a l'extrem superior E, situat

Más detalles

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que

Más detalles

REPRESENTACIÓ DE FUNCIONS

REPRESENTACIÓ DE FUNCIONS 1. FUNCIONS PRINCIPALS REPRESENTACIÓ DE FUNCIONS 1.1 Rectes Forma: 4 5 1.2 Paràboles Forma: 1.3 Funcions amb radicals Forma: 1.4 Funcions de proporcionalitat inversa Forma: 1.5 Exponencials Forma: 2 1.6

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes?

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes? En la nostra vida diària trobem moltes situacions de relació entre dues variable que es poden interpretar mitjançant una funció de primer grau. La seva expressió algebraica és del tipus f(x)=mx+n. També

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

EL MOVIMENT. La CINEMÀTICA és la part de la física que. Anomenem mòbil el cos del qual estem

EL MOVIMENT. La CINEMÀTICA és la part de la física que. Anomenem mòbil el cos del qual estem EL MOVIMENT EL MOVIMENT La CINEMÀTICA és la part de la física que estudia el moviment. Anomenem mòbil el cos del qual estem estudiant el moviment. El moviment consisteix en el canvi de posició d un mòbil

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

Tema 3: EQUACIONS I INEQUACIONS

Tema 3: EQUACIONS I INEQUACIONS Tema 3: EQUACIONS I INEQUACIONS Igualtats algebraiques Es poden diferenciar: identitats i equacions a) Identitats Són igualtats que sempre es compleixen, per qualsevol valor numèric que donem a les lletres.

Más detalles

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS 2.1. Divisió de polinomis. Podem fer la divisió entre dos monomis, sempre que m > n. Si hem de fer una divisió de dos polinomis, anirem calculant les divisions

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu

Más detalles

TEMA 4 : Programació lineal

TEMA 4 : Programació lineal TEMA 4 : Programació lineal 4.1. SISTEMES D INEQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITA La solució d aquest sistema és l intersecció de les regions que correspon a la solució de cadascuna de les inequacions

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

Tema 2: GEOMETRIA ANALÍTICA AL PLA

Tema 2: GEOMETRIA ANALÍTICA AL PLA Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a

Más detalles

TEMA 6:EL MOVIMENT ONDULATORI HARMÒNIC (MOH( MOH) Ona és s qualsevol tipus de pertorbació que es propaga per l espai l sense transport de matèria.

TEMA 6:EL MOVIMENT ONDULATORI HARMÒNIC (MOH( MOH) Ona és s qualsevol tipus de pertorbació que es propaga per l espai l sense transport de matèria. TEMA 6:EL MOVIMENT ONDULATORI HARMÒNIC (MOH( MOH) Ona és s qualsevol tipus de pertorbació que es propaga per l espai l sense transport de matèria. Propagació del Moviment vibratori harmònic Nivell d equilibri

Más detalles

Gràfiques del moviment rectilini uniforme (MRU)

Gràfiques del moviment rectilini uniforme (MRU) x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el

Más detalles

SOLUCIONARI Unitat 5

SOLUCIONARI Unitat 5 SOLUCIONARI Unitat 5 Comencem Escriu tres equacions que no tinguin solució en el conjunt. Resposta oberta. Per exemple: a) x b) 5x 0 c) x Estableix tres equacions que no tinguin solució en el conjunt.

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

OLIMPÍADA DE FÍSICA CATALUNYA 2011

OLIMPÍADA DE FÍSICA CATALUNYA 2011 QÜESTIONS A) Dos blocs es mouen per l acció de la força F sobre un terra horitzontal sense fregament tal com es veu a la figura, on T és la tensió de la corda que uneix els dos cossos. Determineu la relació

Más detalles

CINEMÀTICA: INTRODUCCIÓ

CINEMÀTICA: INTRODUCCIÓ CINEMÀTICA: INTRODUCCIÓ La cinemàtica és la ciència que estudia el moviment dels cossos. Però un moviment (un canvi de localització) no té pas cap sentit sense un sistema de referència. Sistemes de referència

Más detalles

ÍNDEX Les magnituds i les unitats Moviment i repòs Posició i trajectòria Desplaçament i espai recorregut

ÍNDEX Les magnituds i les unitats Moviment i repòs Posició i trajectòria Desplaçament i espai recorregut Tema 1. EL MOVIMENT ÍNDEX 1.1. Les magnituds i les unitats 1.2. Moviment i repòs 1.3. Posició i trajectòria 1.4. Desplaçament i espai recorregut 1.5. Velocitat i acceleració 1.6. Moviment rectilini uniforme

Más detalles

INTEGRACIÓ: resolució exercicis bàsics ex res I.1

INTEGRACIÓ: resolució exercicis bàsics ex res I.1 INTEGRACIÓ: resolució exercicis bàsics ex res I. R. Aplicant el teorema d integració per parts, calculeu les següents integrals: (a) π x cos xdx (b) π e x sin xdx eπ + (c) e ln xdx (d) π/ π/ e x cos xdx

Más detalles

1. Indica si les següents expressions són equacions o identitats: a. b. c. d.

1. Indica si les següents expressions són equacions o identitats: a. b. c. d. Dossier d equacions de primer grau 1. Indica si les següents expressions són equacions o identitats: Solucions: Equació / Identitat / Identitat / Identitat 2. Indica els elements d aquestes equacions (membres,

Más detalles

Sigui un carreró 1, d amplada A, que gira a l esquerra i connecta amb un altre carreró, que en direm 2, que és perpendicular al primer i té amplada a.

Sigui un carreró 1, d amplada A, que gira a l esquerra i connecta amb un altre carreró, que en direm 2, que és perpendicular al primer i té amplada a. ENUNCIAT: Sigui un carreró 1, d amplada A, que gira a l esquerra i connecta amb un altre carreró, que en direm 2, que és perpendicular al primer i té amplada a. Dos transportistes porten un vidre de longitud

Más detalles

TEMA 5 : Resolució de sistemes d equacions

TEMA 5 : Resolució de sistemes d equacions TEMA 5 : Resolució de sistemes d equacions 5.1. EQUACIÓ LINEAL AMB n INCÒGNITES Una equació lineal de n incògnites es qualsevol expressió de la forma: a 1 x 1 + a 2 x 2 +... + a n x n = b, on a i b son

Más detalles

La recta. La paràbola

La recta. La paràbola LA RECTA, LA PARÀBOLA I LA HIPÈRBOLA La recta Una recta és una funció de la forma y = m + n. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall amb

Más detalles

11 Límits de funcions. Continuïtat i branques infinites

11 Límits de funcions. Continuïtat i branques infinites Límits de funcions. Continuïtat i branques infinites Pàgina 7 A través d'una lupa a) A = + d " A = " + d A = 0 d "+ Soroll i silenci I = + d " 0 I = 0 d "+ Pàgina 75 a) Cert Cert Cert d) Cert e) Fals f)

Más detalles

Equacions i sistemes de segon grau

Equacions i sistemes de segon grau Equacions i sistemes de segon grau 3 Equacions de segon grau. Resolució. a) L àrea del pati d una escola és quadrada i fa 0,5 m. Per calcular el perímetre del pati seguei els passos següents: Escriu l

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA

FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA FISICA I QUIMICA 4t ESO ACTIVITATS CINEMÀTICA 1. Fes els següents canvis d'unitats amb factors de conversió (a) 40 km a m (b) 2500 cm a hm (c) 7,85 dam a cm (d) 8,5 h a segons (e) 7900 s a h (f) 35 min

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

Atenció: és important escriure cada força amb el seu signe correcte.

Atenció: és important escriure cada força amb el seu signe correcte. ísica 4: tema ORCES resolució d exercicis Llei de la inèrcia Per resoldre aquests problemes utilitzarem la primera llei de Newton o Llei de la Inèrcia, segons la qual perquè un cos es mantingui en equilibri

Más detalles

DERIVADES. TÈCNIQUES DE DERIVACIÓ

DERIVADES. TÈCNIQUES DE DERIVACIÓ UNITAT 7 DERIVADES. TÈCNIQUES DE DERIVACIÓ Pàgina 56 Tangents a una corba y f (x) 5 5 9 4 Troba, mirant la gràfica i les rectes traçades, f'(), f'(9) i f'(4). f'() 0; f'(9) ; f'(4) 4 Digues uns altres

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades Oficina d Accés a la Universitat Pàgina 1 de 10 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val punts. Podeu utilitzar

Más detalles

MECANISMES DE TRANSMISSIÓ DE MOVIMENT.

MECANISMES DE TRANSMISSIÓ DE MOVIMENT. MECANISMES DE TRANSMISSIÓ DE MOVIMENT. 1. El títol d aquest capítol fa referència a elements que s encarreguen de transmetre moviments entre dos o més punts. En els següents dibuixos es representen diversos

Más detalles

Feu el problema P1 i responeu a les qüestions Q1 i Q2.

Feu el problema P1 i responeu a les qüestions Q1 i Q2. Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curs 2005-2006 Feu el problema P1 i responeu a les qüestions Q1 i Q2. Física sèrie 4

Más detalles

Vostre llibre Tema 10. La llum (pàg )

Vostre llibre Tema 10. La llum (pàg ) Tema 9. La llum Vostre llibre Tema 10. La llum (pàg. 226-255) ÍNDEX 9.1. Què és una ona? 9.2. Tipus d ones 9.3. Magnituds característiques de les ones 9.4. La llum visible o llum blanca 9.5. Espectre electromagnètic

Más detalles

Feu el problema P1 i responeu a les qüestions Q1 i Q2.

Feu el problema P1 i responeu a les qüestions Q1 i Q2. Generalitat de Catalunya Consell Interuniversitari de Catalunya Organització de Proves d Accés a la Universitat PAU. Curs 2005-2006 Feu el problema P1 i responeu a les qüestions Q1 i Q2. Física sèrie 3

Más detalles

16 febrer 2016 Integrals exercicis. 3 Integrals

16 febrer 2016 Integrals exercicis. 3 Integrals I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 16 febrer 2016 Integrals exercicis 3 Integrals 28. Troba una funció primitiva de les següents funcions: () = 1/ () = 3 h() = 2 () = 4 () = cos () = sin () =

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Física Sèrie 2 L examen consta d una part comuna (problemes P1 i P2), que heu de fer obligatòriament, i d una part optativa, de la qual heu d escollir UNA

Más detalles

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b Oficina d Organització de Proves d Accés a la Universitat Pàgina de 5 PAU 0 - Sabem que el vector (,, ) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c cx by +z = b Calculeu el valor

Más detalles

Física i Química 4t ESO B i C. Curs

Física i Química 4t ESO B i C. Curs Física i Química 4t ESO B i C. Curs 2017-18 David Pedret Dossier recuperació 1r trimestre Nom i cognoms : DEPARTAMENT DE CIÈNCIES NOM I COGNOM: CURS: 2017-2018 DATA: Física i Química 4 ESO DOSSIER RECUPERACIÓ

Más detalles

Conservació de l'energia

Conservació de l'energia 1 El aquesta unitat aplicarem les consideracions energètiques a l'estudi de la mecànica dels cossos. El 184, el físic i metge alemany Julius-Robert van Mayer va establir el concepte modern d'energia i

Más detalles

Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure

Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure Quim Primavera 2017 Introducció Estem a l espai (R 3 ) i els punts del domini tenen tres components: (x, y, z). El nostre domini

Más detalles

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

SOLUCIONARI Unitat 2

SOLUCIONARI Unitat 2 SOLUCIONARI Unitat Cinemàtica Qüestions 1. Raoneu si és certa aquesta afirmació: quan un cos es mou amb velocitat constant, el seu moviment és rectilini. Si la velocitat és constant ( v constant), aleshores

Más detalles

2. EL MOVIMENT I LES FORCES

2. EL MOVIMENT I LES FORCES 2. EL MOVIMENT I LES FORCES Què has de saber quan finalitzi la unitat? 1. Reconèixer la necessitat d un sistema de referència per descriure el moviment. 2. Descriure els conceptes de moviment, posició,

Más detalles

QUÍMICA 2 BATXILLERAT. Unitat 3 CINÈTICA QUÍMICA

QUÍMICA 2 BATXILLERAT. Unitat 3 CINÈTICA QUÍMICA QUÍMICA 2 BATXILLERAT Unitat 3 CINÈTICA QUÍMICA La velocitat de les reaccions La VELOCITAT d una reacció es mesura per la quantitat d un dels reactants que es transforma per unitat de temps. Equació de

Más detalles

Interacció gravitatória

Interacció gravitatória Interacció gravitatória Per interacció gravitatória entenem la interacció (acció mútua) entre dues partícules pel fet de tenir massa. La física clàssica interpreta aquesta interacció des de dos punts de

Más detalles

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació

Más detalles

LA RECTA. Exercicis d autoaprenentatge 1. Siga la gràfica següent:

LA RECTA. Exercicis d autoaprenentatge 1. Siga la gràfica següent: LA RECTA Recordeu: Una recta és una funció de la forma y = mx + n, on m i n són nombres reals. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall

Más detalles

Problemes de Sistemes de Numeració. Fermín Sánchez Carracedo

Problemes de Sistemes de Numeració. Fermín Sánchez Carracedo Problemes de Sistemes de Numeració Fermín Sánchez Carracedo 1. Realitzeu els canvis de base que s indiquen a continuació: EF02 16 a binari natural b) 235 10 a hexadecimal c) 0100111 2 a decimal d) FA12

Más detalles

DIAGRAMA DE FASES D UNA SUBSTANCIA PURA

DIAGRAMA DE FASES D UNA SUBSTANCIA PURA DIAGRAMA DE FASES D UNA SUBSTANCIA PURA Que es una fase? De forma simple, una fase es pot considerar una manera d anomenar els estats: sòlid, líquid i gas. Per exemple, gel flotant a l aigua, fase sòlida

Más detalles

Tema 0.- Magnituds Físiques i Unitats

Tema 0.- Magnituds Físiques i Unitats Tema 0.- Magnituds Físiques i Unitats Anomenem magnituds físiques totes aquelles propietats dels cossos de l Univers que es poden mesurar, és a dir, aquelles a les quals podem atorgar un nombre o valor;

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val

Más detalles

FÍSICA FÍSICA. Totes les preguntes tenen una puntuació màxima de 2 punts.

FÍSICA FÍSICA. Totes les preguntes tenen una puntuació màxima de 2 punts. FÍSICA FÍSICA A) CARACTERÍSTIQUES DE L EXAMEN L examen constarà de 5 qüestions senzilles, de caràcter numèric, que l estudiant ha de resoldre aplicant les lleis fonamentals de la Física en el termini màxim

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

Indiqueu en quins punts Y = f(x) no és contínua, el tipus de discontinuïtats de cada cas i les asímptotes que presenta. (0,1 9 +0,8=1,7 punts)

Indiqueu en quins punts Y = f(x) no és contínua, el tipus de discontinuïtats de cada cas i les asímptotes que presenta. (0,1 9 +0,8=1,7 punts) Generalitat de Catalunya Departament d Ensenyament Institut Jaume Balmes Nom: 1.- Trobeu la funció inversa o recíproca de la funció recorregut de la funció yf(). f ( ) Departament de Matemàtiques 1MA:

Más detalles

UNITAT TAULES DINÀMIQUES

UNITAT TAULES DINÀMIQUES UNITAT TAULES DINÀMIQUES 3 Modificar propietats dels camps Un cop hem creat una taula dinàmica, Ms Excel ofereix la possibilitat de modificar les propietats dels camps: canviar-ne el nom, l orientació,

Más detalles

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 5 d octubre de 2017

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 5 d octubre de 2017 xamen parcial de ísica - CONT CONTINU Model Qüestions: 50% de l examen cada qüestió només hi ha una resposta correcta. ncercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts,

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal

Más detalles

MÚLTIPLES I DIVISORS

MÚLTIPLES I DIVISORS MÚLTIPLES I DIVISORS DETERMINACIÓ DE MÚLTIPLES Múltiple d un nombre és el resultat de multiplicar aquest nombre per un altre nombre natural qualsevol. 2 x 0 = 0 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8

Más detalles

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) =

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) = El cas positiu no té solució. Si analitzam el cas negatiu, ens surt x = x+, d on x =. A continuació fem la taula següent per veure si el valor obtingut és un màxim, mínim o un punt de sella. x + f (x)

Más detalles

MOVIMENT VIBRATORI HARMÒNIC SIMPLE

MOVIMENT VIBRATORI HARMÒNIC SIMPLE MOVIMENT PERIÒDIC, OSCIL LATORI I VIBRATORI Mov. periòdic Repeteixen els seus valors cada interval de temps Període: T Mov. Oscil latori Desplaçament successiu a un costat i a l altre de la seva posició

Más detalles

Exercicis de magnetisme PAU

Exercicis de magnetisme PAU 1) Una espira circular de 4,0 cm de radi es troba en repòs en un camp magnètic constant de 0,50 T que forma un angle de 60 respecte de la normal a l espira. Calculeu el flux magnètic que travessa l espira.

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 Aquestes pautes no preveuen tots els casos que en la pràctica es poden presentar. Tampoc no pretenen donar totes les possibles

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

INTRODUCCIÓ 4. LA CÀRREGA ELÈCTRICA

INTRODUCCIÓ 4. LA CÀRREGA ELÈCTRICA INTRODUCCIÓ El llibre que utilitza el mestre per explicar el Tema 4. LA CÀRREGA ELÈCTRICA Si pitges als enllaços podràs llegir el llibre que utilitza el professor per donar el Tema 4: Una altra propietat

Más detalles

Per resoldre aquests problemes utilitzarem l equació del MRU: x f = x o + v t

Per resoldre aquests problemes utilitzarem l equació del MRU: x f = x o + v t MRU Per resoldre aquests problemes utilitzarem l equació del MRU: x f = x o + v t Exemples: Amb un mòbil: Càlcul de la posició final Un autobús viatja a 126 km/h per l autopista durant 45 minuts. Quina

Más detalles

UNITAT LES REFERÈNCIES EN L ÚS DELS CÀLCULS

UNITAT LES REFERÈNCIES EN L ÚS DELS CÀLCULS UNITAT LES REFERÈNCIES EN L ÚS DELS CÀLCULS 2 Referències Una referència reconeix una cel la o un conjunt de cel les dins d un full de càlcul. Cada cel la està identificada per una lletra, que indica la

Más detalles

Proporcionalitat i percentatges

Proporcionalitat i percentatges Proporcionalitat i percentatges Proporcions... 2 Propietats de les proporcions... 2 Càlul del quart proporcional... 3 Proporcionalitat directa... 3 Proporcionalitat inversa... 5 El tant per cent... 6 Coneixement

Más detalles

1. Posa, al lloc corresponent del dibuix, indicant-les si cal amb una fletxa, les lletres corresponents als següents noms:

1. Posa, al lloc corresponent del dibuix, indicant-les si cal amb una fletxa, les lletres corresponents als següents noms: TALLER + VISITA GUIADA Tècnica de la imatge ESO i Batxillerat Hem utilitzat, a l espai 1, càmeres fosques. Mirarem de reflectir en aquest full el que hem entès de la seva estructura i del seu funcionament.

Más detalles

3. FUNCIONS DE RECERCA I REFERÈN- CIA

3. FUNCIONS DE RECERCA I REFERÈN- CIA 1 RECERCA I REFERÈN- CIA Les funcions d aquest tipus permeten fer cerques en una taula de dades. Les funcions més representatives són les funcions CONSULTAV i CONSULTAH. Aquestes realitzen una cerca d

Más detalles

GEOMETRIA ANALÍTICA PLANA

GEOMETRIA ANALÍTICA PLANA GEOMETRIA ANALÍTICA PLANA Un vector fix és un segment orientat que va del punt A (origen) al punto B (extrem). M òdul del vector AB, es representa pe r. : É s la long itud del segment Direc ció del vector

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 55 Activitat 1 Dels nombres següents, indica quins són enters. a) 4 b) 0,25 c) 2 d) 3/5 e) 0 f) 1/2 g) 9 Els nombres enters són: 4, 2, 0 i 9. Activitat 2 Si la

Más detalles

4.1. Què és una ona? 4.2. Tipus d ones Magnituds característiques de les ones Ones estacionàries

4.1. Què és una ona? 4.2. Tipus d ones Magnituds característiques de les ones Ones estacionàries Tema 4. Les ones ÍNDEX 4.1. Què és una ona? 4.2. Tipus d ones 4.3. Magnituds característiques de les ones 4.4. Ones estacionàries http://web.educastur.princast.es/proyectos/fisquiweb/laboratorio/ondas1/labondas1.htm

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats

Más detalles

Tema 12. L oferta de la indústria i l equilibri competitiu. Montse Vilalta Microeconomia II Universitat de Barcelona

Tema 12. L oferta de la indústria i l equilibri competitiu. Montse Vilalta Microeconomia II Universitat de Barcelona Tema 12. L oferta de la indústria i l equilibri competitiu Montse Vilalta Microeconomia II Universitat de Barcelona 1 L oferta de la indústria L oferta de la indústria indica quina quantitat de producte

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

4.- Expressa en forma de potència única indicant el signe resultant.

4.- Expressa en forma de potència única indicant el signe resultant. Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).

Más detalles