Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones:"

Transcripción

1 Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo de los vértices de un grafo G = (V, E) es una asignación f : V C, tal que f (v) f (u) (u, v) E. Para todo entero positvo k, un k-coloreo de G es un coloreo de los vértices de G que usa exactamente k colores. Un grafo G se dice k-coloreable si existe un k-coloreo de G. El número cromático de G, χ(g), es el menor número de colores necesarios para colorear los vértices de G. Un grafo G se dice k-cromático si χ(g) = k. Coloreo de vértices Cota superior para χ(g) Ejemplos: χ(k n ) = n. Si G es un grafo bipartito, entonces χ(g) = 2 si m > 0 y χ(g) = 1 en caso contrario. Si C 2k es un circuito simple par, entonces χ(c 2k ) = 2. Si C 2k+1 es un circuito simple impar, entonces χ(c 2k+1 ) = 3. Proposición. Si (G) es el grado máximo de G entonces χ(g) (G) + 1. Teorema (Brooks, 1941). Sea G un grafo conexo que no es un circuito impar ni un grafo completo. Entonces χ(g) (G). Existen grafos para los cuales χ(g) = (G)? Existen grafos para los cuales χ(g) < (G)? Cuán grande puede ser la diferencia entre estos dos parámetros?

2 Problema de los cuatro colores Algoritmos para coloreo de grafos Teorema (Heawood, 1890). Si G es un grafo planar, entonces χ(g) 5. Teorema de los 4 colores (Appel, Haken, 1976). Si G es un grafo planar, entonces χ(g) 4. Problema difícil, computacionalmente no resuelto. No se conocen algoritmos polinomiales para calcular χ(g) dado un grafo general G. Existen muchos enfoques algorítmicos para este problema: Heurísticas y metaheurísticas. Algoritmos basados en backtracking (por ejemplo: DSATUR, Brelaz, 1979). Algoritmos exactos basados en programación lineal entera. Algoritmo secuencial (S) Algoritmo secuencial (LFS) Algoritmo. Dado un orden v 1,..., v n de V, asignar en el paso i el menor color posible en N a v i, para i = 1,..., n. Es importante el orden entre los vértices? Definición. Si G i es el grafo inducido por v 1,..., v i, entonces u S (G, v 1, v 2,..., v n ) = 1 + máx 1 i n {d Gi (v i )}. Proposición. Si χ S (G) es el número de colores usado por el algoritmo secuencial para colorear G cuando los vértices son considerados en el orden v 1,..., v n, entonces χ(g) χ S (G) u S (G, v 1, v 2,..., v n ). Orden Largest First (LF): Los vértices son ordenados de mayor grado a menor grado, d(u 1 ) d(u 2 )... d(u n ). Proposición. Si u LF (G) = u S (G, u 1, u 2,..., u n ) donde u 1, u 2,..., u n están ordenados según LF. Entonces u LF (G) mín u S (G, v 1, v 2,..., v n ), donde el mínimo está tomado sobre todos los ordenes posibles, v 1,..., v n.

3 Algoritmo secuencial (SLS) Algoritmo secuencial - Cotas Orden Smallest Last (SL): 1. Poner como v n el vértice de mínimo grado de G. 2. Para i = n 1,..., 1 poner como v i el vértice de grado mínimo en el subgrafo de G inducido por V \ {v n, v n 1,..., v i+1 }. Definimos u SL (G) = 1 + máx 1 i n mín 1 j i {d G i (v j )} Se puede demostrar (ejercicio) que: χ SL (G) u SL (G). u SL (G) u LF (G). SLS colorea un grafo planar con 6 colores o menos. donde d Gi (v j ) es el grado del vértice v j en el grafo inducido por V \ {v n, v n 1,..., v i+1 }. Algoritmo secuencial con intercambio (SI) Algoritmo secuencial con bracktracking (exacto) Si existen p y q dos colores utilizados en el coloreo parcial, tal que en todas las componentes conexas de H pq los vértices adyacentes a v i tienen el mismo color, podemos intercambiar los colores p y q en las componentes de H pq con vértices adyacentes a v i con color p. De esta manera, obtendremos un coloreo parcial de G con el color p no utilizado en la vecindad de v i. Este procedimiento se llama (p, q)-intercambio. Hacemos una búsqueda exhaustiva. En el árbol de enumeración, cada vértice de nivel i corresponde a un coloreo de v 1,..., v i 1. Se avanza por las ramas coloreando los siguientes vértices hasta que ocurre alguna de las siguientes situaciones: 1. Se llegó a un vértice sin colores disponibles: se hace backtracking a partir de v i 1 (nodo anterior). 2. Se coloreó v n : se encontró un nuevo coloreo del grafo, actualizamos el mejor número de colores q y continuamos con backtracking. 3. Se llega a un coloreo parcial con más de q colores: este coloreo no será mejor que el actual, y hacemos backtracking.

4 Cotas inferiores para χ(g) Proposición. Si H es un subgrafo de G entonces χ(h) χ(g). Definición. Una clique es un subgrafo completo maximal de un grafo. El número clique de un grafo es el máximo número de vértices de una clique de G, y se denota por ω(g). Proposición. Para cualquier grafo G, χ(g) ω(g). Existen grafos para los cuales χ(g) > ω(g)? Cuán grande puede ser la diferencia entre estos dos parámetros? Qué pasa si χ(g) = ω(g)? Grafos de Mycielski (1955) Definición (por inducción): 1. M 1 = K 1 2. M 2 = K 2 3. Para i 2, M i+1 se construye a partir de M i de la siguiente forma: Si Mi tiene p vértices, v 1,..., v p, M i+1 tendrá 2p + 1 vértices, v 1,..., v p, u 1,..., u p, w, donde u i es copia de v i. El conjunto de aristas de Mi+1 tendrá todas las aristas de M i, las aristas uniendo u i con los vecinos de v i en M i y las aristas uniendo w con cada u i. Grafos de Mycielski v 2 M 4 M 3 v 2 u 2 M 2 v 1 v 2 v 1 u 1 v 1 u 1 u 3 v 3 w u 2 w u 5 u 4 v 5 v 4 Definición (Berge, 1961). Un grafo es perfecto si χ(h) = ω(h) para todo subgrafo inducido H de G. Cuál es el número cromático de M i? χ(m i ) = i Los grafos bipartitos son perfectos. Los grafos de intervalos son perfectos. Cuál es la clique máxima de M i? ω(m i ) = 2 Los grafos triangulados (que no contienen C k con k 4 como subgrafo inducido) son perfectos, etc.

5 Teorema de los grafos perfectos (Lova sz, 1972). Un grafo es perfecto si y so lo si su complemento es perfecto. Conjetura fuerte de los grafos perfectos (Berge, 1961). Un grafo es perfecto si y so lo si no tiene ciclos impares ni complementos de ciclos impares como subgrafos inducidos. Teorema (Gro tschel, Lova sz y Schrijver, 1981). Existe un algoritmo polinomial para determinar χ(g ) si G es perfecto. Coloreo de aristas Definiciones: I Un coloreo de las aristas de un grafo G es un asignacio n de colores a las mismas en la cual dos aristas que tienen un ve rtice en comu n no tengan el mismo color. I El ı ndice croma tico χ0 (G ) de un grafo G es el menor nu mero de colores con que se pueden colorear las aristas de un grafo. Teorema (Vizing, 1964). Para todo grafo G se verifica que Demostrado en 2002 por Chudnovsky, Robertson, Seymour y Thomas, y conocido como el teorema fuerte de los grafos perfectos. (G ) χ0 (G ) (G ) + 1.

Pintar mapas, organizar fiestas... en el fondo, es sólo teoría de grafos

Pintar mapas, organizar fiestas... en el fondo, es sólo teoría de grafos Pintar mapas, organizar fiestas... en el fondo, es sólo teoría de grafos Grupo de Teoría de Grafos Departamento de Computación FCEyN - UBA Charla de Borrachos Noviembre 2004 Qué es un grafo? Un grafo está

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

Unidad 6. Gráficas Planares

Unidad 6. Gráficas Planares Unidad 6. Gráficas Planares Una gráfica Planar es aquella que puede llegar a representarse en un plano de tal modo que no existe intersección de líneas excepto en los vértices. Una gráfica Plana es aquella

Más detalles

Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones

Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones Separadores minimales de vértices de grafos dualmente cordales y caracterizaciones Mar del Plata, septiembre de 2009 Definiciones rápidas Un uv-separador de G es un conjunto S V (G) tal que G S es no conexo

Más detalles

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007

Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007 Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de

Más detalles

Grafos y Colores. Esteban Lanzarotti - Matías López. Facultad de Ciencias Exactas y Naturales - UBA

Grafos y Colores. Esteban Lanzarotti - Matías López. Facultad de Ciencias Exactas y Naturales - UBA Facultad de Ciencias Exactas y Naturales - UBA Menú del día La charla se divide en las siguientes partes: 1 Qué es un modelo matemático? 2 3 4 Modelos matemáticos Un modelo es una representación simplificada

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III

Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen

Más detalles

Planaridad. Algoritmos y Estructuras de Datos III

Planaridad. Algoritmos y Estructuras de Datos III Planaridad Algoritmos y Estructuras de Datos III Por qué planares? Por qué planares? Por qué planares? Grafos planares Definiciones: Una representación planar de un grafo G es un conjunto de puntos en

Más detalles

ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009

ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009 ALGORITMOS HEURÍSTICOS Y APROXIMADOS Análisis y diseño de algoritmos II- 2009 Problemas difíciles : Definiciones, ejemplos y propiedades Análisis y diseño de algoritmos II- 2009 Un viaje a Ciencias de

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un grafo acíclico, o sea, una unión disjunta

Más detalles

LAS CIENCIAS DE LA PLANIFICACIÓN

LAS CIENCIAS DE LA PLANIFICACIÓN LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):

Más detalles

I. Complejidad de Problemas

I. Complejidad de Problemas I. Complejidad de Problemas 1. Complejidad de Problemas Tópicos Clasificación de Problemas Clasificación por su Naturaleza Clasificación por su Tratabilidad Clasificación por el tipo de Respuesta 1.1 Clasificación

Más detalles

Transparencias de Matemática Discreta Doble Grado en Ingeniería en Informática y. Administración de Empresas Curso 2013 2014

Transparencias de Matemática Discreta Doble Grado en Ingeniería en Informática y. Administración de Empresas Curso 2013 2014 ESCUELA POLITÈCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID Transparencias de Matemática Discreta Grado en Ingeniería en Informática Doble Grado en Ingeniería en Informática y Administración de Empresas

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

CLASIFICACIÓN DE PROBLEMAS

CLASIFICACIÓN DE PROBLEMAS UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Facultad de Ciencias Exactas y Tecnologías Licenciatura en Sistemas de Información 2009 CLASIFICACIÓN DE PROBLEMAS 1 CLASES DE PROBLEMAS Uno de los resultados

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Grafos: Básicos Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Grafos: Básicos Matemáticas Discretas - p. 1/12 Grafos: El tema de Teoría de Grafos apareció

Más detalles

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de

Más detalles

Problemas y Conjeturas

Problemas y Conjeturas U UNIVERSITAT DE BARCELONA B Problemas y Conjeturas de la Teoría de Grafos (Trabajo Académicamente Dirigido) Autora: Cristina Araúz Lombardía Trabajo Académicamente Dirigido por F. Javier Soria de Diego

Más detalles

Gráficas : teoría, aplicaciones e interacciones : I

Gráficas : teoría, aplicaciones e interacciones : I J. Ramírez Alfonsín Université Montpellier 2, Francia Facultad de Ciencias, UNAM, México 21 de Enero de 2013 1 Introducción 2 Isomorfismo 3 Subgráfica 4 Grado 5 Conexidad 6 Coloración 7 Pruebas de Conocimiento

Más detalles

GRÁFICAS k-nulas Y LA PROPIEDAD DE PUNTO FIJO *

GRÁFICAS k-nulas Y LA PROPIEDAD DE PUNTO FIJO * Mosaicos Matemáticos No. Diciembre, 2003. Reporte de Tesis (Licenciatura). Nivel Superior GRÁFICAS k-nulas Y LA PROPIEDAD DE PUNTO FIJO * María de Jesús Carrillo Trejo Martín Eduardo Frías Armenta Departamento

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Problemas de Grafos y Tratabilidad Computacional

Problemas de Grafos y Tratabilidad Computacional Problemas de Grafos y Tratabilidad Computacional Primer Cuatrimestre de 2009 Min Chih Lin (oscarlin@dc.uba.ar) Marina Groshaus (marinagroshaus@yahoo.es) Francisco J. Soulignac (fsoulign@dc.uba.ar) http://www.dc.uba.ar/people/materias/probgraf

Más detalles

Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2011

Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2011 Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2011 Programa 1. Algoritmos: Definición de algoritmo. Máquina RAM. Complejidad. Algoritmos de tiempo polinomial y no polinomial. Límite inferior.

Más detalles

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres ESTRUCTURAS DE DATOS 2006 Prof. DEFINICIÓN Un grafo consta de un conjunto de nodos(o vértices) y un conjunto de arcos (o aristas). Cada arco de un grafo se especifica mediante un par de nodos. Denotemos

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

Algoritmos Básicos de Grafos

Algoritmos Básicos de Grafos Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN -9 Algoritmos Básicos de Grafos Ernesto Coto ND - Laboratorio de Computación Gráfica

Más detalles

Leonard Euler y la Teoría de Grafos

Leonard Euler y la Teoría de Grafos Leonard Euler y la Teoría de Grafos Qué tienen en común un pasatiempo de los habitantes de una ciudad europea del siglo XVIII; Colorear el mapa de Colombia; Planear un viaje de vacaciones; Evitar problemas

Más detalles

Figura 3.1. Grafo orientado.

Figura 3.1. Grafo orientado. Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las

Más detalles

Soluciones a algunos ejercicios de Matemática Discreta 1.

Soluciones a algunos ejercicios de Matemática Discreta 1. Soluciones a algunos ejercicios de Matemática Discreta 1. Eleonora Catsigeras * 23 de agosto de 2005 Práctico 1.- Ejercicio 5 Cuántos números naturales pares de tres dígitos (en base 10) tienen todos sus

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Clases de complejidad

Más detalles

Índice Unidad 1: Lógica y teoría de conjuntos... 2

Índice Unidad 1: Lógica y teoría de conjuntos... 2 MATEMÁTICA DISCRETA Índice Unidad 1: Lógica y teoría de conjuntos... 2 1. Definiciones... 2 2. Leyes de la lógica... 2 3. Reglas de inferencia... 3 4. Lógica de predicados... 3 5. Teoría de conjuntos...

Más detalles

1 Tema 1. Definiciones y conceptos básicos

1 Tema 1. Definiciones y conceptos básicos Enrique Benavent. Universitat de València Teoría de Grafos 1 1 Tema 1. Definiciones y conceptos básicos 1.1 Grafos. Isomorfismo de grafos Un grafo no dirigido es un triple ordenado (V(G), E(G), Ψ G ),

Más detalles

TEORÍA DE GRAFOS Ingeniería de Sistemas

TEORÍA DE GRAFOS Ingeniería de Sistemas TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.

Más detalles

UNIDAD 9. DATOS COMPLEJOS PILAS

UNIDAD 9. DATOS COMPLEJOS PILAS UNI 9. TOS OMPLEJOS PILS Una pila es una lista de elementos en la que se pueden insertar y eliminar elementos sólo por uno de los extremos. omo consecuencia, los elementos de una pila serán eliminados

Más detalles

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile Problemas en P y NP Marcos Kiwi U. Chile Semestre Otoño 2012 Problemas en P Path = { G, s, t : Existe un dicamino de s a t en el digrafo G} Conexo = { G : G grafo conexo} { } A Q PL = A, b, c, k : m n,

Más detalles

Notemos que un camino puede repetir aristas y vértices, es decir, pasar varias veces por las mismas aristas y los mismo vértices.

Notemos que un camino puede repetir aristas y vértices, es decir, pasar varias veces por las mismas aristas y los mismo vértices. Algo de conexidad... Definición 1. Un camino C entre los vértices u y v de una gráfica G es una sucesión de vértices de G, C = (x 0, x 2,..., x k ), tal que: u = x 0 ; v = x k y x i esadyacente a x i+1

Más detalles

11. MOSAICOS. El ángulo interior de un polígono regular de n lados es

11. MOSAICOS. El ángulo interior de un polígono regular de n lados es 11. MOSAICOS Cuando una o varias piezas recubren un plano sin solaparse tenemos un recubrimiento o mosaico. Los mosaicos más sencillos son los que solo utilizan una pieza de una única forma y tamaño. Aun

Más detalles

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e] Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Capítulo 5 Programación lineal entera

Capítulo 5 Programación lineal entera 163 Capítulo 5 Programación lineal entera 1. Introducción. Un problema de programación lineal entera es un problema de programación lineal con la restricción adicional de que algunas de las variables deben

Más detalles

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

1.3. Principios del Análisis Real

1.3. Principios del Análisis Real 1.3. Principios del Análisis Real En este tema recogemos lo que bajo el nombre de Principios se presenta como herramienta esencial en nuestro camino. 1.3.1 Principio de Inducción Con este principio vamos

Más detalles

Introducción a los números reales

Introducción a los números reales Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos

Más detalles

Diagrama de Voronoi. Ejemplo de problemas geométricos:

Diagrama de Voronoi. Ejemplo de problemas geométricos: Diagrama de Voronoi Definición: Sea P={p1,p2,..,pn} un conjunto de puntos en el plano. Estos puntos son llamados sitios. Asignar a cada punto del plano el sitio más cercano. Todos los puntos asignados

Más detalles

Sobre un teorema de Fröberg y los grafos saturados

Sobre un teorema de Fröberg y los grafos saturados Revista Colombiana de Matemáticas Volumen 34 (2000), páginas 19 24 Sobre un teorema de Fröberg y los grafos saturados Mario E. Estrada Universidad de Antioquia, Medellín, COLOMBIA Abstract. Saturated Cohen-Macaulay

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Algoritmos sobre Grafos

Algoritmos sobre Grafos Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

1 Relaciones de orden

1 Relaciones de orden 1 Relaciones de orden Sea R una relación binaria en un conjunto A. Si R satisface las propiedades reflexiva, antisimétrica y transitiva se dice que R es una relación de orden. En este caso si a y b son

Más detalles

Estructuras de datos tipo Grafo en los algoritmos de Refinamiento y Desrefinamiento basados en la bisección n por el lado mayor. Aplicaciones.

Estructuras de datos tipo Grafo en los algoritmos de Refinamiento y Desrefinamiento basados en la bisección n por el lado mayor. Aplicaciones. Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas Estructuras de datos tipo Grafo en los algoritmos de Refinamiento y Desrefinamiento basados en la bisección n por el lado mayor. Aplicaciones.

Más detalles

Tema 7: Optimización sobre Redes Muchos de los problemas de Investigación Operativa pueden modelizarse y resolverse sobre un grafo: conjunto de

Tema 7: Optimización sobre Redes Muchos de los problemas de Investigación Operativa pueden modelizarse y resolverse sobre un grafo: conjunto de Tema 7: Optimización sobre Redes Muchos de los problemas de Investigación Operativa pueden modelizarse y resolverse sobre un grafo: conjunto de vértices o nodos conectados con arcos y/o aristas. Diseñar

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

ESTUDIO DE PROBLEMAS, PROPIEDADES Y ALGORITMOS EN GRAFOS ARCO-CIRCULARES Y CIRCULARES

ESTUDIO DE PROBLEMAS, PROPIEDADES Y ALGORITMOS EN GRAFOS ARCO-CIRCULARES Y CIRCULARES Tesis de Licenciatura ESTUDIO DE PROBLEMAS, PROPIEDADES Y ALGORITMOS EN GRAFOS ARCO-CIRCULARES Y CIRCULARES Agustín Gravano agravano@dc.uba.ar Director: Dr. Guillermo A. Durán Departamento de Computación

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos

Más detalles

Fundamentos de la teoría de grafos

Fundamentos de la teoría de grafos Fundamentos de la teoría de grafos 3º I.T.I. de Sistemas Mª Teresa Cáceres Sansaloni 1 Tema 1: Nociones básicas Conceptos básicos sobre grafos. Representación de grafos. Multigrafos, grafos dirigidos y

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

ASIGNATURA: Matemática Discreta 1 Cuatrimestre Año: 2011

ASIGNATURA: Matemática Discreta 1 Cuatrimestre Año: 2011 CÓDIGO ASIGNATURA 1028 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Matemática Discreta 1 Cuatrimestre Año: 2011 1. OBJETIVOS: i. Cognitivos Incorporar los conceptos de Matemática

Más detalles

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

INDICE. XVII Prólogo a la edición en español. XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas

INDICE. XVII Prólogo a la edición en español. XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas INDICE Prologo XVII Prólogo a la edición en español XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas 1 1.1.1. Introducción 1.1.2. Algunos argumentos lógicos importantes 2 1.1.3. Proposiciones

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas

Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Jesús A. De Loera University of California, Davis trabajo conjunto con Shmuel Onn (Technion Haifa Israel) Cuadrados

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Sistemas polinomiales

Sistemas polinomiales Sistemas polinomiales (Elementos básicos) ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Introducción 2 2. Generalidades sobre polinomios 5 2.1. Orden monomial.........................

Más detalles

1. ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA

1. ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA . ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA A continuación, se intentarán aplicar algunas de las definiciones vistas anteriormente a redes con distinta topología con objeto de analizar el

Más detalles

Teoría de Redes o Grafos

Teoría de Redes o Grafos Teoría de Redes o Grafos Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2011 Introducción 2 Introducción............................................................ 3 Contenido.............................................................

Más detalles

Algoritmos Heurísticos en Optimización Combinatoria

Algoritmos Heurísticos en Optimización Combinatoria Algoritmos Heurísticos en Optimización Combinatoria Rafael Martí Cunquero Departament d Estadística i Investigació Operativa Programa 1. Introducción 2. Calidad de los Algoritmos 3. El Problema del Viajante

Más detalles

Inicio. Cálculos previos GRASP. Resultados. Fin. Figura 5.1: Diagrama de flujo del algoritmo.

Inicio. Cálculos previos GRASP. Resultados. Fin. Figura 5.1: Diagrama de flujo del algoritmo. 5. DISEÑO FUNCIONAL En este apartado vamos a detallar los diagramas funcionales que han constituido la base para la posterior implantación informática de la metaheurística. 5.1. Diseño funcional del algoritmo

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Distancia entre vértices en multigrafos de isogenias de curvas elípticas

Distancia entre vértices en multigrafos de isogenias de curvas elípticas 1 / 17 Distancia entre vértices en multigrafos de isogenias de curvas elípticas D. Sadornil 1 F. Sebé 2 J. Tena 3 M. Valls 2 1 UC, 2 UdL, 3 UVa Julio 2012 Definicion Una curva elíptica sobre F q es un

Más detalles

Descripción de las formas de objetos tridimensionales en su entorno

Descripción de las formas de objetos tridimensionales en su entorno Unidad 03: Comparando y caracterizando figuras. Grado 02 Matemáticas Clase: Descripción de las formas de objetos tridimensionales en su entorno Nombre: Introducción a. Observa las siguientes figuras, escribe

Más detalles

GUÍA DOCENTE DE ASIGNATURA CURSO 2009/2010

GUÍA DOCENTE DE ASIGNATURA CURSO 2009/2010 GUÍA DOCENTE DE ASIGNATURA CURSO 2009/2010 1. DATOS BÁSICOS DE LA ASIGNATURA 1.1.Nombre MATEMÁTICA DISCRETA 1.2. Código de la asignatura 41001107 1.3.Plan 2000 1.4.Curso académico 2009/2010 1.5. Ciclo

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 2)

Álgebra I Práctica 4 - Números enteros (Parte 2) Congruencia y Tablas de Restos Álgebra I Práctica 4 - Números enteros (Parte 2) 1. Sea a un entero impar que no es divisible por 5. i) Probar que a 4 1 (10). ii) Probar que a y a 45321 tienen el mismo

Más detalles

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011

XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 1. Un maestro de matemáticas avisa a sus alumnos que preguntará la demostración de tres de los ocho teoremas vistos

Más detalles

Esta tesis ha sido realizada en el Departament de Matemàtica Aplicada i Telematica de la Universitat Politècnica de Catalunya bajo la dirección de J.

Esta tesis ha sido realizada en el Departament de Matemàtica Aplicada i Telematica de la Universitat Politècnica de Catalunya bajo la dirección de J. Esta tesis ha sido realizada en el Departament de Matemàtica Aplicada i Telematica de la Universitat Politècnica de Catalunya bajo la dirección de J. Luis ANDRÉS YEBRA Vulnerabilidad del diámetro de ciertas

Más detalles

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+ PRIMER NIVEL PRIMER DÍA Problema 1 a) Es posible dividir un cuadrado de lado 1 en 30 rectángulos de perímetro? b) Supongamos que un cuadrado de lado 1 está dividido en 5 rectángulos de perímetro p. Hallar

Más detalles

Apuntes de Matemática Discreta 14. Grafos

Apuntes de Matemática Discreta 14. Grafos Apuntes de Matemática Discreta 14. Grafos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 14 Grafos Contenido 14.1 Generalidades.....................................

Más detalles

Seminario de problemas-eso. Curso Hoja 10

Seminario de problemas-eso. Curso Hoja 10 Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles