ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA"

Transcripción

1 ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA A-1. F q1,q Fq1,q F q1,q F q,q F q,q q q 1 q q q F q,q Para que q esté en equilibrio se tiene que cumplir que: F = 0, por tanto, la carga debe encontrarse entre q 1 yq. F = F q1, q + F q, q F q1, q + F q, q = 0 F q1, q = - F q, q F q1, q = k q 1 q/ r 1 = q/ r 1 F q, q = k q q/ r = q/ (0,5 - r 1 ) Las fuerzas solo tienen componente en el eje x, los módulos de las mismas tienen que ser iguales para que la carga q esté en equilibrio. F q1, q = F q, q q/ r 1 = q/ (0,5 - r 1 ) / r 1 = /(0,5 - r 1 ) (0,5 - r 1 ) = r 1 1, (0,5 r 1 ) =, r 1 r 1 = 0,07 m de q 1 (0,7 cm de q 1 ) Como la única fuerza que actúa es la fuerza eléctrica y F e = q E, E = F e /q, por tanto: E = 0 N/C A-. a) V 0 = m/s Para saber cómo es el movimiento del cuerpo debemos hallar la suma de las fuerzas que actúan sobre él. Sobre el cuerpo actúan dos fuerzas, la fuerza gravitatoria, F g, y la fuerza eléctrica, F e. F e F g

2 F e = q E = j = 60 j N F g = m g = 5 (-9,8 j) = - 49 j F = F e + F g = 60 j - 49 j = 11 j N F = m a a = F/m = 11 j/5 =, j m/s El movimiento resultante del cuerpo es el producido por la composición de dos movimientos, uno uniforme en dirección horizontal, con velocidad constante de m/s y otro uniformemente acelerado en dirección vertical con aceleración, j m/s. La trayectoria será una parábola ascendente. b) Las ecuaciones del movimiento son: Horizontal (movimiento uniforme): x = x 0 + v t v x = cte Vertical (movimiento uniformemente acelerado): y = y 0 + v 0y t + ½ a t v y = v 0y + a t Calculamos el tiempo que tarda en recorrer m horizontalmente: x = x 0 + v t = 0 + t t = 1 s La posición vertical será: y = y 0 + v 0y t + ½ a t y = ½, 1 = 1,1 m La velocidad en ese momento será: v = v x i + v y j v = i +, 1 j = i +, j m/s v = ( +, ) 1/ =,97 m/s La ecuación de la Trayectoria se obtiene eliminando el tiempo de las ecuaciones de la posición horizontal y vertical: x = t t = x/ y = ½, t = 1,1 t y = 1,1 (x/) = 0,75 x Ecuación de la trayectoria: y = 0,75 x

3 c) A partir de este momento, la única fuerza que actúa sobre el cuerpo es la gravitatoria. La velocidad en ese instante (tangente a la trayectoria) tendrá componente horizontal y vertical. V 0 V 0y V 0x Desde este instante, el movimiento vertical es uniformemente acelerado pero v y disminuye, ya que la aceleración del movimiento g = - 9,8 j m/s tiene sentido contrario a v y. Llegará un momento en que se haga cero y de nuevo v y aumentará cuando se empieza a desplazar en sentido contrario. La trayectoria sería: Y X

4 A-3. q 1 q Y d = (8 + 6 ) 1/ = 10 cm r = r 1 = r = r 3 = r 4 = d/ = 0,05 m sen α = 4/5 cos α = 3/5 E α α E1 X E 4 E 3 q 4 q 3 Aplicando el principio de superposición, la intensidad del campo eléctrico en el centro será: E = E i = E 1 + E + E 3 + E 4 E 1 = E = E 3 = E 4 = kq/r = q/ 0,05 = 7, 10 6 N/C E 1 = 7, 10 6 cos α i + 7, 10 6 sen α j = 7, /5 i - 7, /5 j N/C E 3 = 7, 10 6 cos α i + 7, 10 6 sen α j = 7, /5 i - 7, /5 j N/C E = 7, 10 6 cos α i + 7, 10 6 sen α j = 7, /5 i - 7, /5 j N/C E 4 = 7, 10 6 cos α i + 7, 10 6 sen α j = 7, /5 i - 7, /5 j N/C E = E 1 + E + E 3 + E 4 = 4 (- 7, /5 j) = -, j N/C A T 10 Y T Y E = 5, i N/C F e T X X F g Para que la bola esté en equilibrio se tiene que cumplir que: F = 0 F e + T x = 0 F g + T y = 0 T x = - F e = q E T y = - F g = - m g T x = , i = -3, i N T y = - m (-9,8 j) Por otro lado, se cumple: T x = F e T y = F g T x = T sen 10 T sen 10 = q E (1) T y = T cos 10 T cos 10 = m g ()

5 Dividiendo (1) entre (): tg 10 = q E/ m g m = q E/ g tg 10 m = , /9.8 tg 10 = 0,0196 kg (19,6 g) A- 5. (+) (-) E = constante V A V B = 100 V C E A B Primero calculamos el valor de la intensidad del campo eléctrico entre las dos placas. Como se trata de un campo conservativo: W A B = - ΔE P = Ep A Ep B = q (V A V B ) W A B = B A F e dr = B A q E dr = B A q E dr cos α = qe B A dr = qe (r B r A ) Esto es considerando el desplazamiento de una carga de prueba positiva, por lo que, E y dr, tendrán la misma dirección y sentido, siendo α = 0, cos 0 = 1. Como, W A B = q (V A V B ), igualando, obtendremos: q (V A V B ) = qe (r B r A ) E = (V A V B ) (r B r A ) E = 100/1 = 100 N/C El trabajo de las fuerzas del campo para trasladar el electrón desde la posición B hasta la C, será: W B C = ΔE C W B C = C B F e dr = C B q E dr = C B q E dr cos α = - qe C B dr = - qe (r C r B ) En este caso, α = 180, cos 180 = qe (r C r B ) = ΔE C - qe (r C r B ) = ½ m v C - ½ m v B (v B = 0 m/s) - (- 1, ) 100 0,5 = ½ 9, v C v C = 4, 10 6 m/s

6 Cuando llega a la placa positiva, la velocidad del electrón será: - qe (r B r A ) = ½ m v A - ½ m v B (v B = 0 m/s) - (- 1, ) = ½ 9, v A v A = 5, m/s A-6. a) W A B = - ΔE P = Ep A Ep B = q (V A V B ) W A B = q (V A V B ) W A B = 10-6 ( ) = J Para que un proceso sea espontáneo, el trabajo tiene que ser positivo (W > 0), como el trabajo es negativo (W < 0), no es proceso espontáneo. Como W A B < 0 y W A B = - ΔE P = Ep A Ep B, entonces Ep A Ep B < 0, por tanto, Ep A < Ep B, la energía potencial aumenta en el proceso. El proceso no es espontáneo y se necesitará energía para desplazar el cuerpo. b) W A B = q (V A V B ) W A B = (100- (- 100)) = J Como W A B < 0 y W A B = - ΔE P = Ep A Ep B, entonces Ep A Ep B < 0, por tanto, Ep A < Ep B, la energía potencial aumenta en el proceso. El proceso no es espontáneo y se necesitará energía para desplazar el cuerpo. A-7. a) E C C E B B A E A 00 V D 150 V 100 V E El vector intensidad de campo eléctrico es, en cada punto, perpendicular a la superficie equipotencial (en este caso a las líneas equipotenciales) y su sentido es hacia los potenciales decrecientes.

7 b) Como el campo eléctrico es un campo de fuerzas conservativo, el trabajo realizado por las fuerzas del campo, no depende de la trayectoria seguida para que el cuerpo pase desde el punto D al E, y, por tanto, la energía transferida o intercambiada, tampoco dependerá de la trayectoria seguida. c) W A E = - ΔE P = Ep A Ep E = q (V A V E ) = (00 100) = 00 J La energía transferida o trabajo realizado por las fuerzas del campo sobre el cuerpo es de 00 J. Como el trabajo realizado es positivo (W > 0), es un proceso espontáneo, la energía potencial disminuye. W A E = - ΔE P = Ep A Ep E Como, W > 0, entonces, Ep A Ep E > 0, por lo que, Ep A > Ep E ΔE P = Ep E Ep A = - 00 J El intercambio de energía sera: (ΔE) E A = 00 J d) Como los puntos B y D se encuentran en la misma línea equipotencial, el potencial es constante, por tanto, V B = V D. W B D = - ΔE P = Ep B Ep D = q (V B V D ), como V B = V D, W B D = 0. Por tanto, (ΔE) D B = 0 J. A-8. a) El vector intensidad de campo es tangente en cada punto a una línea de fuerza. En un punto determinado de una línea de fuerza, solo puede existir un vector intensidad de campo, por lo que si se cortaran dos líneas de fuerza, en el punto de corte habría dos vectores diferentes de intensidad de campo, por ello, no es posible que se corten dos líneas de fuerza. b) En una superficie equipotencial, todos los puntos de la misma tienen el mismo potencial. El vector intensidad de campo es perpendicular, en cada punto, a la superficie equipotencial. B A E dr = V A V B Si V A = V B, entonces, B A E dr = V A V B = 0 B A E dr = B A E dr cos α = 0 Como, E y dr son distintos de cero, B A E dr cos α = 0, porque cos α = 0, por tanto E y dr, son perpendiculares, α = 90. Si dos superficies equipotenciales, se cortasen, existiría toda una línea común a ambas, a lo largo de la cual, el vector intensidad de campo, que debería ser normal a ambas superficies equipotenciales simultáneamente, tendría dos direcciones distintas.

8 A-9. a) El campo eléctrico, E, está relacionado con la diferencia de potencial y no, con el potencial en un punto. B A E dr = V A V B Si en un punto, E A = 0, el potencial en ese punto puede ser cero o cualquier otro valor. Lo que sí podemos asegurar es que si en una región del espacio, E = 0, el potencial, en esa región, debe ser constante. B A E dr = 0 B A E dr = V A V B V A V B = 0 V A = V B b) Por la misma razón que antes, como la intensidad de campo está relacionada con la diferencia de potencial y no con el potencial en un punto, no tiene por qué ser cero, el vector intensidad de campo, E, si en ese punto el potencial es cero (V = 0) c) No existe relación entre la intensidad de campo eléctrico, E, y el potencial, V, en una región del espacio; sino entre la intensidad de campo y la diferencia de potencial entre dos puntos de esa región del espacio. B A E dr = V A V B A-10. a) El vector intensidad de campo está relacionado con la diferencia de potencial mediante la expresión: B A E dr = V A V B Si E = constante y α = 0 : B A E dr = B A E dr cos α = B A E dr = E (r B r A ) E Δr = V A V B E = V A V B / Δr Δr = r B r A b) Si E = constante y α = 30 : B A E dr = B A E dr cos α = B A E dr cos 30 B A E dr cos 30 = B A E dr cos = E 3/ (r B r A ) E 3/ Δr = V A V B E = (V A V B )/ 3 Δr Δr = r B r A c) En este caso, la ecuación será: B A E dr = V A V B A-11. Y q 1 q E 3 E 4 d = (, 8 +, 8 ) 1/ = 3,96 cm r = r 1 = r = r 3 = r 4 = d/ = 1,98 cm X E E 1 q 4 q 3

9 Aplicando el principio de superposición: E = E i = E 1 + E + E 3 + E 4 Como, E 1 = - E 3 y E = - E 4, E = 0 N/C V = V i, considerando que V = 0 cuando r =, V = Kq/r V = V 1 + V + V 3 + V 4 Como, V 1 = V = V 3 = V 4, V = 4 V 1 V = , / 1, = 309,1 V (309,1 J/C) A-1. Una forma: La energía necesaria para aumentar la separación, será el trabajo que debemos realizar en contra de las fuerzas del campo para separar las cargas desde la situación inicial hasta la final ya que no es un proceso espontáneo. El trabajo realizado por las fuerzas del campo será: W i f = - ΔE P = Ep i Ep f Tomando E p = 0 cuando r =, E p = kq 1 q /r E pi = kq 1 q /r i = ( ) / 10 - = - 7, 10 6 J E pf = kq 1 q /r f = ( ) / = - 3, J W i f = - ΔE P = Ep i Ep f = - 7, 10 6 (- 3, ) = - 6, J El trabajo realizado contra las fuerzas del campo tendrá signo contrario, es decir: W i f = ΔE = 6, J Otra forma: El trabajo realizado por las fuerzas del campo será: W i f = f i F e dr = f i q E dr = f i q E dr cos α = f i q k q 1 dr/r W i f = q k q 1 f i dr/r = kq 1 q [-1/r] f i W i f = kq 1 q [-1/r] f i = kq 1 q (1/r i 1/r f ) = ( ) (1/0,01 1/0,) W i f = - 6, J El trabajo realizado contra las fuerzas del campo tendrá signo contrario, es decir: W i f = ΔE = 6, J

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N?

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N? BOLETÍN DE PROBLEMAS SOBRE CAMPO ELÉCTRICO Ley de Coulomb 1. Calcula la intensidad (módulo) de las fuerzas que dos cargas Q 1 =8µC y Q 2 =-6µC separadas una distancia r=30cm se ejercer mutuamente. Dibújalas.

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m 1(7) jercicio nº 1 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 12 µc, q 2 = 4 µc y q 3 = 5 µc 1 m 2 m jercicio nº 2 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 6 µc, q 2 = 4 µc y q 3 = 9 µc

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Fuerzas ejercidas por campos magnéticos

Fuerzas ejercidas por campos magnéticos Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m PROBLEMAS DE FÍSICA º BACHILLERATO Campos eléctrico y magnético /0/03. A una distancia r de una carga puntual Q, fija en un punto O, el potencial eléctrico es V = 400 V y la intensidad de campo eléctrico

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Calcula la distancia entre las cargas = µc y = 8 µc para ue se repelan con F = 0,6 N: a) Si están en el vacío. b) Si el medio entre ellas es agua (e r = 80). a) Si las

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3 Tema: Gráficas del Movimiento Uniformemente Acelerado (MRUA) Objetivos de Aprendizaje: - Interpretar gráficos del MRUA -Calcular

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada

Más detalles

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF. GRUPO # 4 to Cs PRACTICA DE LABORATORIO # 3 Movimientos horizontales OBJETIVO GENERAL: Analizar mediante graficas los diferentes Tipos de Movimientos horizontales OBJETIVOS ESPECIFICOS: Estudiar los conceptos

Más detalles

a. Cual es la dirección del campo eléctrico en el punto P, 0,6m de lejos del origen. b. Cual es la magnitud del campo eléctrico en el punto P.

a. Cual es la dirección del campo eléctrico en el punto P, 0,6m de lejos del origen. b. Cual es la magnitud del campo eléctrico en el punto P. Slide 1 / 30 1. Esfera 1 tiene una carga positiva Q = +6uC y es ubicada en el origen a. Cual es la dirección del campo eléctrico en el punto P, 0,6m de lejos del origen. b. Cual es la magnitud del campo

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

TEMA 3.- Campo eléctrico

TEMA 3.- Campo eléctrico Cuestiones y problemas resueltos de Física º Bachillerato Curso 013-014 TEMA 3.- Campo eléctrico CUESTIONES 1.- a) Una partícula cargada negativamente pasa de un punto A, cuyo potencial es V A, a otro

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos.

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos. Taller de lectura 3 : Cinemática Cinemática, es el estudio del movimiento sin atender a sus causas. Se entiende por movimiento, el cambio de posición de una partícula con relación al tiempo y a un punto

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Tema 2: Campo magnético

Tema 2: Campo magnético Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

Física para Ciencias: Trabajo y Energía

Física para Ciencias: Trabajo y Energía Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado

Más detalles

EJERCICIOS A DESARROLLAR

EJERCICIOS A DESARROLLAR EJERCICIOS A DESARROLLAR 1. Obtenga la resultante de los siguientes vectores: a) b) A B A B c) A B d) Utilice los vectores del ítem "a": Coloque al vector A sobre el ejc de las abscisas con punto de aplicación

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: Teudis Navas 4to Año GUIA # 13-14-15 INTRACCIONES

Más detalles

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2 01. Dos cargas puntuales de 3 y 1, están situadas en los puntos y ue distan 0 cm. a) ómo aría el campo entre los puntos y y representarlo gráficamente. b) Hay algún punto de la recta en el ue el campo

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal. IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/2016

Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/2016 Problemas de Física 2º Bachillerato PAU Campo eléctrico 25/01/201 1. Cómo es el campo eléctrico en el interior de una esfera metálica cargada? Y el potencial? 2. Cuál debería ser la masa de un protón si

Más detalles