1 of 18 10/25/2011 6:42 AM

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 of 18 10/25/2011 6:42 AM"

Transcripción

1 Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción a expresiones algebraicas Definición de término algebraico coeficientes evaluación de expresiones algebraicas polinomios coeficiente principal grado evaluación de polinomios suma, resta de polinomios multiplicación de polinomios división de polinomio entre monomio Si tiene dudas sobre este material, recuerde que puede preguntar en el foro de dudas de este tema. Sitio: Cursos en Línea de la UPRA Curso: Mate II Desarrollo de Destrezas Básicas en Matemáticas Libro: Expresiones algebraicas y polinomios Imprimido por: Caroline Rodriguez Fecha: Tuesday, 25 de October de 2011, 06:42 1 of 18 10/25/2011 6:42 AM

2 2 of 18 10/25/2011 6:42 AM 1 Expresiones algebraicas 1.1 variables vs. constantes 1.2 Términos 1.3 Evaluación de expresiones algebraicas 2 Polinomios 2.1 Grado, coeficientes y coeficiente principal 2.2 Evaluación de polinomios 3 Operaciones con polinomios 3.1 Suma y resta de polinomios 3.2 Multiplicación de polinomios 3.3 División de polinomios

3 3 of 18 10/25/2011 6:42 AM En esta sección discutiremos Expresiones algebraicas. Discutiremos los siguientes tópicos: Introducción a expresiones algebraicas Definición de término algebraico coeficientes evaluación de expresiones algebraicas Definición y ejemplos Una expresión algebraica es un conjunto de números, variables, signos de operación y signos de agrupación que tengan sentido. Ejemplos de expresiones algebraicas: 3x + 4y 3w + 1 x z ½ bh 21 + h 2x r 2 8 y Ejemplos de lo que NO son expresiones algebraicas son: 3+(-5*-) xy-/ No son expresiones algebraicas porque no tienen sentido en el lenguaje algebraico.

4 4 of 18 10/25/2011 6:42 AM En una expresión algebraica hay constantes y variables. Las constantes son símbolos que representan una cantidad que no cambia. Por lo general son números reales. Pueden también estar representados por letras en algunos casos, como π o e. Las variables son símbolos que representan una cantidad que cambia. Por lo general se representan con letras del alfabeto. En la expresión 5x + 4y el 5 y el 4 son constantes mientras que la x y la y son variables. En la expresión 7x 3-5x 2 + 8x + 4, las constantes son: 7, -5, 8 y 4, mientras que la x es la variable. La expresión 8, es una expresión constante que no tiene variable.

5 5 of 18 10/25/2011 6:42 AM Un término es una expresión algebraica que envuelve variables y/o constantes asociadas entre sí por las operaciones de multiplicación y/o división. Ejemplos: Cantidad de términos Para saber la cantidad de términos que tiene una expresión, debemos observar si puede separarse como la suma o resta de dos o mas expresiones. En ese caso, tiene la cantidad de términos igual a la cantidad de expresiones en las que se puede separar. Si no se puede separar, entonces tiene solo 1 término. Ejemplos: 3x + 7y 2 5 se puede separar en (3x) + (7y 2 ) (5) por lo que tiene 3 términos. Sin embargo 3(x+y) no se puede separar en la suma o resta de otras expresiones, a menos que hagamos otras operaciones antes. Es por eso que decimos que 3(x+y) tiene un solo término. En el caso de resta de ( ) - (2). decimos que hay 2 términos porque puede separarse solo como la Tipos de términos A los términos que incluyen variables se les conoce como términos variables. A los términos que no incluyen variables, o que sólo incluyen constantes se les conoce como términos constantes. En la expresión 4xy - 5x + 6, los términos variables son: 4xy, -5x mientras que el término constante es: 6 Términos semejantes Dos términos son semejantes sí y solo si tienen las mismas variables elevadas éstas a los mismos

6 6 of 18 10/25/2011 6:42 AM exponentes. Ejemplos: 3xy es semejante a 5xy -6x 2 es semejante a 2x 2 4xy NO es semejante a 4xz pues tienen variables diferentes 7y 2 NO es semejante a 2y 3 pues aunque tienen la misma variable, ésta tiene diferentes exponentes. Coeficiente En un término, el coeficiente es la constante (numérica) por la que está multiplicada la o las variables. Ejemplos: El coeficiente de -3x 2 y es -3 El coeficiente de 5y 3 es 5 El coeficiente de -2s es -2 El coeficiente de xyz es 1 El coeficiente de -z 2 es -1

7 7 of 18 10/25/2011 6:42 AM Para evaluar un expresión algebraica, debemos sustituir el valor de la variable en la variable que tengamos en la expresión. Si la variable aparece varias veces, hay que sustituir en cada vez que aparezca. Si hay dos o más variables, hay que sustituir cada variable por el valor que nos den de cada variable. Ejemplo: Si tenemos la siguiente expresión: 2xy + 3x 2 y 5xy 2 y se nos pide que la evaluemos en x=7 & y = -3 lo que debemos hacer es sustituir esos valores en las variables (cada vez que aparezcan). En este caso, 2(7)(-3) + 3(7) 2 (-3) 5(7)(-3) 2 Ahora lo que falta para terminar es efectuar las operaciones, siguiendo el orden de operaciones establecido (49)(-3) (35)(9) (-3) Recordatorio de orden de operaciones Las operaciones se deben efectuar siguiendo el siguiente orden de prioridad: - paréntesis - exponentes y radicales - multiplicaciones y divisiones - sumas y restas Ejemplo 2: Evalúe el mismo ejemplo anterior pero con otros valores: 2xy + 3x 2 y 5xy 2 si x = -1; y = 4 2(-1)(4) + 3(-1) 2 (4) 5(-1)(4) 2 = = 84 El orden en que sustituyas las variables importa!! Ejemplo 3: Evalúe la misma expresión pero con los valores x=4; y=-1 2(4)(-1) + 3(4) 2 (-1) 5(4)(-1) = -76 Ejemplo 4:

8 8 of 18 10/25/2011 6:42 AM Evalúe -3(2x+5) 2 + 4x - 2 si x = -2-3(2(-2)+5) 2 + 4(-2) - 2-3(-4+5) (1) (1) Debes hacer la práctica 1-1 (P1-1).

9 9 of 18 10/25/2011 6:42 AM Definición Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: - No hay variables en ningún denominador (parte de abajo en una fracción) - No hay variables en ningún radicando (parte de adentro de un radical) - Todos los exponentes de las variables son cardinales (esto es: enteros positivos o cero). Ejemplos de polinomios P(x) = 5x 2 + 3x - 1 Q(z) = -4z 5-3 La P(x) es una notación que significa que P es el nombre del polinomio y que la variable en la que está definida el polinomio es x. En el caso de Q(z), Q es el nombre del polinomio y la variable es z. Los siguientes NO son polinomios: 5x x En el primer caso, por tener la variable un exponente negativo y en el segundo caso porque hay una variable en el denominador. Tipos de polinomios Los polinomios reciben su nombre de acuerdo a la cantidad de términos que tienen: si tienen un término se llaman monomios si tienen dos términos se llaman binomios si tienen tres términos se llaman trinomios de cuatro en adelante no reciben un nombre en particular, pero tengan los términos que tengan, son polinomios siempre que cumplan con los requisitos mencionados antes. Ejemplos de monomios: 4xy 7x 5 4(2x+7) 3 Ejemplos de binomios: 2x + 5

10 10 of 18 10/25/2011 6:42 AM 7x 4-4x 3 Ejemplo de trinomios: 2xy - 5z + 6x 2(x+1) 2-4x - 2

11 11 of 18 10/25/2011 6:42 AM Grado de un polinomio El grado de un polinomio se determina de forma diferente si es un polinomio en una sola variable o en más de una variable. (i) Si el polinomio es en una sola variable el grado será la potencia mayor de la variable con coeficiente distinto de cero. (ii) Si el polinomio tiene más de una variable el grado se determina de la siguiente forma: para cada término se suman las potencias de la variable y el grado será el total mayor. Ejemplo: El grado de es 4 porque es el exponente mayor. El grado de 5x - 2 es 1 porque es el exponente mayor de la variable. Coeficientes El coeficiente de un término es la constante que acompaña a la(s) variable(s). Coeficiente principal de un polinomio En un polinomio en una variable, el coeficiente principal es el coeficiente del término con la potencia mayor de la variable. Ejemplo: El coeficiente principal de 6, el coeficiente de ese término es -5. es -5 porque como el exponente mayor de la variable es

12 12 of 18 10/25/2011 6:42 AM Recuerde que un polinomio es una expresión algebraica que cumple con unas condiciones. Si ya sabe evaluar expresiones algebraicas, entonces ya sabe evaluar polinomios. Lo único realmente nuevo, es la notación. Notación Cuando decimos que P(x) = 3x 2 + 5, lo que decimos es que P es el nombre del polinomio y que contiene la variable x. Si le piden que halle P(2), le están pidiendo que evalúe el polinomio P(x) para x=2. P(2) = 3(2) = 3(4) + 5 = = 17 Ejemplo: Q( ) = 4y 3-5y 2 + 4y - 2 Halle Q(-1) Q(-1) = 4(-1) 3-5(-1) 2 + 4(-1) - 2 = 4(-1) - 5(1) = = = = -15 Debes hacer la práctica 1-2 (P1-2).

13 13 of 18 10/25/2011 6:42 AM Las operaciones con polinomios que discutiremos son las básicas: suma de polinomios resta de polinomios multiplicación de polinomios multiplicación de monomio x monomio multiplicación de monomio x binomio multiplicación de binomio x binomio multiplicación de otros polinomios división de polinomio entre monomio Con respecto a la división, sólo tocaremos lo más básico: división de un polinomio entre un monomio. La división de un polinomio entre otro polinomio se realiza con otro procedimiento que NO discutiremos en este curso. Se presenta el procedimiento así como ejemplos de cada caso.

14 14 of 18 10/25/2011 6:42 AM Para sumar polinomios sencillamente se suman los términos semejantes. De igual manera, para restar polinomios se restan los términos semejantes. Se debe tener cuidado al restar pues la resta aplica a todos los términos del polinomio que se esté restando. Lo primero que se debe hacer, tanto en suma como en resta, es quitar los paréntesis. En el caso de suma, los paréntesis se pueden quitar sin hacer más nada. En el caso de resta, como la resta es la suma del opuesto, al quitar los paréntesis se cambian los signos de todos los términos del polinomio que se esté restando. Veamos ejemplos de suma y de resta. Al sumar (2x + 5) + (3x + 2) tenemos: 2x x + 2 (quitamos los paréntesis) 2x + 3x (ahora reorganizamos los términos) 5x + 7 (finalmente combinamos términos semejantes) Al sumar (4x 2 + 5x - 2) + (3x 2 - x + 8) tenemos: 4x 2 + 5x x 2 - x + 8 (quitamos los paréntesis) 4x 2 + 3x 2 + 5x - x (ahora reorganizamos los términos) 7x 2 + 4x + 6 (finalmente combinamos términos semejantes) Al restar: (4x 2-5x + 4) - (2x 2-7x - 5) lo primero que tenemos que hacer es sacar los polinomios de los paréntesis, aplicando el opuesto al segundo polinomio. Tenemos entonces: 4x 2-5x + 4-2x 2 + 7x + 5 Ahora reorganizamos y combinamos los términos semejantes: 4x 2-2x 2-5x + 7x x 2 + 2x + 9 Otro ejemplo: Al restar: (4x 3 + 5x - 2) - (7x 2 + 3x - 2) tenemos primeramente que sacar los polinomios de los paréntesis, para poder combinar los que sean semejantes. 4x 3 + 5x - 2-7x 2-3x + 2 Ahora reagrupamos, para combinar los términos semejantes 4x 3-7x 2 + 5x - 3x x 3-7x 2 + 2x *********OJO: Los términos que no se combinan se quedan igual.

15 15 of 18 10/25/2011 6:42 AM

16 16 of 18 10/25/2011 6:42 AM Monomio x monomio La multiplicación de monomios se realiza de la siguiente manera: Se multiplican los coeficientes numéricos y si existen coeficientes literales en común en los términos o monomios a multiplicar, el producto de ellos es el mismo con un exponente que es la suma de los exponentes de los términos. Ejemplos: 1) = 4(2) = 2) -2y 3 (3y 4 z 5 ) = -2(3)y (3+4) z 5 = -6y 7 z 5 3) 5x 6 y 6 (-4x 4 y) = 5(-4)x (6+4) y (6+1) = -20x 10 y 7 4) -2a 4 b 3 c 6 (3ab 2 c 5 ) = -2(3) a( 4+1) b (3+2) c (6+5) = -6a 5 b 5 c 11 Monomio x binomio Recordamos la ley distributiva de la multiplicación: a(b+c) = ab + ac Ejemplos: x(2x ) = x(2x 3 ) + 45x = 2x x 2a 2 (-3b 3 12) = 2a 2 (-3b 3 ) 2a 2 (12) = -6a 2 b 3 24a 2 Monomio x otros polinomios Siempre se multiplica el monomio con cada término del polinomio. Binomio x binomio Para multiplicar dos binomios, aplicamos la propiedad distributiva dos veces: (a + b)(c + d) = a(c + d) + b(c + d) = ac + ad + bc + bd Esto equivale a multiplicar cada término de un binomio por cada término del otro binomio. Al final, si hubiera términos semejantes, se combinan. Ejemplos: 1) (2x + 3)(4x 2 5) = 8x x 2 10x 15 2) (2y 5)(4y 6) = 8y 2-20y -12y + 30

17 17 of 18 10/25/2011 6:42 AM = 8y 2 32y ) (x 5)(2 x) = 2x 10 x 2 + 5x = -x 2 + 7x 10 Binomio al cuadrado Elevar un binomio al cuadrado es lo mismo que multiplicar por el mismo binomio 2 veces. Un ejemplo de esto es: (3a 2 +5b) 2 = (3a 2 +5b) (3a 2 +5b) Como explicamos anteriormente hay que multiplicar cada término con cada término. En ese caso tenemos: (3a 2 )(3a 2 ) +(3a 2 )(5b) + (5b)(3a 2 ) + (5b)(5b) que equivale a multiplicar primero x primero, luego primero x segundo, luego segundo x primero y finalmente segundo x segundo. En este caso, daría finalmente: 9a a 2 b + 15a 2 b + 25b 2 que simplificando los términos semejantes nos da a: 9a a 2 b + 25b 2 El problema es que muchos estudiantes elevan cada término al cuadrado y eso no es correcto. Hay que recordar que elevar al cuadrado es lo mismo que multiplicar por el mismo factor dos veces. Conclusión Cuando se multiplican polinomios, se multiplica cada término de un polinomio por cada término del otro polinomio. Luego se simplifica el resultado combinando términos semejantes.

18 18 of 18 10/25/2011 6:42 AM Sólo discutiremos el caso de polinomio entre monomio. La división de polinomio entre otro polinomio de más términos es un proceso muy distinto que no discutiremos aquí. Cuando dividimos un polinomio entre un monomio, aplica la propiedad distributiva también. Es decir, se divide cada término del polinomio entre el monomio. De igual forma, tenemos: Recuerde que x y es lo mismo que Veamos algunos ejemplos. Ejemplo 1: ( ) ( ) Ejemplo 2: ( ) ( ) = = Ejemplo 3: ( ) ( ) Fíjese que ya no se puede hacer más nada porque ya dividimos y los términos que quedan no son semejantes por lo que no se puede simplificar más. Debes hacer la práctica 1-3 (P1-3).

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra

Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra 12345678901234567890 M ate m ática Tutorial MT-b6 Matemática 2006 Tutorial Nivel Básico Álgebra Matemática 2006 Tutorial Álgebra Marco teórico: 1. Término algebraico El término algebraico es la unidad

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un

CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un conjunto relacionado, los matemáticos dicen que tratamos con una expresión

Más detalles

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales. Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones

Más detalles

Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios.

Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios. Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios. Sitio: Cursos en Línea de la UPRA Curso: Mate0006-10-II Desarrollo de Destrezas Básicas en Matemáticas Libro: Asignaciones

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES OPERACIONES ALGEBRAICAS FUNDAMENTALES Monomio Un monomio es la representación algebraica más elemental sus componentes son: signo, coeficiente, literal (o literales exponente ( o exponentes, cada literal

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

1 of 16 10/25/2011 6:36 AM

1 of 16 10/25/2011 6:36 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn este módulo se estudiarán las expresiones racionales. Estudiaremos cómo: simplificar evaluar sumar restar multiplicar

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

UNIVERSIDAD SAN MARCOS

UNIVERSIDAD SAN MARCOS Prof. Edwin Gerardo Acuña Acuña UNIVERSIDAD SAN MARCOS ALGEBRA Este capítulo estudia los conceptos básicos del álgebra, una de las disciplinas de la matemática que tiene más aplicaciones en diversos campos.

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

PRÁCTICO: : POLINOMIOS

PRÁCTICO: : POLINOMIOS Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en

Más detalles

SESIÓN 2 EXPRESIONES ALGEBRAICAS, REDUCCIÓN DE TÉRMINOS SEMEJANTES, SUMA Y RESTA ALGEBRAICAS

SESIÓN 2 EXPRESIONES ALGEBRAICAS, REDUCCIÓN DE TÉRMINOS SEMEJANTES, SUMA Y RESTA ALGEBRAICAS SESIÓN 2 EXPRESIONES ALGEBRAICAS, REDUCCIÓN DE TÉRMINOS SEMEJANTES, SUMA Y RESTA ALGEBRAICAS I. CONTENIDOS: 1. Conceptos básicos de álgebra. 2. Clasificación de expresiones algebraicas. 3. Reducción de

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Area Académica: Licenciatura en Administración. Profesor: I.E.C. Roxana Sifuentes Carrillo

Area Académica: Licenciatura en Administración. Profesor: I.E.C. Roxana Sifuentes Carrillo Area Académica: Licenciatura en Administración Asignatura: Matemáticas Básicas Profesor: I.E.C. Roxana Sifuentes Carrillo Periodo: Julio-Diciembre 2011 Tema: Basic Concepts of Algebra Abstract Algebra

Más detalles

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos 7ax³ y² 3x²y ; - ; 4a²b³c 5 Todo término algebraico se compone de un factor literal (letras)

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

REGLAS DE LOS SIGNOS

REGLAS DE LOS SIGNOS 1. 1 UNIDAD 1 REGLAS DE LOS SIGNOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las reglas de los signos. Objetivos específicos: 1. Recordarás las reglas

Más detalles

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

Lección 2-Multiplicación de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 2-Multiplicación de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 2-Multiplicación de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Multiplicarán correctamente diferentes polinomios dados Aplicarán

Más detalles

SESIÓN 8 EXPONENTESY RADICALES

SESIÓN 8 EXPONENTESY RADICALES SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y

Más detalles

1 of 21 10/25/2011 6:28 AM

1 of 21 10/25/2011 6:28 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn este módulo se definirá lo que es factorización. Se darán ejemplos de cómo se factorizan enteros y la relación

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

MATERIALES DIDÁCTICOS

MATERIALES DIDÁCTICOS MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

La descomposición de una expresión algebraica en otra más sencilla se llama factorización.

La descomposición de una expresión algebraica en otra más sencilla se llama factorización. Investiga en el texto básico, la web u otras fuentes bibliográficas acerca de los casos de factorización y redacta un informe escrito donde expliques el procedimiento para factorizar cada caso y plantea

Más detalles

ÁLGEBRA. Puede que en un principio no quede del todo claro esto pero esperemos que con la siguiente tabla se explique un poco mejor:

ÁLGEBRA. Puede que en un principio no quede del todo claro esto pero esperemos que con la siguiente tabla se explique un poco mejor: ÁLGEBRA El algebra es la parte de las matemáticas que nos ayuda a efectuar operaciones con números aún sin saber específicamente de que número se trata. Mediante el proceso de traducción del leguaje cotidiano

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA Año escolar: 2do.y 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

División de Polinomios. Ejercicios de división de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

División de Polinomios. Ejercicios de división de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx División de Polinomios Ejercicios de división de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 2. División de monomios 3 3. División

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009 Lección 6: Factorización de Casos Especiales Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán polinomios que representan una Diferencia de

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente.

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente. OPERACIONES CON POTENCIAS Una potencia es un producto de factores iguales. Está formada por la base y el exponente. 3. 3. 3. 3 = 3 4 Exponente Base Se puede leer: tres elevado a cuatro o bien tres elevado

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 1 Nombre: Fundamentos Matemáticos Contextualización Los fundamentos matemáticos son de vital importancia, en este tema se abordan y revisan

Más detalles

Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación. Dra. Noemí L. Ruiz Limardo 2009

Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación. Dra. Noemí L. Ruiz Limardo 2009 Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Conocerán el

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x. POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador Guía 4 TIPOS DE POLINOMIOS NOTA: término independiente de un polinomio con relación a una letra es el término que no contiene dicha letra. ENTEROS: si cada término del polinomio es entero Ejemplo: mn +

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

Representación de los números naturales

Representación de los números naturales Números naturales El conjunto de los números naturales se representa por la letra, y está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Los números naturales sirven para contar los elementos de un

Más detalles

Sumar y restar radicales

Sumar y restar radicales Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y

Más detalles

GUIA DE ESTUDIO Operaciones Básicas con Números Naturales

GUIA DE ESTUDIO Operaciones Básicas con Números Naturales GUIA DE ESTUDIO Operaciones Básicas con Números Naturales Suma de números naturales: La suma es la operación matemática que resulta al reunir en una sola varias cantidades. También se conoce la suma como

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Matemática Empresarial

Matemática Empresarial Corporación Universitaria Minuto de Dios - UNITOLIMA GUIA DE TRABAJO 1. Matemática Empresarial Guía N.001 F. Elaboración: 19 febrero /11 F. 1 Revisión: 19 febrero /11 Pagina 1 de 6 TEMA: Números reales

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

UNIDAD DE APRENDIZALE III UNIDAD DE APRENDIZAJE 3 ( 8 HORAS)

UNIDAD DE APRENDIZALE III UNIDAD DE APRENDIZAJE 3 ( 8 HORAS) UNIDAD DE APRENDIZALE III UNIDAD DE APRENDIZAJE 3 ( 8 HORAS) Saberes procedimentales Saberes declarativos Identifica y utiliza operaciones básicas con Literales: definición y uso. expresiones algebraicas.

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 Las expresiones algebraicas consisten en uno o más números y variables, junto

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles