dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt"

Transcripción

1 Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en fase. Sabiendo que la onda está generada por un foco emisor que ibra con un moimiento armónico simple de frecuencia 50 Hz y una amplitud de 4 cm, determine: a) La elocidad de propagación de la onda. b) La expresión matemática de la onda, si el foco emisor se encuentra en el origen de coordenadas, y en t = 0 la elongación es nula. c) La elocidad máxima de oscilación de un punto cualquiera de la cuerda. d) La aceleración máxima de oscilación en un punto cualquiera de la cuerda. La longitud de onda es 0,1m, el periodo T 0,0s, la elocidad de la onda la pulsación f 100 rad s 1 y el número de ondas la onda es y 0,04 sen100 t 0 x 0,5ms 1, k 0 m 1 con lo que la ecuación de 4cos 100 t 0 x MAX 4 ms d a 400 sen 100 t 0 x amax 400 ms 1 La elocidad de ibración es y la aceleración 0. Una onda armónica transersal se propaga en el sentido positio del eje X con una elocidad de propagación de 4,8 m/s. El foco emisor ibra con una frecuencia de 1 Hz y una amplitud de mm. Determina: a) La longitud de onda, frecuencia angular y número de ondas b) La ecuación de la onda considerando la fase inicial nula c) La elocidad de ibración de un punto situado en x= m en el instante t=0,5 s d) La elocidad y aceleración máxima de un punto cualquiera del medio f 1 s T 0,08s f 4 rad s 1 1 f 0,4 m k 5 m 1 La elocidad de ibración de cualquier punto es punto indicado 10 4 cos(1 10 ) m s La elocidad máxima de ibración es La aceleración es y 10 sen(4 t 5 x) ; en el 10 4 cos(4 t 5 x) m s MAX 1 d a cos(4 t 5x) a 11,7m s MAX 0. Una onda armónica que se propaga por una cuerda tiene una amplitud de 0,015 m, una longitud de onda de,4 m y una elocidad de,5 m/s. Calcular: a) El período, la frecuencia y el número de ondas. b) La función de onda, si se desplaza en el sentido positio del eje X Fco Jaier Corral

2 Moimientos periódicos 1 1 T 0,686 s f 1,46 s f 9,17rad s y 0,015sen9,17t,617 x 1 k,617 m y A sen t k x tiene una frecuencia de 50 Hz y se desplaza con 04. Una onda transersal una elocidad de 0, m/s. En el instante inicial la elocidad de la partícula situada en el origen tiene un alor de 4 m/s. Calcular: a) Sentido de propagación de la onda a lo largo del eje X. b) La amplitud, el número de onda y la frecuencia angular ω. 0, f 100 rad s T 6,4 10 m k 981,75m f 50 y A sen 100t 981,8x 1 1 La onda se propaga hacia la izquierda (+) y su ecuación es, como =4 para t=0 y x=0 4 A100 A 1,7 10 m la elocidad de ibración es A100 cos100 t 981,8 x 05. La ecuación de una onda es: y 0,0sen t 0,5 x S. Calcular: a) La frecuencia de la onda y su elocidad de propagación. b) La distancia entre dos puntos consecutios que ibran con 10º de diferencia de fase. De la ecuación de la onda: f 1 T s 4m s k 0,5 8m T 1 y la distancia entre los dos puntos más próximos desfasados en 10º es 8 m 06. Se zarandea uno de los extremos de una cuerda de 8 m de longitud, generándose una perturbación ondulatoria que tarda s en llegar al otro extremo, la longitud de onda mide 65 cm. Calcular: a) La frecuencia del moimiento ondulatorio. b) La diferencia de fase (en grados sexagesimales) entre los dos extremos libres de la cuerda. La elocidad de propagación es El desfase entre los extremos es 8 1,66ms y la frecuencia 60º d 8 m 440,77º 110,77º 0,65 m 07. La ecuación de una onda armónica iene dada por en unidades del S.. Calcular: f 4,10 s f 1 y(x,t) 4 sen(0 t x ) expresada a) El periodo, la frecuencia, la longitud de onda y la elocidad de propagación b) El tiempo que tardará la onda en llegar a un punto que dista 10 m del foco emisor c) La elocidad y aceleración de ibración de dicho punto en el instante t = 0,5 s - - Fco Jaier Corral

3 Moimientos periódicos 1 0 rad s T 0,1s 1 k m m 0m s 1 y la onda tarda 0,5 en recorrer 10 m. La elocidad y la aceleración de ibración de un punto x=10 en el instante t=0,5 s es: 80 cos(0 t x ) 0m s a 6400 sen(0 t x ) a 6400 m s PTO PTO 08. A una playa llegan 15 olas por minuto y se obsera que tardan 5 minutos en llegar desde un barco anclado en el mar a 600 m de la playa. a) Tomando como origen de coordenadas un punto de la playa, escribir la ecuación de onda, en el S, si la amplitud de las olas es de 50 cm. b) Si sobre el agua a una distancia 00 m de la playa hay una boya, que sube y baja según pasan las olas, calcular su elocidad en cualquier instante de tiempo. Cuál es su elocidad máxima?. 1 1 La frecuencia es f 15min 0,5s, el periodo T 4 s,, la elocidad de propagación m s, la longitud de onda T 8m, y el número de ondas k m con estos datos la ecuación de onda es y 0,50 sen(0,5 t 0,5 x) La elocidad de ibración de la boya en cualquier instante es 0,5 cos(0,5t 0,5 x) La elocidad máxima de ibración es MAX 0,5 m s El periodo de una onda que se propaga a lo largo del eje X es de 10 - s, y la distancia entre los dos puntos más próximos cuya diferencia de fase es π/ es de 0 cm. a) Calcula la longitud de onda y la elocidad de propagación. b) Si el periodo se duplicase, qué ocurriría a las magnitudes del apartado anterior?. La longitud de onda es la distancia entre los dos puntos más próximos que tienen un desfase de 1 π, es decir 4 0,0 0,80m, y la elocidad 66,67 m s. T Si el periodo se duplica la longitud de onda no cambia y la elocidad se reduce a la mitad. 10. La ecuación de una onda que se propaga en una cuerda es: y(x,t) 0,5sen (8t 4 x) (S) a) Calcula la elocidad de propagación de la onda y la elocidad de un punto de la cuerda y explicar el significado de cada una de ellas. b) Representa gráficamente la posición de los puntos de la cuerda en el instante t=0, y la elongación en x=0 en función del tiempo. La elocidad de propagación de la onda es constante k 1 m s mientras que la elocidad de ibración de un punto cualquiera es ariable 0,5 8 cos 8t 4x En el instante inicial no hay perturbación y la representación de la onda es el eje X. La elongación en x=0 es y 0,5sen8 t y la representación gráfica es la de una función seno. - - Fco Jaier Corral

4 11. La ecuación de una onda en una cuerda es: x y(x,t) 10 cos sen t (S) Moimientos periódicos a) Explica las características de la onda y calcular su periodo y su longitud de onda. Cuál es la elocidad de propagación?. b) Determina la elocidad de una partícula situada en el punto x=1,5 m, en el instante t=0,5 s. Explicar el resultado. Se trata de una onda estacionaria. La elocidad de ibración es rad s k m 6m s cos( x)cos t, sustituyendo los alores, tenemos 10 cos cos 0. La elocidad de ibración es siempre cero, independientemente del alor del tiempo por lo que se trata de un nodo. 1. La cuerda de una guitarra ibra de acuerdo con la ecuación: y(x,t) = 0,01sen(10πx)cos(00πt) (S). ndicar de qué tipo de onda se trata y calcular la amplitud y la elocidad de propagación de las ondas cuya superposición puede dar lugar a dicha onda. 00 T 0,01s 1 0ms, la amplitud de la onda es A 0,01sen10 x k 10 0,m Se trata de una onda estacionaria producida por superposición de y1 0,005sen(00 t 10 x) e y 0,005sen(00 t 10 x) 1. Dos ondas armónicas que se propagan por una cuerda interfieren produciendo una onda estacionaria. Si las ondas que interfieren, expresadas en el S.. de unidades, son: y 1 (x,t) = +0,sen(100t+0x) Determina: y (x,t) = 0,sen(100t 0x) a) La ecuación de la onda estacionaria resultante de su interferencia. b) La amplitud de la onda. c) El alor de la longitud de onda. d) La distancia que separa dos ientres consecutios. La onda resultante es y A coskx sent 0,6cos0x sen100t, La amplitud de la onda resultante es ariable: A es media longitud de onda. k m s 10 0,6 cos0x y la distancia entre dos ientres 14. En una cuerda tensa de 16 m de longitud, con sus extremos fijos, se ha generado una onda de ecuación: y(x,t)=0,0 sen(πx/4) cos(8πt) a) Explique de qué tipo de onda se trata y cómo podría producirse. Calcule su longitud de onda y su frecuencia. b) Calcule la elocidad en función del tiempo de los puntos de la cuerda que se encuentran a 4 m y 6 m, respectiamente, de uno de los extremos y comente los resultados Fco Jaier Corral

5 Es una onda estacionaria con Moimientos periódicos 8 f f 4s 1 k 8m 4 y 0,01cos 8 t 0,5 x y 0,01cos 8t 0,5 x y las ondas que la producen son e 1 La elocidad de ibración de cualquier punto es 0,0 8sen(0,5 x)sen8 t para x=4 la elocidad es cero, se trata de un nodo; para x=6 la elocidad es 0,0 8 sen8 t y como está a un cuarto de del anterior es un ientre. 15. Un punto material oscila en torno al origen de coordenadas en la dirección del eje Y, según la expresión: y = sen(0,5πt+0,5π) ( y en cm; t en s),originando una onda armónica transersal que se propaga en el sentido positio del eje X. Sabiendo que dos puntos materiales de dicho eje que oscilan con un desfase de π radianes están separados una distancia mínima de 0 cm, determine: a) La amplitud y la frecuencia de la onda armónica. b) La longitud de onda y la elocidad de propagación de la onda. c) La expresión matemática que representa la onda armónica. d) La expresión de la elocidad de oscilación en función del tiempo para el punto material del eje X de coordenada x=80 cm, y el alor de dicha elocidad en el instante t=0 s. La oscilación del punto en el S es y 0,0sen(0,5 t 0,5 ) y tiene desfase inicial. Sabemos que 0,4m k 5 m 1 y que que la elocidad de la onda es 0,05ms 1 1 0,5 f f 0,15s T 8s con lo La ecuación de la onda producida es y A sent kx 0,0sen(0,5 t 5x 0,5 ) La elocidad de ibración es VB 0,0 0,5 cos (0,5t 5 x 0,5) y para el punto 1 x=0,80 en el instante t=0 es 0,0 0,5 cos (0,5 0 0,5 5 0,80) 0ms VB 16. Al esperar a que pase una onda transersal, una persona nota que pasan 1 crestas en un tiempo de s. Si la distancia entre dos crestas sucesias es de 0,8 m y la amplitud es de 0,5 m. a) Escribe la ecuación de esa onda. b) Cuál es la elocidad de la onda? El periodo es T 0,5s, la longitud de onda 0,8m, la pulsación de ondas k,5m 1. La elocidad de propagación es T y 0,5sen 8t,5x onda, suponiendo que se desplaza hacia la derecha, 8 rad s 1 y el número 1,ms y la ecuación de la 17. Una onda plana iaja a traés de un medio absorbente, obserándose que tras aanzar una distancia de m su amplitud decrece de 10 cm a 4 cm. Calcular: a) El coeficiente de absorción del medio. b) La amplitud que tendrá la onda tras aanzar otros 6 m Fco Jaier Corral

6 Cuando una onda atraiesa un medio absorbente sabemos que de una onda es proporcional al cuadrado de la amplitud absorción es si aanza otros 6 m A Moimientos periódicos x F 0e y como la intensidad A e luego el coeficiente de x F 0 1 0,04 1 0,04 0,10 e Ln 0,916m 0,10 A A e A 0,10 e A,6 10 m x 0,916 8 F 0 F F 18. Una fuente puntual esférica emite sonido uniformemente en todas las direcciones. A una distancia de 10 m el niel acústico es 80 db. Cuál es la intensidad sonora en ese punto? Cuál es la potencia del sonido emitida por la fuente? La intensidad sonora es 10 log 8 log W m La potencia es 4 P S 4 x W 19. Se realizan dos mediciones del niel de intensidad sonora en las proximidades de un foco sonoro puntual, siendo la primera de 100 db a una distancia x del foco, y la segunda de 80 db al alejarse en la misma dirección 100 m más. a) Obtenga las distancias al foco desde donde se efectúan las mediciones. b) Determine la potencia sonora del foco. La intensidad sonora es 10 log 0 X A una distancia x del foco log 1 X 10 Wm 10 X y para x log 1 X Wm 10 1 r X (x 100) como la intensidad aría con la distancia tenemos 100 r x x x 10 00x 99x 00x 10 0 x 11,1m 99 La potencia del foco es P S 4 x ,1 15,48 W X X Fco Jaier Corral

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5 013-Julio-Fase Específica (Asturias) Se nos da la expresión de la longitud de onda de los armónicos, aunque podríamos deducirla al tratarse de un caso de ondas estacionarias con un límite fijo (el extremo

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

BEAT RAMON LLULL CURS INCA

BEAT RAMON LLULL CURS INCA COL LEGI FÍSICA BEAT RAMON LLULL CURS 2007-2008 INCA 1. Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con

[a] La constante elástica del muelle y la frecuencia angular son proporcionales, de acuerdo con Opción A. Ejercicio 1 Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente- Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2 01. Dos cargas puntuales de 3 y 1, están situadas en los puntos y ue distan 0 cm. a) ómo aría el campo entre los puntos y y representarlo gráficamente. b) Hay algún punto de la recta en el ue el campo

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

TEMA 2. ONDAS. 1. Definición de onda.

TEMA 2. ONDAS. 1. Definición de onda. TEMA 2. ONDAS ÍNDICE 1. Definición de onda. 2. Tipos de ondas. 2.1. Según el medio de propagación. 2.2. Según la forma de propagación. 2.3. Número de dimensiones de propagación. 3. Ondas armónicas. 3.1.

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS

ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS ANDALUCÍA / JUNIO 04. LOGSE / FÍSICA / VIBRACIONES Y ONDAS OPCIÓN A. Considere la siguiente ecuación de una onda : y ( x, t ) A sen ( b t - c x ) ; a) qué representan los coeficientes A, b, c? ; cuáles

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor.

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor. Ondas 1. En ciertas ondas transversales la velocidad de propagación es inversamente proporcional a la densidad del medio elástico en que se propagan. Si en el fenómeno de refracción su frecuencia permanece

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial

Siendo y la elongación, A la amplitud, ω = 2πν la pulsación, y φ 0 la fase inicial Capítulo 2 Vibraciones y ondas 2.1. Conceptos previos. Ecuación del movimiento armónico simple: La ecuación de un movimiento armónico simple puede ser expresada por cualquiera de las siguientes expresiones:

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2

Más detalles

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia TALLER DE CIENCIAS PARTE FÍSICA COMÚN Figura para el ejercicio 1 al 4 1. Si sabemos que en la cuerda (1) la velocidad de propagación de la onda es v = 1,5 m/s, y que la longitud de onda vale λ = 30 cm,

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal. IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

CAPITULO VI ONDAS ELASTICAS

CAPITULO VI ONDAS ELASTICAS CAPITULO VI ONDAS ELASTICAS - 140 - 6. ONDAS ELASTICAS La onda elástica es la perturbación efectuada sobre un medio material y que se propaga con movimiento uniforme a través de este mismo medio. La rapidez

Más detalles

6 El movimiento ondulatorio

6 El movimiento ondulatorio 6 El oiiento ondulatorio EJERCCOS ROUESTOS 6. Son ondas las olas del ar? or qué? Sí, porque se propaga una perturbación: la altura de la superficie del agua sobre su niel edio. 6. uede haber un oiiento

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda Problemas. La función de onda de una onda armónica que se mueve sobre una cuerda es y(x,t)=,3sen(,x-3,5t) en unidades del SI. Determinar la dirección del movimiento, velocidad, longitud de onda, frecuencia

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ONDAS MECANICAS INTRODUCCIÓN Las ondas son perturbaciones de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

Propagación de las ondas Fenómenos ondulatorios

Propagación de las ondas Fenómenos ondulatorios Propagación de las ondas Fenómenos ondulatorios IES La Magdalena. Avilés. Asturias Cuando se trata de visualizar la propagación de las ondas en un papel se recurre a pintar los llamados frentes de onda.

Más detalles

Ejercicios de FÍSICA DE 2º DE BACHILLERATO

Ejercicios de FÍSICA DE 2º DE BACHILLERATO Movimiento Armónico Simple, Ondas, Sonido Ejercicios de FÍSICA DE 2º DE BACHILLERATO INDICE 1 ONDAS... 2 1.1 MOVIMIENTO ARMÓNICO... 2 1.2 MOVIMIENTO ONDULATORIO... 5 1.3 EL SONIDO... 10 2 INTERACCIÓN GRAVITATORIA...

Más detalles

PAAU (LOXSE) Xuño 2004

PAAU (LOXSE) Xuño 2004 PAAU (LOXSE) Xuño 004 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica o práctica)

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

EL MARAVILLOSO MUNDO DE LAS ONDAS: El movimiento ondulatorio

EL MARAVILLOSO MUNDO DE LAS ONDAS: El movimiento ondulatorio INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FÍSICA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION

Más detalles

VIBRACIONES Y ONDAS 1

VIBRACIONES Y ONDAS 1 VIBRCIONES Y ONDS Contenidos ().- Movimiento Vibratorio rmónico Simple... Ecuaciones del M.V..S... Dinámica del M.V..S..3. El péndulo simple..4. Energía de un oscilador armónico..- Movimiento Ondulatorio...

Más detalles

I.E.S. Al-ándalus. Dpto de Física y Química. Física 2º Bachillerato. Tema 5. Vibraciones y ondas -1 - VIBRACIONES Y ONDAS

I.E.S. Al-ándalus. Dpto de Física y Química. Física 2º Bachillerato. Tema 5. Vibraciones y ondas -1 - VIBRACIONES Y ONDAS I.E.S. Al-ándalus. Dpto de Física Química. Física º Bachillerato. Tema 5. Vibraciones ondas - - TEMA 5 VIBRACIONES Y ONDAS 5. Moimiento oscilatorio. Moimiento armónico simple. 5. Moimiento ondulatorio.

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles