1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:"

Transcripción

1 . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños a) Construir la tabla de frecuencias. b) Representarla gráficamente en un histograma las frecuencias relativas. Apartado a): Se trata de una variable cuantitativa continua distribuida en intervalos de clase de la misma amplitud. Construimos la tabla de frecuencias absoluta, n i, y relativa, f i. Para completar la tabla, representamos también los porcentajes y las marcas de clase: Peso Frecuencia absoluta (n i ) ( Frecuencia relativa f i = n ) i N % Marca de clase [.5,.75) %.63 [.75, 3) %.88 [3, 3.5) % 3.3 [3.5, 3.5) % 3.38 [3.5, 3.75) % 3.63 [3.75, 4) % 3.88 [4, 4.5) % 4.3 [4.5, 4.5] % 4.38 Total % Apartado b): Representamos ahora gráficamente en un histograma las frecuencias relativas. Para ello, se levanta sobre cada intervalo de clase un rectángulo de área proporcional a la frecuencia correspondiente a dicho intervalo. Teniendo en cuenta que los intervalos tienen la misma amplitud, la altura de cada uno de los rectángulos se toma igual a la frecuencia correspondiente Un profesor facilita las notas de sus alumnos por medio de la siguiente tabla: Nota [0,0) [0,30) [30,50) [50,60] N o alumnos peso a) Construir la tabla de frecuencias acumuladas. Calcular la media aritmética y la desviación típica. b) Completar la tabla del apartado anterior con la distribución de frecuencias porcentuales acumuladas. c) Qué porcentaje de alumnos tienen una nota menor que 30? d) Suponiendo que los datos se distribuyen de modo homogéneo en cada intervalo, qué porcentaje de alumnos tienen una nota menor que 40? Y menor que 38? Dpto. EDAN - 6 de septiembre de 03 Curso 03/4

2 Sol.: a) media=35.777, desviación típica=3.4858; c) %; d) porcentaje de alumnos tienen una nota 40: 60.7 %; y 38: 56.8 %. Apartado a): Al tratarse de una variable cuantitativa continua distribuida en intervalos de clase, la media aritmética se calcula considerando las marcas de clases c i y las frecuencias absolutas n i de cada clase: x = N 4 c i n i Así que necesitamos calcular las marcas de cada clase, ampliando la tabla del enunciado en el sentido siguiente: Nota Marca de clase (c i = Li +Li ) n i f i = ni N (c i x) [0, 0) ( ) = 4.85 [0, 30) ( ) = [30, 50) ( ) =.300 [50, 60) ( ) = Total Aquí, N = 54. La media aritmética, x, viene dada por la expresión: x = N 4 c i n i = = y la desviación típica, s: s = N 4 (c i x) n i = = ( ) 54 Apartado b): Completamos ahora la tabla anterior con los porcentajes y la distribución de frecuencias porcentuales acumuladas: Nota Marca c i = L i + L i Fr. absoluta n i Fr. relativa f i = n i N % p i = 00 f i % acumulado i P i = j= p j [0, 0) = [L 0, L ) = P [0, 30) = [L, L ) = P [30, 50) = [L, L 3 ) = P 3 [50, 60) = [L 3, L 4 ) Total % Apartado c): De la tabla anterior se deduce fácilmente que el porcentaje de alumnos con nota menor que 30 es un %. Dpto. EDAN - 6 de septiembre de 03 Curso 03/4

3 Apartado d): Se trata de calcular el porcentaje de alumnos con una nota menor que 40. Se observa que 40 [30, 50). Tenemos L = 30 y L 3 = 50, y P = y P 3 = 79.6 los porcentajes acumulados correspondientes. El porcentaje buscado es la ordenada, y, de la recta que interpola los valores (L, P ) y (L 3, P 3 ) correspondiente a la abscisa x = 40. Usando la fórmula del polinomio de interpolación lineal, se tiene trivialmente que P 3 P de donde es decir, y = P 3 + P 4 P 3 L 4 L 3 (x L 3 ) y = (x 30), 6.66 y = (x 30). L L Sustituyendo x = 40, obtenemos y = 60.7, luego el porcentaje de alumnos con una nota menos que 40 es un 60.7 %. En otras palabras, el valor 40 es percentil Para conocer el número de alumnos con nota menor que 38, sustituimos x = 38 en la recta anterior y obtenemos y = 56.8, luego es un 56.8 %. 3. Las puntuaciones obtenidas por un grupo de universitarios en unas pruebas para acceder a un puesto de trabajo en una industria fueron: Puntuación Frecuencia absoluta (n i ) [0, 0) 0 [0, 0) 34 [0, 30) 48 [30, 40) 7 [40, 50) 64 [50, 60) 4 [60, 70) 8 [70, 80) 78 [80, 90) 40 [90, 00) 34 [00, 0] Total 75 a) Calcular la media aritmética y la desviación típica. b) Si la empresa piensa rechazar al 40 % de los que han sacado peor puntuación, cuál es la puntuación mínima requerida para ser admitido? Sol.: a): media= , desviación típica=0.9766; b): puntuación mínima=48.35 Apartado a): Al tratarse de una variable cuantitativa continua, necesitamos calcular las marcas de cada clase, ampliando la tabla del enunciado en el sentido siguiente: Dpto. EDAN - 6 de septiembre de 03 3 Curso 03/4

4 Puntuación Marca de clase (c i ) Fr. absoluta (n i ) Fr. relativa (f i = ni N ) [0, 0) [0, 0) [0, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 00) [00, 0] Total Aquí, N = 75. La media aritmética, x, viene dada por la expresión: x = N = 75 c i n i ( ) = y la desviación típica viene dada por s = = N (c i x) n i 75 (( ) 0 + ( ) 34 + ( ) 48 + ( ) 7 + ( ) 64 + ( ) 4 + ( ) 8 + ( ) 78 + ( ) 40 + ( ) 34 + ( ) ) / = Apartado b): Necesitamos completar la tabla anterior con los porcentajes y la distribución de frecuencias porcentuales acumuladas: Puntuación Marca de clase (c i ) Fr. absoluta (n i ) Fr. relativa (f i = ni N ) % % acumulados [0, 0) [0, 0) [0, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 00) [00, 0] Total % Dpto. EDAN - 6 de septiembre de 03 4 Curso 03/4

5 Para rechazar el 40 % de los que han sacado peor puntuación (suponiendo que los datos se distribuyen de manera homogénea en cada intervalo), construimos la recta que interpola los puntos (40,.80) y (50, 43.6), que es: es decir, y = (x 40), P y = (x 40). P 4.8 Por tanto, para conocer cuál es la puntuación mínima requerida para ser admitido, sustituimos y = 40 en L L la recta anterior, y obtenemos x = 48.35, que es la nota buscada En otras palabras, el valor es un percentil 40, es decir deja a su izquierda un 40 % de los alumnos y los demás a su derecha. 4. La talla (en centímetros) de 00 reclutas está recogida en la siguiente tabla: Talla (x i ) [60,64) [64,68) [68,7) [7,76) [76,80) [80,84] Fr. absoluta (n i ) Calcular el porcentaje de reclutas cuya altura está en el intervalo (x s, x + s), siendo s la desviación típica y x la media aritmética. Sol.: intervalo (x s, x + s) = (66.83, 77.8); el porcentaje es: % Se trata de una variable cuantitativa continua. Para calcular la media y la desviación típica, necesitamos calcular las marcas de cada clase. También añadimos los porcentajes, que utilizaremos para responder al enunciado: Talla (x i ) Marca de clase (c i = Li +Li ) Fr. absoluta (n i ) Fr. relativa (f i = ni N ) % % acumulado [60, 64) % 9 % [64, 68) % 9 % [68, 7) % 49 % [7, 76) % 75 % [76, 80) % 90 % [80, 84) % 00 % Total % Para calcular el porcentaje de reclutas en el intervalo (x s, x + s), necesitamos calcular la media aritmética, x, y la desviación típica, s. La media aritmética, x, viene dada por: x = N c i n i = 00 ( ) = 7.3 y la desviación típica, s, por la expresión: Dpto. EDAN - 6 de septiembre de 03 5 Curso 03/4

6 s = = N (c i x) n i 00 ((6 7.3) 8 + (66 7.3) 0 + (70 7.3) 60 + (74 7.3) 5 + (78 7.3) 30 + (8 7.3) 0) / = Entonces, (x s, x + s) = ( , ) = (66.83, 77.8) Veamos qué porcentaje corresponde a cada uno de los extremos del intervalo anterior. Para ello (suponiendo que los datos se distribuyen de manera homogénea en cada intervalo), necesitamos construir dos rectas: La recta que interpola los puntos (64, 9) y (68, 9), que es; es decir, y = (x 64), y = (x 64). Si sustituimos x = 66.83, obtenemos el tanto por ciento de reclutas cuya talla es menor que 66.83, y que es y = % La recta que pasa por los puntos (76, 75) y (80, 90): es decir, y 75 = (x 76), y = (x 76). Si sustituimos x = 77.8, obtenemos el tanto por ciento de reclutas cuya talla es menor que 77.8, y que es y = 8.78 %. En conclusión, el porcentaje de reclutas con talla en el intervalo (66.83, 77.8) es 8.78 % % = %. 5. Se ha aplicado un test de aptitudes a los empleados de una factoría. Las puntuaciones (x i ), agrupadas en clases, están recogidas en la siguiente tabla: Puntuación (x i ) [38,50) [50,56) [56,6) [6,68) [68,80] Fr. absoluta (n i ) a) Dibujar el histograma de distribución de frecuencias absolutas. b) Calcular la media aritmética y la desviación típica. c) Suponiendo que los datos se distribuyen de manera homogénea en cada intervalo, hallar la puntuación por encima de la cual queda el 30 % de los empleados. d) Calcular el porcentaje de empleados cuya puntuación está en el intervalo (50,70). Dpto. EDAN - 6 de septiembre de 03 6 Curso 03/4

7 Sol.: b): media=59.0, desviación típica=9.54; c): 64.; d): % Apartado a): Se trata de una variable cuantitativa continua y los intervalos [L i, L i ) tienen amplitudes diferentes. Para construir el histograma, se levanta sobre cada intervalo de clase un rectángulo de altura h i conocida como densidad de frecuencia del intervalo [L i, L i ): h i = n i a i siendo a i = L i L i la amplitud del intervalo correspondiente. Completamos la tabla del enunciado con los datos que nos hacen falta y dibujamos el histograma: x i c i n i N i a i h i = n i c i a i [38, 50) [50, 56) [56, 6) [6, 68) [68, 80] Total Apartado b): La media aritmética, x, viene dada por la expresión: x = N c i n i = 88 ( ) = 59. y la desviación típica, s, por la expresión (los valores de c i están en la tabla anterior): s = N c i n i x = ( ) = = 90.7 = 9.54 Apartado c): El valor que deja por encima el 30 % de los empleados es el que deja por debajo el resto, es decir, el 70 % de empleados. Se trata de calcular entonces el percentil 70. Calculamos los porcentajes acumulados. La tabla con los porcentajes acumulados viene dada en el siguiente apartado y el polígono de frecuencias porcentuales acumuladas está representado en la figura de la derecha. Se observa que: P 3 = 6.48 % < 70 % < P 4 = 8.93 % P 4 P 3 L 3 L Dpto. EDAN - 6 de septiembre de 03 7 Curso 03/4

8 Tenemos L 3 = 6 y L 4 = 68. Necesitamos construir una recta que pasa por los puntos (L 3, P 3 ) = (6, 6.48) y (L 4, P 4 ) = (68, 8.93). Dicha recta viene dada por y = P 3 + P 4 P 3 L 4 L 3 (x L 3 ) = (x 6) = (x 6) 6 Sustituyendo en esta ecuación y = 70, despejamos x (que es la puntuación buscada): 0.45 x = x = x Apartado d): Para calcular el porcentaje de empleados cuya puntuación está en el intervalo (50,70), de nuevo usamos los porcentajes acumulados: x i c i n i Fr. relativa (f i = n i N ) % % acumulado (P i) [38, 50) % 7.04 % [50, 56) % % [56, 6) % 6.48 % [6, 68) % 8.93 % [68, 80] % 00 % Total % Es claro, a partir de los valores de la tabla, que el porcentaje de empleados cuya puntuación está por debajo de 50 es 7.04 %. Vamos a calcular el porcentaje de empleados cuya puntuación está por debajo de 70 y luego restaremos del valor obtenido el 7.04 %. Tenemos que 70 (68, 80). Suponiendo que los datos se distribuyen de manera homogénea en cada intervalo, vamos a construir la recta que pasa por los puntos (L 4, P 4 ) = (68, 8.93) y (L 5, P 5 ) = (80, 00): P 5 P y = (x 68) = (x 68). L 4 L Si sustituimos x = 70, obtenemos el porcentaje de empleados con puntuación inferior a 70 es y = %. Por tanto, el porcentaje de empleados con la puntuación comprendida entre 50 y 70 es % 7.04 % = %. 6. Los pesos en miligramos de 50 pastillas de ciertos medicamentos distintos vienen dados por la siguiente tabla: Peso (mg.) [00,0) [0,5) [5,0) [0,30) [30,40] N o pastillas a) Dibujar el histograma de frecuencias absolutas. b) Suponiendo que los datos se distribuyen de manera homogénea en cada intervalo, calcular el tanto por ciento de pastillas con peso menor que mg. c) Calcular el peso de las pastillas por debajo del cual se encuentra el 5 % de las mismas, y el peso por encima del cual se encuentra el 74 % de las pastillas de medicamentos. Dpto. EDAN - 6 de septiembre de 03 8 Curso 03/4

9 Sol.: b:) 4 %; c:).5 mg. Apartado a): Se trata de una variable cuantitativa continua y los intervalos [L i, L i ) tienen amplitudes diferentes. Para construir el histograma, se levanta sobre cada intervalo de clase un rectángulo de altura h i conocida como densidad de frecuencia del intervalo [L i, L i ): Completamos la tabla del enunciado con los datos que nos hacen falta: h i = n i a i siendo a i = L i L i la amplitud del intervalo correspondiente. Peso (mg.) c i = Li +Li Fr. absoluta (n i ) Fr. relativa (f i = ni N ) a i = L i L i h i = ni a i [00, 0) [0, 5) [5, 0) [0, 30) [30, 40] Total El histograma de frecuencias absolutas es de la forma: peso Apartado b): Para responder a este apartado, es más cómodo trabajar con frecuencias relativas y con porcentajes acumulados. Completamos la tabla anterior: Peso (mg.) c i Fr. absoluta (n i ) Fr. relativa (f i = n i N ) % % acumulados [00, 0) % 6 % [0, 5) % 6 % [5, 0) % 54 % [0, 30) % 80 % [30, 40] % 00 % Total % Dpto. EDAN - 6 de septiembre de 03 9 Curso 03/4

10 Para saber qué tanto por ciento de pastillas tiene peso menor que mg, observemos que (0, 5) y vamos a construir la recta que pasa por los puntos (0, 6) y (5, 6), que es; y = (x 0) = (x 0). 5 0 Por tanto, para conocer cuál es la cantidad que corresponde a mg., sustituimos x = en la ecuación anterior, y obtenemos y = 4, que es el tanto por ciento buscado. Apartado c): Para conocer el peso de las pastillas por debajo del cual se encuentra el 5 % de las pastillas (suponiendo que los datos se distribuyen de manera homogénea en cada intervalo), usamos la ecuación de recta del apartado anterior. Ahora, debemos sustituir y = 5, de manera que obtenemos x =.5 mg. que es el peso buscado. Conocer el peso de las pastillas por encima del cual se encuentra el 74 % de las pastillas es equivalente a conocer cual es el peso de las pastillas por debajo del cual se encuentra el 6 %. Observemos que de la tabla se puede ver que corresponde a 5 mg. Dpto. EDAN - 6 de septiembre de 03 0 Curso 03/4

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos.

TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos. TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos. a) Organización de datos: tabla b) Representaciones gráficas. 1.2. Métodos para datos cuantitativos.

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

1.- Diagrama de barras

1.- Diagrama de barras 1.- Diagrama de barras Un diagrama de barras se utiliza para de presentar datos cualitativos o datos cuantitativos de tipo discreto (variables tipo II). Se representan sobre unos ejes de coordenadas, en

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias 68 Bioestadística: Métodos y Aplicaciones curtosis0 Figura 2.10: Apuntamiento de distribuciones de frecuencias 2.6. Problemas Ejercicio 2.1. En el siguiente conjunto de números,

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Ejercicios de estadística.

Ejercicios de estadística. Ejercicios de estadística..- Los siguientes números son el número de horas que intervienen alumnos en hacer deporte durante un mes:, 7,,, 5, 6, 7, 9,,, 5, 6, 6, 6, 7, 8,,, 5, 8 a) Calcula las tablas de

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

El modelo de la curva normal. Concepto y aplicaciones

El modelo de la curva normal. Concepto y aplicaciones Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 7 El modelo de la curva normal. Concepto y aplicaciones Objetivos Comprender

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

REPASO DE ESTADÍSTICA DESCRIPTIVA

REPASO DE ESTADÍSTICA DESCRIPTIVA ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES

TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES 1. Puntuaciones diferenciales y puntuaciones típicas 2. La curva normal 3. Cálculo de áreas bajo la curva normal 3.1. Caso 1: Cálculo del número

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO

ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO MODULO 3: Medidas de tendencia central Haga clic para modificar el estilo de subtítulo del patrón Docentes: Mariana Cabrera - Laura Noboa - Verónica Curbelo

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

Distribuciones de Frecuencia

Distribuciones de Frecuencia Distribuciones de Frecuencia Datos Agrupados en Intervalos Cuando se trata con una gran cantidad de datos es conveniente agruparlos en intervalos o clases adecuados. Es aconsejable escoger estos intervalos

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA 1. Conceptos Generales Población estadística.- Conjunto de todos los elementos sobre el que recaen las observaciones. Las poblaciones pueden ser: infinitas, p.e. extracciones con

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional

MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional MATEMÁTICAS 1º BI-NM Serie Estadística Unidimensional y Bidimensional 1 Entra en la página web del Instituto Nacional de Estadística y elige una variable numérica de tu interés que disponga de frecuencias

Más detalles

Estadistica Aplicada a la Educación CODIGO: HOC220

Estadistica Aplicada a la Educación CODIGO: HOC220 REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO DE MEJORAMIENTO PROFESIONAL DEL MAGISTERIO NUCLEO ACADEMICO TACHIRA Estadistica Aplicada a la Educación CODIGO:

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de astilla y León MATEMÁTIAS APLIADAS A LAS IENIAS SOIALES EJERIIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESOGER UNA DE LAS DOS OPIONES Y DESARROLLAR LAS

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Grado en Ingeniería Informática Estadística Tema 1: Estadística Descriptiva Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 1: Estadística Descriptiva Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 1: Estadística Descriptiva Ángel Serrano Sánchez de León 1. Clasificar las siguientes variables como discretas o continuas. También clasificarlas según

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 Apellidos Nombre Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Estadística descriptiva

Estadística descriptiva 1 Versión: Estadística descriptiva 3 de septiembre de 013 La estadística recoge, ordena y analiza datos para estudiar las características o el comportamiento de un colectivo. Muchos fenómenos de la naturaleza

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

1. Definición de Estadística

1. Definición de Estadística 1. Definición de Estadística La Estadística es la parte de las Matemáticas que estudia una serie de datos, los recuenta, los ordena y los clasifica, para poder hacer comparaciones y sacar conclusiones.

Más detalles

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Tema 1: Estadística descriptiva Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Introducción Objetivo: estudiar una característica o variable en una población. Ejemplos:

Más detalles

EXAMEN DE INTERPOLACIÓN

EXAMEN DE INTERPOLACIÓN EXAMEN DE INTERPOLACIÓN Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta. d) Es

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

ÁREAS DE LA ESTADÍSTICA

ÁREAS DE LA ESTADÍSTICA QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen

Más detalles

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es:

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es: La estadística es una materia dedicada a la recopilación, organización, estudio y análisis de datos de un hecho en particular. La estadística descriptiva tabula, representa y describe una serie de datos

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ESTADÍSTICA SEMANA 2

ESTADÍSTICA SEMANA 2 ESTADÍSTICA SEMANA 2 ÍNDICE CUADROS DE DISTRIBUCIÓN DE FRECUENCIAS Y REPRESENTACIÓN GRÁFICA... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 REPRESENTACIÓN GRÁFICA... 3 MÉTODOS GRÁFICOS:... 3 DIAGRAMAS

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A 1. Halla las ecuaciones de la recta r que pasa por los puntos A(1,4) y B(0,-1) en todas sus formas: vectorial, continua, punto-pendiente, explícita y general.

Más detalles

SEMANA 06: CIRCUNFERENCIA

SEMANA 06: CIRCUNFERENCIA 1 SEMANA 06: ECUACION DE LA : 1. Canónica ² + y² = r², su centro es C (0, 0). Ordinaria ( h)² + (y-k)² = r², su centro es C (h, k) 3. General ² + y² + D +Ey + F= 0 Su centro es C = (-, ). Su radio es r=

Más detalles

Media, mediana, moda y otras medidas de tendencia central

Media, mediana, moda y otras medidas de tendencia central UNIDAD 1 (Continuación) Media, mediana, moda y otras medidas de tendencia central PROMEDIOS O MEDIDAS DE TENDENCIA CENTRAL Un promedio es un valor típico o representativo de un conjunto de datos. Como

Más detalles

EJERCICIOS RESUELTOS DE ECUACIÓN DE LA RECTA. 1. Encuentre la pendiente de la recta que pasa por los puntos A 4,3

EJERCICIOS RESUELTOS DE ECUACIÓN DE LA RECTA. 1. Encuentre la pendiente de la recta que pasa por los puntos A 4,3 EJERCICIOS RESUELTOS DE ECUCIÓN DE L RECT Resuelva los siguientes ejercicios justificando su respuesta. 1. Encuentre la pendiente de la recta que pasa por los puntos 4,3 y 2, 1. 2. Calcule la pendiente

Más detalles

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo.

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. UNIDAD: ESTADISTICA La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. La estadística puede ser descriptiva o inferencial. La estadística

Más detalles

Tema 9: Funciones II. Funciones Elementales.

Tema 9: Funciones II. Funciones Elementales. Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera

Más detalles

ANÁLISIS DE DATOS UNIDIMENSIONALES

ANÁLISIS DE DATOS UNIDIMENSIONALES ANÁLISIS DE DATOS UNIDIMENSIONALES TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS MEDIDAS DE POSICIÓN MEDIDAS DE TENDENCIA CENTRAL MEDIA ARITMÉTICA OTRAS MEDIAS: GEOMÉTRICA.ARMÓNICA.MEDIA GENERAL MEDIANA

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación

Más detalles

TEMA III. REPRESENTACION GRAFlCA

TEMA III. REPRESENTACION GRAFlCA TEMA III REPRESENTACION GRAFlCA 1. Recomendaciones preliminares y diagramas de barras. 2. Gráfica de distribución puntual y por intervalos de variables discretas. De variable continua (histograma, polígono

Más detalles

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:

Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es: Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Curs MAT CFGS-15

Curs MAT CFGS-15 Curs 015-16 MAT CFGS-15 ESTADÍSTICA Tablas de frecuencia. Distribución de frecuencias La distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos,

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

EJERCICIOS ESTADÍSTICA DESCRIPTIVA

EJERCICIOS ESTADÍSTICA DESCRIPTIVA EJERCICIOS ESTADÍSTICA DESCRIPTIVA 1.- Dada la siguiente distribución de frecuencias de variable discreta. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica x i f i 47 1 48 3 49 2 50

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

Ejercicio 8. En una epidemia de escarlatina, se ha recogido el número de muertos en 40 ciudades de un país, obteniéndose la siguiente tabla:

Ejercicio 8. En una epidemia de escarlatina, se ha recogido el número de muertos en 40 ciudades de un país, obteniéndose la siguiente tabla: Ejercicio 1.. Clasificar las siguientes variables: Preferencias políticas (izquierda, derecha o centro). Marcas de cerveza. Velocidad en Km/h. El peso en Kg. Signo del zodiaco. Nivel educativo (primario

Más detalles

Funciones y Gráficas. Área de Matemáticas. Curso 2014/2015

Funciones y Gráficas. Área de Matemáticas. Curso 2014/2015 Funciones y Gráficas. Área de Matemáticas. Curso 014/015 Ejercicio nº 1 Considera la siguiente gráfica correspondiente a una función: a Cuál es su dominio de definición? b Tiene máximo y mínimo? En caso

Más detalles