Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007"

Transcripción

1 Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007

2 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de flujo optimal.

3 Bibliografía Hillier &Lieberman, Introducción a la I.O. Mc Graw Hill,. Baase Sara, Computers Algorithms Adisson Wesley,. Tucker, A. Applied Combinatorics. J. Wiley & Sons, (1980). Otros.

4 Introducción GRAFO G: herramienta de modelado y análisis de sistemas, conjunto de elementos, relación(es) definida entre pares de elementos, nivel de abstracción, clara representación de relaciones de orden, precedencia, vecindad.

5 Introducción Sistema: organigrama de una empresa. conjunto de elementos X (empleados,gerentes, secretarias), relación definida entre pares de elementos. (x i,x k ) = x i inmediatamente superior a x k ( o inmediatamente inferior)

6 Introducción. Definiciones Un grafo G es una dupla G = (X, U), X : conjunto finito y no vacío de vértices, x 1, x 2, x 3,..., x n y se representan como puntos. x1 u4 x4 u1 u5 u'2 u2 u3 x2 x3 U : familia de pares de elementos tomados de X llamados aristas. u 1, u 2, u 3,..., u m se dibujan como líneas. Orden de G es el número de vértices del grafo. Es el cardinal del conjunto X de vértices. X =n.

7 Introducción. Definiciones Grafo orientado G*, cuando existe una relación de precedencia entre los elementos. Los elementos de X se llaman nodos, y los de U, arcos. U XxX = { u i = (x k,x j ): 1 i U, 1 j, k X, x k, x j X} Todos los grafos son orientados. x1 x2 Todo concepto no orientado en un grafo G = (X,U), deber ser considerado como aplicable de hecho, en un grafo orientado G* al que le corresponde la orientación en los dos sentidos de cada arista. x3

8 Introducción Problema: Puentes de Konigsberg. 1730, Euler. Modelo: Grafo G Grafo G: estructura que admitimos adecuada, en cuanto a propiedades que nos interesan. Problemas combinatorios. A B D C

9 Introducción El problema: dado un multigrafo, encontrar un camino que recorra el grafo pasando por cada arista exactamente una vez. Solución: G conexo y de grado par. Condición suficiente para que exista un ciclo euleriano. A B C D

10 Introducción Otra aplicación: buscar el camino a seguir por un cobrador. Debe pasar por todas las casas una sola vez. Se conocen las distancias entre pares de casas. Solución: encontrar Camino Hamiltoniano óptimo. Problema NP. NOTA: la búsqueda de un Ciclo Euleriano 0(n) polinomial de orden n.

11 Ejemplo El siguiente grafo representa una red de comunicaciones. Estamos interesados en la vulnerabilidad respecto a interrupciones accidentales. a b c d e f Problema1: Identificar líneas y centros de conexiones que deben permanecer en servicio para evitar la desconexión de la red. No existe ninguna línea que eliminada desconecte la red. El vértice d, si no comunica, desconecta la red.

12 Problema 2: Encontrar un conjunto minimal de aristas necesarias para conectar los 6 vértices. Hay varios conjuntos mínimos posibles. Uno de ellos es conjunto minimal: {(a,b),(b,c),(c,d),(d,e),(d,f)}. Resultado general: Sea un grafo G de n vértices, el conjunto mínimo de conexión de G (si existe) siempre tiene n-1 aristas. b e a d c f

13 Cadena (concepto no orientado) Es una secuencia de aristas de G, tal que cada arista de la secuencia tiene un extremo común con el arco precedente y otra con el siguiente. Largo de una cadena, es el número de aristas de la secuencia. Cadena elemental : no repite vértices. Cadena simple: no repite aristas. Introducción. Recorridos

14 Introducción. Recorridos Camino (concepto orientado) Es una cadena µ = {u 1, u 2,..., u q } en la que para todo u i (con i < q, que no sea el último) el extremo terminal de u i coincide con el extremo inicial de u i+1. Largo de un camino, camino elemental y simple son definiciones análogas a las de cadenas, (con la salvedad de la orientación). Sendero, es un camino elemental ( no repite nodos). Vía, es un camino cuyos arcos se pueden recorrer en su sentido directo o contrario.

15 Problema del camino entre dos puntos Supongamos que un hombre debe pasar a la otra orilla de un río llevando consigo una oveja, un repollo y un lobo. El inconveniente que se le plantea es que sólo puede cruzar con uno de ellos a la vez y sospecha que si deja solos a la oveja con la repollo ó con el lobo, la oveja se comerá al repollo ó el lobo se comerá a la oveja. Modelamos la estructura de este sistema mediante un grafo y solucionamos

16 HLRO HLR HLO HRO HO LR L R O Nadie H: Hombre. L: lobo. R: Repollo. O: Oveja. Estado inicial - HLCO Estado final - NADIE

17 Definiciones Grafo Conexo: para cada par de vértices de G, existe una cadena que los une. En grafos orientados se definen 2 conceptos: a) Débilmente conexo: si existe una cadena (sin tener en cuenta la orientación) que une cada par de nodos distintos. b) Fuertemente conexo: si para cada par ordenado de nodos x e y, existe un camino de x a y. Una componente conexa de G, es un subgrafo engendrado por aquellos vértices que pueden unirse a un vértice x i dado, mediante una cadena (puede ser todo G).

18 Conexo Fuertemente conexo Debilmente conexo

19 Ciclos y Circuitos Ciclo: cadena simple, cuyos dos vértices extremos, inicial y terminal, coinciden. Circuito: ciclo donde para todo arco u i (con i < q) el extremo terminal de u i coincide con la extremo inicial del u i+1, entonces, es un camino donde el extremo final del último arco coincide con el extremo inicial del primero. Se extienden los conceptos de elemental, simple.

20 Cadena Euleriana: cadena simple Ciclo Euleriano: ciclo simple A B C TEOREMA D Un multigrafo (no orientado) G = (X,U) posee un ciclo Euleriano s s i G es conexo y todos sus vértices tienen grado par.

21 a c d e f g b G conexo y vértices grado par existe ciclo euleriano k h i j l m a n b o C1= a-d-j-n-o-k-l-h-f-e-b-a. d j n k e o f l h

22 a b c d e f g h k i j l m n o C1= a-d-j-n-o-k-lh-f-e-b-a. C2= d-c-i-j-k-e-d C3= h-g-m-h. C = C1 U C2 UC3 d j n a k b e o f l h c d e i j k h m g

23 a b c d e f g k h i j l m n o a-d-c-i-j-k-e-d-j-n-o-k-l-h-g-m-h-f-e-b-a,

24 TEOREMA Ciclo Euleriano ==> G conexo y vértices grado par. Dem Existe cadena que visita todos los vértices por lo menos una vez (conexo). No repite aristas, por lo tanto cada vez que entra y sale de un vértice lo hace por aristas distintas, (grado par) G conexo y vértices grado par ==> existe Ciclo Euleriano. Dem. Por construcción generalizando el procedimiento anterior.

25 c Corolario E.2: Un multigrafo posee una cadena Euleriana, si y solo si es conexo y tiene exactamente dos vértices de grado impar. Se demuestra observando lo que sucede al agregarle una arista cuyas extremidades sean los dos vértices de grado impar. El concepto de ciclo Euleriano es utilizado en la planificación de redes de alta tensión entre varias ciudades d e b a

26 Arboles y Algoritmos de Búsqueda. Arbol: es un grafo finito, conexo, sin ciclos y con por lo menos 2 vértices Teorema T.1: Un árbol con n vértices tiene n-1 aristas. Arborescencia, es un árbol dirigido con un nodo llamado raiz, tal que existe un único camino desde la raiz a cualquier otro nodo del árbol.

27 Esqueleto de G (árbol de cubrimiento - spanning tree) es un subgrafo que es un árbol y que contiene todos los vértices de G. Procedimientos de Construcción: (en el práctico) 1- por Búsqueda Primero en Profundidad: BPP (depth -first search: DFS) 2.- por Búsqueda Primero a lo Ancho: BPA (breadth-first-search: BFS). Importante : si el grafo no es conexo, entonces NO existe esqueleto que lo recorra.

28 Algoritmo para verificar que un grafo es conexo (en el práctico) 1) Use BPP ( o BPA) para tratar de construir un esqueleto del grafo. 2) Si todos los vértices del árbol son alcanzados en la búsqueda, entonces se ha encontrado un esqueleto del grafo y por lo tanto el grafo es conexo. 3) Si la búsqueda no recorrió todos los vértices, entonces el grafo no es conexo.

29 Esqueletos: en el práctico Algoritmo de Búsqueda Primero en Profundidad Sea G = (X,U), x, v pertenecen al conjunto X DFS(x) Visite y marque x Mientras exista un vértice v no marcado adyacente a x DFS(v) fin mientras fin

30 Esqueletos: en el práctico Algoritmo de Búsqueda Primero a lo Ancho Sea G = (X,U), x, v, s pertenecen al conjunto X, Q es una cola o lista FIFO. BFS(x) Visite y marque x. Inserte x en Q Mientras Q no esté vacía realice Saco el primer elemento s de Q Para cada vértice v no marcado adyacente a s visite y marque v inserte v en Q fin para fin mientras fin

31 MEDIDA DE CONEXION DE GRAFOS Cuerda de un esqueleto en un grafo conexo G cualquier arista de G que no pertenece al esqueleto E. Afirmación: Cualquier subgrafo compuesto por el esqueleto y una cuerda contiene un ciclo cuerda esqueleto

32 Número ciclomático v(g) de un grafo G, número de cuerdas de cualquier esqueleto en G. Proposición: Sea un grafo G, m el número de aristas, n el número de vértices y c el número de componentes conexas, entonces v(g) = m - n + c. v(g) = = 3. Medida de conexión cuerda esqueleto

33 ESQUELETOS OPTIMALES (mínimo) Sea G = (X, U, W) grafo ponderado de orden n, Esqueleto mínimo es aquel de valor mínimo. Permiten, por ejemplo, calcular el costo mínimo de conexión de un grafo.

34 A 1 B 7 C 3 D 2 H 8 I 4 P G 2 F J 4 K O 8 N E L M

35 A 1 B 7 C 3 D 2 H 8 I 4 P G 2 F J 4 K O 8 N E L M

36 ESQUELETOS OPTIMALES (mínimo) Los algoritmos de Kruskal y Prim encuentran un esqueleto mínimo en G. Se demuestra que estos algoritmos construyen esqueletos MINIMOS.

37 Esqueleto Mínimo Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U, W) de orden n, es aquel esqueleto de valor mínimo.

38 ALGORITMO DE KRUSKAL Repita los siguientes pasos hasta que el conjunto T tenga (n-1) aristas ( T = = n-1): 1) Al comenzar T = (vacío) 2) Agregue a T las aristas de menor valor que no formen un ciclo con las aristas que ya están en T.

39 ALGORITMO DE PRIM Repita hasta que el árbol T tenga (n-1) aristas: 1) Al comienzo tome cualquier arista que tenga el menor valor asignado. 2) Agregue a T la arista de valor mínimo, conformada por un vértice en T y otro vértice que no pertenezca a T.

40 Optimalidad Se demuestra que estos algoritmo encuentran el óptimo. La validez y complejidad de los algoritmos propuestos se debe demostrar.

41 A 1 B 7 C 3 D 2 H 8 I 4 P G 2 F J 4 K O 8 N E L M Valor: 46

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Introducción a la Investigación de Operaciones

Introducción a la Investigación de Operaciones 3. GRAFOS 3.1 Introducción El nacimiento del concepto GRAFOS se puede situar, por el año 1730, cuando Euler (matemático) se convirtió en el padre de la Teoría de Grafos al modelar un famoso problema no

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Tema 5 Árboles y Grafos.

Tema 5 Árboles y Grafos. Tema 5 Árboles y Grafos. Definiciones básicas de teoría de grafos. Un grafo consta de un conjunto de nodos, un conjunto de aristas y una correspondencia f del conjunto de aristas al conjunto de nodos.

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2016 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Hamilton, Euler y Dijkstra

Hamilton, Euler y Dijkstra UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 2 Hamilton, Euler y Dijkstra 1. Sea G = un multigrafo no dirigido donde

Más detalles

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G.

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G. MATERIAL TEÓRICO º Cuatrimestre Año 03 Prof. María Elena Ruiz Prof. Carlos Roberto Pérez Medina UNIDAD III: GRAFOS Definición: Llamaremos grafo a una terna G= (V, A, ϕ), donde V y A son conjuntos finitos,

Más detalles

GLOSARIO DE TÉRMINOS BÁSICOS

GLOSARIO DE TÉRMINOS BÁSICOS APÉNDICE 1 GLOSARIO DE TÉRMINOS BÁSICOS OBSERVACIÓN: todas las definiciones para grafos son válidas tanto para grafos orientados como para noorientados, a menos que se especifique lo contrario. 1. Grafo:

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Definiciones y ejemplos.

Definiciones y ejemplos. V. Grafos Definiciones y ejemplos. Módulo 5 DEF. Sea V un conjunto finito no vacío, y sea El par (V, E) es llamada entonces grafo dirigido en V, donde V es el conjunto de vértices o nodos y E es su conjunto

Más detalles

Teoría de Grafos. Herramientas de programación para procesamiento de señales

Teoría de Grafos. Herramientas de programación para procesamiento de señales Teoría de Grafos Herramientas de programación para procesamiento de señales Indice Nociones básicas: Definiciones Ejemplos Propiedades Nociones avanzadas: Grafos planares Árboles Representación en computadora

Más detalles

Caminos y Flujos optimales. 2da y 3er clase 2007

Caminos y Flujos optimales. 2da y 3er clase 2007 Caminos y Flujos optimales 2da y 3er clase 2007 ESQUELETOS OPTIMALES (mínimo) Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U,

Más detalles

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS Facultad de Ingeniería Industrial Investigación de Operaciones Tema: Teoría de los Grafos Elaborado por: Ing. Carlos Alberto Moreno. Docente: Ing. Pastrana

Más detalles

A5 Introducción a la optimización en redes

A5 Introducción a la optimización en redes 48 Materials David Pujolar Morales A5 Introducción a la optimización en redes Definición 1. Grafo finito. Sea un V un conjunto no vacío con un número finito de elementos y E una familia finita de pares

Más detalles

Gráficas : teoría, aplicaciones e interacciones : II

Gráficas : teoría, aplicaciones e interacciones : II J. Ramírez Alfonsín Université Montpellier 2, Francia Facultad de Ciencias, UNAM, México 22 de Enero de 2013 1 Ciclos 2 Gráficas hamiltonianas 3 Arboles 4 Gráficas Eulerianas 5 Gráficas dirigidas 6 Problema

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

Representación y manipulación de grafos: caminos, expansión, cortes y flujos

Representación y manipulación de grafos: caminos, expansión, cortes y flujos Un grafo G es un par de conjuntos G =(V,E) Representación y manipulación de grafos: caminos, expansión, cortes y flujos V = un conjunto de n vértices u, v, w V E = un conjunto de m aristas V = n, E = m

Más detalles

Grafos eulerianos. Introducción a los grafos eulerianos GRAFOS EULERIANOS. Contenido. Contenido Introducción a los grafos eulerianos

Grafos eulerianos. Introducción a los grafos eulerianos GRAFOS EULERIANOS. Contenido. Contenido Introducción a los grafos eulerianos Grafos eulerianos Introducción a los grafos eulerianos Como saber si un grafo es euleriano Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Grupo de Modelización Físico-Matemática Los puentes

Más detalles

2007 Carmen Moreno Valencia

2007 Carmen Moreno Valencia Tema VIII. Grafos Grafos 1 2007 Carmen Moreno Valencia 1. Grafos, digrafos y multigrafos 2. Grafos eulerianos 3. Matrices de adyacencia e incidencia 4. Exploración de grafos pesados 1. Grafos, digrafos

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Trayectorias y circuitos Eulerianos y Hamiltonianos,

Trayectorias y circuitos Eulerianos y Hamiltonianos, Trayectorias y circuitos Eulerianos y Hamiltonianos, Eulerianos Trayectoria de Euler: recorrer una gráfica G utilizando cada arista de la gráfica sólo una vez, puede ser necesario o no comenzar y terminar

Más detalles

CIRCUITOS DE EULER Y HAMILTON

CIRCUITOS DE EULER Y HAMILTON CIRCUITOS DE EULER Y HAMILTON Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 8 de septiembre de 2008 Contenido Circuitos de Euler Definición Algoritmo

Más detalles

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv DEFINICIÓN 1: Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv φ donde: V = {v 1, v 2,, v n }: conjunto finito de vértices o nodos. A = {a 1, a 2,, a n }: conjunto finito de aristas o lados

Más detalles

Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS.

Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS. Tema 2.Fundamentos y aplicaciones de la teoría de grafos. 1 Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS. 1. Introducción. Teoría de grafos en una rama de la Topología Surge de los estudios de Euler

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos Parte de Algoritmos de la asignatura de Programación Master de Bioinformática Grafos Web asignatura: http://dis.um.es/~domingo/algbio.html E-mail profesor: domingo@um.es Transparencias preparadas a partir

Más detalles

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Contenido TEMA 4. Grafos 4.1. Grafos 4.1.1. Definición 4.1.2.Conceptos 4.2. Modelado de problemas típicos 4.3. Representación de un grafo a través

Más detalles

Análisis y Diseño de Algoritmos. Teoría de Gráficas

Análisis y Diseño de Algoritmos. Teoría de Gráficas Teoría de Gráficas Arturo Díaz Pérez Sección de Computación Departamento de Ingeniería Eléctrica CINVESTAV-IPN Av. Instituto Politécnico Nacional No. 2508 Col. San Pedro Zacatenco México, D. F. CP 07300

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

NP-Completitud. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem ELO320 1

NP-Completitud. Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem ELO320 1 NP-Completitud Agustín J. González ELO320: Estructura de Datos y Algoritmos 1er. Sem. 2002 ELO320 1 Introducción Hasta ahora todos los algoritmos estudiados han sido algoritmos de tiempo polinomial: para

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Capítulo 4: Grafos Clase 4: Árboles

Capítulo 4: Grafos Clase 4: Árboles Capítulo 4: Grafos Clase 4: Árboles Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 12 Árboles Los árboles son una clase particular de grafos que

Más detalles

El origen: Los puentes de Königsberg. Grafos. Algoritmos y Estructuras de Datos III. Leonhard Euler ( )

El origen: Los puentes de Königsberg. Grafos. Algoritmos y Estructuras de Datos III. Leonhard Euler ( ) El origen: Los puentes de Königsberg Grafos Algoritmos y Estructuras de Datos III Leonhard Euler (1707 1783) El origen: Los puentes de Königsberg La ciudad de Königsberg (hoy Kaliningrado) tenía en el

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

Grafos. 19 de diciembre de 2013

Grafos. 19 de diciembre de 2013 Grafos 19 de diciembre de 2013 Grafo Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas (edges en inglés) que pueden ser orientados

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

Teoría de redes y optimización en redes

Teoría de redes y optimización en redes Teoría de redes y optimización en redes Pedro Sánchez Martín Contenidos Definiciones básicas Árbol generador mínimo de expansión Camino mínimo Algoritmo Dkstra Algoritmo Bellman-Ford Fluo máximo Fluo de

Más detalles

Deseamos interconectar entre si todos los ordenadores de un edificio

Deseamos interconectar entre si todos los ordenadores de un edificio Teoría de grafos Deseamos interconectar entre si todos los ordenadores de un edificio Tres problemas de conexión: Conectar una serie de ordenadores por pares Procurar que la distancia por cable entre dos

Más detalles

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS. INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8

Más detalles

Conceptos básicos en la Teoría de Grafos

Conceptos básicos en la Teoría de Grafos Conceptos básicos en la Teoría de Grafos Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Grupo de Modelización Físico-Matemática Conceptos básicos Subgrafos Caminos, cadenas y ciclos Represetación

Más detalles

Algoritmo de Fleury. por. Ramón Espinosa Armenta

Algoritmo de Fleury. por. Ramón Espinosa Armenta Algoritmo de Fleury por Ramón Espinosa Armenta El siguiente algoritmo, debido a Fleury (191), permite construir un circuito Euleriano en un multigrafo Euleriano. Algoritmo Fleury (G) Entrada. Un multigrafo

Más detalles

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III Grafos Eulerianos y Hamiltonianos Algoritmos y Estructuras de Datos III Grafos eulerianos Definiciones: Un circuito C en un grafo (o multigrafo) G es un circuito euleriano si C pasa por todos las aristas

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López Francisco J. Hernández López fcoj23@cimat.mx Estructura de datos no lineales donde cada componente o nodo puede tener uno o más predecesores (a diferencia de los árboles) y sucesores Un grafo esta formado

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS.

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS 3.1.- CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.2.- BOSQUES Y COMPONENTES CONEXOS. NEXON LENIN CEFERINO POMPOSO Los árboles son particularmente

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

Teoría de Grafos Introducción Grafos isomorfos

Teoría de Grafos Introducción Grafos isomorfos Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices

Más detalles

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar TEORIA DE GRAFOS Estructuras Discretas Ing. Jenny Paredes Aguilar INTRODUCCION Teoria de grafos se usa en numerosos problemas cuantificables, en las organizaciones, intervienen una serie de elementos entre

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Grafos: Fundamentos Representaciones, etc. Jose Aguilar

Grafos: Fundamentos Representaciones, etc. Jose Aguilar Grafos: Fundamentos Representaciones, etc. Jose Aguilar Introducción Las estructura de datos no lineales se caracterizan por tener una relación de adyacencia genérica entre sus elementos, es decir, un

Más detalles

5.4 Caminos mínimos: Algoritmo de Dijkstra

5.4 Caminos mínimos: Algoritmo de Dijkstra 81 5.4 Caminos mínimos: Algoritmo de Dijkstra Al observar nuestro mapa de carreteras se pueden considerar las distancias en km que hay entre las ciudades, a cada arista se le asigna el valor correspondiente

Más detalles

LAS CIENCIAS DE LA PLANIFICACIÓN

LAS CIENCIAS DE LA PLANIFICACIÓN LAS CIENCIAS DE LA PLANIFICACIÓN 1. MODELIZACIÓN CON GRAFOS El objetivo de las ciencias de la planificación es encontrar el mejor método para resolver un problema, y si es posible encontrar la solución

Más detalles

Algoritmos voraces (greedy)

Algoritmos voraces (greedy) Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 21 de marzo de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos voraces 21 de marzo de 2018 1 / 45 1 Algoritmos voraces (greedy) Aplicaciones de

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

Capítulo 5 Introducción a la teoría de grafos

Capítulo 5 Introducción a la teoría de grafos Capítulo 5 Introducción a la teoría de grafos 5.1. Terminología básica y tipos de grafos Una primera aproximación a la teoría de grafos la tenemos cuando observamos un mapa de carreteras: ciudades (vértices)

Más detalles

CLAVE V

CLAVE V CLAVE-962-2-V-2-00 -2017 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CURSO: Matemática para computación 2 SEMESTRE: Segundo CÓDIGO DEL CURSO: 962 TIPO DE EXAMEN:

Más detalles

Tema 15: GRAFOS Algoritmos y estructuras de datos I - Tema 15 1

Tema 15: GRAFOS Algoritmos y estructuras de datos I - Tema 15 1 Tema 15: GRFOS jemplos de grafos G 1 = (V 1, 1 ) V 1 ={1,2,3,4} 1 ={ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) } (1, 3) 1 (1, 2) (2, 3) (1, 4) 2 3 4 (3, 4) (2, 4) jemplos de grafos G 2 = (V 2, 2 )

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

Instituto de Matemática y Física Taller de Matemática 2009 Estudiantes de Enseñanza Media

Instituto de Matemática y Física Taller de Matemática 2009 Estudiantes de Enseñanza Media Taller 6 Introducción Desde niños (as) sabemos como dibujar una estrella sin levantar el lápiz ni pasar dos veces por el mismo trazo. Si no la han hecho nunca vean que es posible. Un desafío que muchas

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3 Tema 2: Grafos y Árboles Algoritmos y Estructuras de Datos 3 1 ÍNDICE 2.1 Definiciones básicas: grafos y árboles 2.2 Representaciones de árboles y grafos 2.3 Algoritmos de recorrido de árboles binarios

Más detalles

ARBOLES GENERADORES. Orlando Arboleda Molina. 16 de septiembre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

ARBOLES GENERADORES. Orlando Arboleda Molina. 16 de septiembre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle ARBOLES GENERADORES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 16 de septiembre de 2008 Contenido Árboles generadores Algoritmo búsqueda por profundidad

Más detalles

Guía práctica de estudio 7

Guía práctica de estudio 7 Guía práctica de estudio 7 Algoritmos de Grafos. Parte 2. Elaborado por: Revisión: Ing. Laura Sandoval Montaño Facultad de Ingeniería U.N.A.M. Guía Práctica 7 Estructura de datos y Algoritmos II Algoritmos

Más detalles

Escuela de algoritmos de aproximación

Escuela de algoritmos de aproximación Escuela de algoritmos de aproximación Módulo 3: Algoritmos de aproximación para problemas de ruteo Francisco Javier Zaragoza Martínez Universidad Autónoma Metropolitana Unidad Azcapotzalco ITAM, de septiembre

Más detalles

Taller de grafs: rutes, mapes i xarxes socials

Taller de grafs: rutes, mapes i xarxes socials Taller de grafs: rutes, mapes i xarxes socials Cristina Chiralt y Fernando Hernando Universidad Jaume I e Instituto Universitario de Matemáticas y sus Aplicaciones de Castellón Grado de Matemática Computacional

Más detalles

Algoritmo de Kruskal

Algoritmo de Kruskal Algoritmo de Kruskal Curso de Teoría Algebraica de Grafos Facultad de Ingeniería Universidad de la República 4 de mayo de 202 Árboles Un árbol es un grafo conexo y acíclico (sin ciclos). Un bosque es un

Más detalles

Árboles. no es un árbol porque no es conexo. Sin embargo, cada componente conexa es un árbol y, este tipo de grafo se llama bosque.

Árboles. no es un árbol porque no es conexo. Sin embargo, cada componente conexa es un árbol y, este tipo de grafo se llama bosque. Ejemplos Árboles Un grafo sin lazos, es un árbol si es conexo y no contiene ciclos. Tenemos que: es un árbol. no es un árbol porque contiene un ciclo. no es un árbol porque no es conexo. Sin embargo, cada

Más detalles

Raúl E Gutiérrez de Piñerez R. Carlos Andres Delgado

Raúl E Gutiérrez de Piñerez R. Carlos Andres Delgado Teoría de Grafos Raúl E Gutiérrez de Piñerez R. raul.gutierrez@correounivalle.edu.co Carlos Andres Delgado carlos.andres.delgado@correounivalle.edu.co Universidad del Valle EISC Septiembre 2017 1 Introducción

Más detalles

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} } Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

Matemáticas discretas II

Matemáticas discretas II Matemáticas discretas II (Teoría de gráficas) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 15-P Sergio Luis Pérez (UAM CUAJIMALPA) Curso de matemáticas discretas II 1 / 44 Conceptos

Más detalles

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 18 Problema de las utilidades

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil.

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 1 Teoría de Grafos I 1. Defina y de ejemplos de cada uno de los siguientes

Más detalles

Caminos. Sobre los problemas de encontrar caminos en grafos. Complexity D.Moshkovitz

Caminos. Sobre los problemas de encontrar caminos en grafos. Complexity D.Moshkovitz Caminos Sobre los problemas de encontrar caminos en grafos 1 Introdución Objetivos: Introducir más problemas sobre grafos. Resumen: Caminos Hamiltonianos Caminos Eulerianos 2 Camino Hamiltoniano Entrada:

Más detalles

Inteligencia Artificial

Inteligencia Artificial Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur 1. Búsqueda en la resolución de problemas. Inteligencia Artificial Trabajo Práctico N 3 Búsqueda Ciega y Heurística Segundo

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía No. 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Práctico 3: Grafos (Finalización: 06/09) Ing. en Computación - Ing. en Informática - Prof. en Computación Año 2018 Ejercicio 1: Dado el siguiente p-digrafo: 5 b 6 d 11

Más detalles

5.6 Árbol generador de un grafo

5.6 Árbol generador de un grafo 88 5.6 Árbol generador de un grafo Definición 5.59. Sea G un grafo simple. Un árbol generador de G es un subgrafo de G que es un árbol y contiene todos los vértices de G. Ejemplo 5.60. Un grafo y algunos

Más detalles

Fundamentos y aplicaciones de la teoría de grafos. Grafos eulerianos y hamiltonianos. Diagramas en árbol. (2ª Parte)

Fundamentos y aplicaciones de la teoría de grafos. Grafos eulerianos y hamiltonianos. Diagramas en árbol. (2ª Parte) Fundamentos y aplicaciones de la teoría de grafos. Grafos eulerianos y hamiltonianos. Diagramas en árbol. (2ª Parte) Título: Fundamentos y aplicaciones de la teoría de grafos. Grafos eulerianos y hamiltonianos.

Más detalles

GRAFOS I. Antonio Luis Rodríguez López-Cañizares y Ceferino Ruiz Garrido

GRAFOS I. Antonio Luis Rodríguez López-Cañizares y Ceferino Ruiz Garrido 1 GRAFOS I Antonio Luis Rodríguez López-Cañizares y Ceferino Ruiz Garrido El alumno que siga esta lección aprenderá a resolver algunos tipos diferentes de problemas con el auxilio de los grafos. La Teoría

Más detalles

1. Conceptos básicos sobre el problema en cuestión y cuestiones afines. 2. Formulación de los correspondientes algoritmos y su pseudocódigo.

1. Conceptos básicos sobre el problema en cuestión y cuestiones afines. 2. Formulación de los correspondientes algoritmos y su pseudocódigo. Análisis de Algoritmos Ingeniería Informática, EPS-UAM Información general Organización del curso: 13-15 (mínimo-máximo) semanas docentes: 30-33 clases teóricas. 9-12 clases de problemas 26-30 clases prácticas

Más detalles

Tema: Recorrido de Grafos. Ruta más corta

Tema: Recorrido de Grafos. Ruta más corta PED104. Guía N 12 Página 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación con Estructuras de Datos Tema: Recorrido de Grafos. Ruta más corta Competencia Desarrolla sistemas de información

Más detalles

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 Definiciones: conjuntos, grafos, y árboles Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 1 Conjuntos (sets) y Grafos (graphs) Un Conjunto es una colección de objetos distintos. No

Más detalles

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios CLASE GRAFOS Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión

Más detalles

Programación Lineal. Modelo de Redes. Alcance de las aplicaciones. Curso: Investigación de Operaciones Ing. Javier Villatoro

Programación Lineal. Modelo de Redes. Alcance de las aplicaciones. Curso: Investigación de Operaciones Ing. Javier Villatoro Programación Lineal Modelo de Redes Alcance de las aplicaciones Curso: Investigación de Operaciones Ing. Javier Villatoro ALCANCE DE LAS APLICACONES DE REDES ALCANCE DE LAS APLICACIONES Muchas situaciones

Más detalles

Digrafos fuertemente conexos minimales (MSD) vs árboles

Digrafos fuertemente conexos minimales (MSD) vs árboles Digrafos fuertemente conexos minimales (MSD) vs árboles 21 de marzo de 2017 Digrafos fuertemente conexos minimales (MSD) 21vsde árboles marzo de 2017 1 / 26 Preliminares Deniciones(I): Grafo, digrafo,

Más detalles

MATROIDES Y EL ALGORITMO VORAZ

MATROIDES Y EL ALGORITMO VORAZ MATROIDES Y EL ALGORITMO VORAZ Natalia Castro - 19 de octubre de 2016 Algoritmos de Aproximación IMERL - Facultad de Ingeniería - UdelaR Edmonds loco-problem Edmonds se enfoca en algoritmos better than

Más detalles

1. GRAFOS : CONCEPTOS BASICOS

1. GRAFOS : CONCEPTOS BASICOS 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos

Más detalles