Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):"

Transcripción

1 EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta de regresión del peso sobre la edad. b) Cual será el peso aproximado de una niña de años de edad. Construir la tabla de frecuencias. X i Y i f i Xi f i Y i f i f i X 2 i f i Y 2 i fi X i Y i I. Hallamos las medias de X y de Y. x y n x i f i i1f 2 i n yf i i1f 10 i 30 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): Si σ xy > 0 Si σ xy < 0 La correlación es directa. La correlación es inversa. σ xy n x i y i x y i1f , 8 i 1

2 I Calculamos las desviaciones típicas. s x f f x 11 2,28 s y f f y ,28 La recta de regresión de Y sobre X se utiliza para estimar los valores de la Y a partir de los de X y viceversa. 2. En una empresa se seleccionaron cinco trabajadores, se anotaron sus años de servicio y el tiempo en horas solicitado en el último mes. Los resultados obtenidos fueron: x y a) Representa los datos anteriores. Razonar si los datos muestran correlación positiva o negativa. b) Calcular el coeficiente de correlación e interprétalo en términos de la situación real. Construir la tabla de frecuencias. X i Y i f i Xi f i Y i f i fi X 2 i fi Y 2 i fi X i Y i

3 a) Representa los datos anteriores. Razonar si los datos muestran correlación positiva o negativa. b) Calcular el coeficiente de correlación e interprétalo en términos de la situación real. I. Hallamos las medias de X y de Y. 19 𝑖1 𝑥𝑖 𝒙 𝟑, 𝟏𝟔 𝑖1 𝑦 𝒚 20 𝟑, 𝟑𝟑 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): I 𝑖1 𝑥𝑖 𝑦𝑖 𝒙 𝒚 7 3,1 3,33 𝟐, 𝟏𝟏 Calculamos las desviaciones típicas. 𝑠 𝑥 𝑓 𝑥 𝑓 𝑦 𝑓 𝑦 𝑓 71 3,1 1,34 𝑠 IV. 88 3,33 1,88 Calculamos el coeficiente de correlación. 𝒓 𝑠𝑥 𝑠𝑦 2,11 𝟎, 𝟖𝟑 1,34 1,88 3

4 Existe una correlación directa entre los años de servicio y el número de vacaciones. 3. La tabla adjunta da el índice de mortalidad de una muestra de población en función del consumo diario de X cigarrillos. N o Cigarrillos Índice de Mortalidad 0,2 0,3 0,3 0, 0,7 1,4 1, a) Determinar el coeficiente de correlación entre x e y. Predecir la mortalidad para un consumidor de 0 cigarrillos diarios. Construir la tabla de frecuencias. X i Y i f i Xi f i Y i f i fi X 2 i fi Y 2 i fi X i Y i 3 0, ,2 9 0,04 0, 0,3 1 0,3 2 0,09 1, 0,3 1 0,3 3 0,09 1,8 1 0, 1 1 0, 22 0,2 7, 20 0, , , , , ,9 4 1, 1 4 1, 202 2,2 7, 134 4, ,9 4320,17 148,9 I. Hallamos las medias de X y de Y. x n x i f i i1f , 14 i 7 4

5 𝑖1 𝑦 𝒚 4,9 𝟎, 𝟕 7 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): I 𝑖1 𝑥𝑖 𝑦𝑖 𝒙 𝒚 148,9 19,14 0,7 𝟕, 𝟖𝟕 7 Calculamos las desviaciones típicas. 𝑠 𝑥 𝑓 𝑥 𝑓 𝑦 𝑓 𝑦 𝑓 ,14 1,83 7 𝑠 IV.,17 0,7 0,498 7 Calculamos el coeficiente de correlación. 𝒓 𝑠𝑥 𝑠𝑦 7,87 𝟎, 𝟗𝟗𝟕 1,83 0,498 V. 4. Calculamos la recta de regresión para poder predecir la mortalidad para un consumidor de 0 cigarrillos. ( En este caso de y sobre x ). 𝑦 𝑦 (𝑥 𝑥) 𝑠 7,87 𝑦 0,7 (0 19,14) 1,83 𝑦 𝟏. 𝟗𝟖 El índice de mortalidad es de 1,98. La media de pesos de una población es de kg y la de sus alturas de 170 cm, mientras que las desviaciones típicas son de kg y 10 cm respectivamente y la covarianza de ambas variables es 40.

6 a) Calcular la recta de regresión de los pesos respecto de las estaturas. b) Cuánto se estima que pesará un individuo que mide 180 cm de altura? b) Calcular la recta de regresión de los pesos respecto de las estaturas. De los datos del problema se que: I. Hallamos las medias de X(Pesos) y de Y(Alturas). x y 170 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): σ xy 40 I Calculamos las desviaciones típicas. s s 10 IV. Calculamos la recta de regresión de los pesos respecto a las alturas. x x σ xy (y y) s b) Cuánto se estima que pesará un individuo que mide 180 cm de altura? x 40 ( ) 170 x, 1 Un individuo que midiera 180 cm de altura se estima que pesará,1 kg.

7 Una compañía de seguros considera que el número de vehículos (Y) que circulan por una autopista, puede ponerse en función del número de accidentes (X) que ocurren en ella. Durante cinco días se obtuvo los siguiente resultado. x y a) Calcula el coeficiente de correlación. b) Si ayer se produjeron accidentes. Cuantos vehículos podemos suponer que circulaban por la autopista? c) Es buena esta predicción? Construir la tabla de frecuencias. X i Y i f i Xi f i Y i f i fi X i 2 fi Y i 2 fi X i Y i I. Calcula el coeficiente de correlación. I. Hallamos las medias de X y de Y. x n x i f i i1f 24 4, 8 i 7

8 𝒚 71 𝟏𝟒, 𝟐 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): I 𝑖1 𝑦 𝑖1 𝑥𝑖 𝑦𝑖 𝒙 𝒚 409 4,8 14,2 𝟏𝟑, 𝟔𝟒 Calculamos las desviaciones típicas. 𝑠 𝑥 𝑓 𝑥 𝑓 𝑦 𝑓 𝑦 𝑓 10 4,8 2,99 𝑠 IV ,2 4,7 Calculamos el coeficiente de correlación. 13,4 𝒓 𝟎, 𝟗𝟗𝟓 𝑠𝑥 𝑠𝑦 2,99 4,7 b) Si ayer se produjeron accidentes. Cuantos vehículos podemos suponer que circulaban por la autopista? En este apartado lo que nos piden es calcular la recta de regresión de y (Número de vehículos) sobre x (Número de accidentes). 𝑦 𝑦 (𝑥 𝑥) 𝑠 13,4 𝑦 14,2 ( 4,8) 2,99 𝑦 1,03 Si hubo accidentes se supone que circulaban 1 vehículos por la autopista. c) Es buena esta predicción? 8

9 Si es buena esta predicción pues el coeficiente de correlación entre el número de accidentes y la cantidad de vehículos circulando es muy alto casi pegado a 1. (r0,99). Un conjunto de datos bidimensionales tiene coeficiente de correlación r0,8 y las medias de las distribuciones marginales x3 y10. Sin efectuar cálculos, razonar por qué las siguientes ecuaciones no pueden corresponder a la recta de regresión de y sobre x: y 2x + 1 ; y 1,x + 1 ; y 3,x 1 La primera y la tercera recta no podrán ser puesto que si r(coeficiente de correlación) es positivo la covarianza también es positiva, por lo que en la recta de regresión siempre la pendiente de la recta será positiva. 7. Considera la siguiente distribución. x y a) Halla las dos rectas de regresión y represéntalas. b) Observando el grado de proximidad entre las dos rectas, Cómo crees que será la correlación entre dos variables? Construir la tabla de frecuencias. X i Y i f i Xi f i Y i f i fi X i 2 fi Y i 2 fi X i Y i

10 V. Calcula el coeficiente de correlación. Hallamos las medias de X y de Y. 2 𝑖1 𝑥𝑖 𝒙 𝟒, 𝟑𝟑 𝒚 𝑖1 𝑦 7 𝟏𝟏, 𝟏𝟔 Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): VI. 𝑖1 𝑥𝑖 𝑦𝑖 𝒙 𝒚 409 4,8 14,2 𝟒, 𝟗𝟒 Calculamos las desviaciones típicas. V 𝑠 𝑥 𝑓 𝑥 𝑓 𝑦 𝑓 𝑦 𝑓 10 4,8 2,99 𝑠 ,2 4,7 Calculamos el coeficiente de correlación. 13,4 𝒓 𝟎, 𝟗𝟗𝟓 𝑠𝑥 𝑠𝑦 2,99 4,7 VI 8. De una distribución bidimensional conocemos los siguientes datos: - Recta de regresión de Y sobre X: 𝑦 0,9𝑥 + 0,97 10

11 Coeficiente de correlación r 0,98 - Media de x: x,4 a) Calcula la recta de regresión de X sobre Y. b) Estima el valor de y para x y para x1. Qué estimación te pare ce mas fiable?. 11

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

TEMA 8: DISTRIBUCIONES BIDIMENSIONALES PAÍSES A B C D E F G H I J R.P.C I.N

TEMA 8: DISTRIBUCIONES BIDIMENSIONALES PAÍSES A B C D E F G H I J R.P.C I.N TEMA 8: DISTRIBUCIONES BIDIMENSIONALES 1- La siguiente tabla muestra cómo se ordenan entre sí diez países, A, B, C,, según dos variables, R.P.C.(renta per cápita) e I.N.(índice de natalidad). Representa

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2. Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010 IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

12 Distribuciones bidimensionales

12 Distribuciones bidimensionales Solucionario Distribuciones bidimensionales ACTIVIDADES INICIALES.I. Halla la ecuación de la recta que pasa por el punto A(, ) y tiene por pendiente. Calcula la ordenada en el origen y represéntala. La

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD V ESTADÍSTICA Y PROBABILIDAD Página 9 Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,92;

Más detalles

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. CORRELACIÓN Y REGRESIÓN.

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. CORRELACIÓN Y REGRESIÓN. TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. CORRELACIÓN Y REGRESIÓN.. VARIABLES ESTADÍSTICAS BIDIMENSIONALES. DISTRIBUCIONES BIDIMENSIONALES. En esta unidad estudiaremos el comportamiento estadístico conjunto

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79

Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79 . Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.

Más detalles

Resuelve. Unidad 8. Distribuciones bidimensionales. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I

Resuelve. Unidad 8. Distribuciones bidimensionales. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página Relación funcional y relación estadística En cada uno de los siguientes casos debes decir si, entre las dos variables que se citan, hay relación

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

PARTE COMÚN MATEMÁTICAS

PARTE COMÚN MATEMÁTICAS DIRECCIÓN GENERAL DE FORMACIÓN PROFESIONAL PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL 19 de junio de 2012 Centro donde se realiza la prueba: IES/CIFP Localidad del

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

8.- Obtén el valor de n para que el polinomio sea divisible entre x + 3.

8.- Obtén el valor de n para que el polinomio sea divisible entre x + 3. 1º BACHILLERATO CCSS NÚMEROS Y ÁLGEBRA 1.- Calcula: a) 5,2 10 2 + 3,15 10-2 4,2 10-3 b)(3,6 10 3 ) : (1,2 10-4 ) 2.- Realiza las siguientes operaciones: 3.- Racionaliza: 4.- Racionaliza: 5.- Simplifica

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

CAPÍTULO 11 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL

CAPÍTULO 11 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL CAPÍTULO 11 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL 11.1 DISTRIBUCIONES MARGINALES Y CONDICIONALES Cuando sobre cada individuo de una población se observan dos características aleatorias de naturaleza cuantitativa

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

5 Relaciones entre variables.

5 Relaciones entre variables. ANÁLISIS EPLORATORIO DE DATOS 39 ANÁLISIS EPLORATORIO DE DATOS 40 Relaciones entre variables..1 Ejercicios. Ejercicio.1 En una muestra de 0 individuos se recogen datos sobre dos medidas antropométricas

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano) I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3

Más detalles

FUNCIÓN LINEAL. Ejercicio nº 1.- Representa estas rectas: b) y x 2. Ejercicio nº 2.- Representa gráficamente estas rectas: Ejercicio nº 3.

FUNCIÓN LINEAL. Ejercicio nº 1.- Representa estas rectas: b) y x 2. Ejercicio nº 2.- Representa gráficamente estas rectas: Ejercicio nº 3. FUNCIÓN LINEAL Ejercicio nº.- Representa estas rectas: a) y x b) y x c) y 4 Ejercicio nº.- Representa gráficamente estas rectas: a) y x b) y x 4 c) y Ejercicio nº.- Representa gráficamente las siguientes

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

I Unidad: La medición de los atributos psicológicos.

I Unidad: La medición de los atributos psicológicos. EL ESCALAMIENTO PSICOFÍSICO. Las primeras escalas elaboradas que se pueden considerar mediciones o medidas previas a la medición de los psicológico son las denominadas escalas psicofísicas. Representan

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

PROBLEMAS TEMA 3: ANÁLISIS DE COMPONENTES PRINCIPALES. LICENCIADO EN ECONOMÍA

PROBLEMAS TEMA 3: ANÁLISIS DE COMPONENTES PRINCIPALES. LICENCIADO EN ECONOMÍA 1 PROBLEMAS TEMA 3: ANÁLISIS DE COMPONENTES PRINCIPALES. LICENCIADO EN ECONOMÍA Problema 1 Calcular para la matriz de covarianzas ( ) 5 2 S Y =, 2 2 (a) Las componentes principales Z 1 y Z 2. (b) La proporción

Más detalles

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

En este caso la variable X es el n de hijos, es por tanto una variable discreta. Veamos todas las frecuencias.

En este caso la variable X es el n de hijos, es por tanto una variable discreta. Veamos todas las frecuencias. ESTADÍSTICA DESCRIPTIVA Concepto v finalidad En los municipios existen unos censos de los ciudadanos con datos de su edad, sexo, residencia, trabajo, etc. Pero si se desea conocer, para lanzar un producto

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B Ejercicio nº 1.- a) Escribe en forma decimal cada uno de estos números: A = 9,7 10 9 B = 3,85 10 7 b) Expresa en notación científica las siguientes

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva 2, Ejercicio 3, Opción A Reserva

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión

Estadística Descriptiva. SESIÓN 11 Medidas de dispersión Estadística Descriptiva SESIÓN 11 Medidas de dispersión Contextualización de la sesión 11 En la sesión anterior se explicaron los temas relacionados con la dispersión, una de las medidas de dispersión,

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

2 Resolución de algunos ejemplos y ejercicios del tema 2.

2 Resolución de algunos ejemplos y ejercicios del tema 2. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

Prácticas de Ecología Curso 3 Práctica 1: Muestreo

Prácticas de Ecología Curso 3 Práctica 1: Muestreo PRÁCTICA 1: MUESTREO Introducción La investigación ecológica se basa en la medición de parámetros de los organismos y del medio en el que viven. Este proceso de toma de datos se denomina muestreo. En la

Más detalles

N. Libros No. Estudiantes

N. Libros No. Estudiantes EJERCICIOS RESUELTOS DE ESTADÍSTICA UNIDIMENSIONAL 1. Se pregunta en un grupo de estudiantes por el numero de libros que han leído en el último mes, obteniendo las siguientes respuestas. N. Libros 0 1

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles