Sobre la descomposición en valores singulares y seudoinversa de una matriz *

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sobre la descomposición en valores singulares y seudoinversa de una matriz *"

Transcripción

1 AVANZA. Vol. II. FM - IIT, UACJ Sobre la descomposición en valores singulares y seudoinversa de una matriz * Boris Mederos, David Gardea, Gustavo Tapia y Jaime Romero ** Resumen En este trabajo presentaremos la descomposición en valores singulares de una matriz y sus propiedades. Utilizaremos dicha descomposición matricial para calcular la seudovinversa A + aplicada a un vector b. Palabras clave: Matriz seudoinversa. 1. Introducción En este trabajo estudiaremos un caso muy importante de descomposición matricial conocido como descomposición en valores singulares de una matriz y su relación con el problema de aproximación de su inversa, ver [1]. Muchas veces al resolver el sistema lineal: Ax = b, con A R n m, el sistema tiene infinitas soluciones en el caso n < m o no es posible resolverlo cuando n > m. En el caso de n > m una posible idea es encontrar la ˆx tal que Aˆx sea lo más cercano al vector b con respecto a la norma euclidiana. La idea anterior es equivalente a encontrar el ˆx que minimiza el residuo Ax b, lo que equivale a resolver un problema de mínimos cuadrados. Al resolver el problema de mínimos cuadrados uno puede obtener un conjunto infinito de soluciones, lo que conduce a un problema mal planteado [, 3]. Una posible solución a esto es encontrar dentro de todas las posibles soluciones, la que tiene menor norma más pequeña. * Artículo de divulgación ** Departamento de Física y Matemáticas IIT-UACJ, boris.mederos@uacj.mx

2 58 B. Mederos, D. Gardea, G. Tapia, J. Romero La transformación que asocia b con la solución de menor tamaño de Ax b en el sentido de los mínimos cuadrados, es lineal y se denomina de seudoinversa o inversa generalizada de Moore-Penrose. Una de las grandes utilidades de la descomposición en valores singulares SVD, es que permite calcular de manera directa la seudoinversa; también permite analizar cómo errores en b, afectan las soluciones de Ax = b en el sentido generalizado. Nuestro trabajo está organizado de la siguiente manera: la primera sección introduce los conceptos de ortogonalidad y transformaciones ortogonales, la segunda nos explica cómo obtener la SVD de una matriz, así como algunas de sus propiedades, y finalmente, la tercera sección relaciona la SVD con el concepto de seudoinversa, llevándonos a una fórmula explícita para su cálculo.. Ortogonalidad, normas y transformaciones ortogonales La ortogonalidad tiene un papel muy importante a la hora de los cálculos de matrices. Un conjunto de vectores {x 1, x,..., x n } en R n, es ortogonal si x t i x j =, cuando i j; y ortonormal si x t i x j = δ ij. Intuitivamente, los vectores ortogonales son independientes, ya que apuntan en direcciones totalmente diferentes. Una colección de subespacios S 1, S,,, S n en R n es mutuamente ortogonal, si x t y =, cuando x S i y y S j para todo i j. El complemento ortogonal de un subespacio S está definido por: S = {y R n : y t x =, x S} y no es difícil demostrar que los vectores {v 1, v,..., v k } forman una base ortonormal para un subespacio S R n, si son ortonormales y su espacio generado es S. Una matriz Q R n n, se dice que es ortogonal si Q t Q = I. Si Q = [q 1, q,..., q n ] es ortogonal, entonces las q i forman una base ortonormal de R n. Teorema.1. Si V 1 R n r tiene columnas ortogonales, entonces existe V R n n r, de manera que: V = [V 1, V ]

3 Descomposición en valores singulares y seudoinversa 59 es ortogonal. Téngase en cuenta que ranv 1 = ranv. A continuación, introduciremos los conceptos de norma de una matriz inducida por la norma de vectores. Definición.. Dada una matriz A R n n, llamaremos a: A p = Ax p máx x R n, x x p de p-norma de A inducida por la norma p en R n. En particular, la -norma será de gran utilidad en este trabajo. La -norma es invariante bajo la transformación ortogonal, ya que si Q t Q = I, entonces Q = xt Q t Qx = x. La -norma y la norma de Frobenius son invariantes con respecto a las transformaciones ortogonal. En particular, es fácil demostrar que para dos matrices ortogonales Q y Z de dimensiones adecuadas, tenemos: y QAZ F = A F QAZ = A. 3. Descomposición en valores singulares La teoría de las normas desarrolladas en las secciones previas, se puede utilizar para probar la muy útil descomposición en valores singulares. Teorema 3.1. Sea una matriz A R n r real, entonces existen matrices ortogonales: y U = [u 1,..., u m ] V = [v 1,..., v n ], de manera que U t AV = diagσ 1, σ,..., σ p, donde p = mín{m, n} y σ k, k = 1...p.

4 6 B. Mederos, D. Gardea, G. Tapia, J. Romero Demostración. Sean x R n y y R m, tal que x = y = 1, que satisfacen Ax = σy, σ = A Existen V R n n 1 y U R m m 1, tal que V = [x, V ] y U = [y, U ] son ortogonales. No es difícil ver que U t AV tiene la siguiente estructura: [ ] U t σ w AV = t = A B 1, ya que: [ A 1 σ w ] [ ] A σ 1 w [ ] σ w = σ + w t w + Bw σ + w t w = A 1 = máx A 1z z A 1 [ σ w ] σ + w t w [ ] A σ 1 w [ ] σ w σ + w t w σ + w t w. Se tiene A 1 = σ + w t w. Sin embargo, σ = A = A 1, conduce a que w =. Luego [ ] A 1 = U t σ AV =. B Los σ i son llamados valores singulares de A. El vector u i es el i-ésimo vector singular izquierdo y el vector v i es el i-esimo vector singular derecho. Es fácil comprobar que AV = UΣ y A t U = V Σ t. Es conveniente escribir las igualdades anteriores:

5 Descomposición en valores singulares y seudoinversa 61 Av i = σ i u i, i = 1,..., n Au i = σ i v i, i = 1,..., n La descomposición en valores singulares revela gran parte de la estructura de una matriz. A partir de la SVD de A, dada por el teorema anterior, se define r como el entero que satisface entonces, σ 1 σ... σ r > σ r+1 =... = σ p = ; ranka = r rana = span{v r+1,..., v p } nulla = span{v1,..., v r }. Por otro lado, haciendo el producto de matrices en la descomposición SVD tenemos que: A = n σ i u i vi. t i=1 Definición 3.. v R n es llamada una Solución por mínimos cuadrados si y sólo si: Ax b = ínf{ Az b : z R n }. Mejor solución aproximada de Ax = b si y sólo si x es una solución por mínimos cuadrados: x = ínf{ z : z es una solución en mínimos cuadrados}

6 6 B. Mederos, D. Gardea, G. Tapia, J. Romero donde. es la norma euclidiana. Se podrían utilizar otras normas que llevarían a distintas nociones de soluciones generalizadas. Además, en lugar de reducir al mínimo z con frecuencia es de interés minimizar Lz para alguna matriz L dada. Vamos a demostrar que la mejor solución aproximada siempre existe y es única; entonces, la siguiente definición tiene sentido: Definición 3.3. Definiremos como A + la matriz que asigna a cada b, la mejor solución aproximada de Ax b y se llama inversa generalizada de Moore- Penrose de A. Ahora vamos a construir A + y por lo tanto, las mejores soluciones aproximadas a través de la descomposición en valores singulares SVD de A. Teorema 3.4. Sea A una matriz que tiene descomposición en valores singulares, entonces A + : A + = V σ 1... σr... U t. Demostración. Sea b R n arbitrario. Basta con demostrar que: x = U 1 σ σ r... V t b es la mejor solución aproximada de Ax = b. Sea z R n arbitraria, y = U t z, c = V t b:

7 Descomposición en valores singulares y seudoinversa 63 y = c = y1 y c1 con y 1, c 1 en R r. Usando que una transformación unitaria deja sin cambios la norma euclidiana, llegamos a: c b Az = V t b AUU t z c1 Σ = c c = 1 Σy 1, c donde Σ = diagσ 1, σ,..., σ r. Por lo tanto, b Az es mínima si y sólo si y 1 = Σ 1 c 1 y y puede ser arbitraria. La norma euclidiana de y es mínima si y sólo si y = ; z es la mejor solución aproximada si y sólo si: y = Σ 1 c y 1 y es decir, z = Uy = Σ 1 V t b = x. La prueba anterior implica la existencia y unicidad de la mejor aproximación y muestra que otras soluciones en mínimos cuadrados tienen la forma: Σ 1 c 1 y.

8 64 B. Mederos, D. Gardea, G. Tapia, J. Romero Con y arbitraria, x puede ser escrita como: x = A + b = n i=1 v t i b σ i u i. Esta fórmula demuestra cómo errores en b, afectan el resultado de A + b. Si los errores en b corresponden a valores singulares grandes, entonces éstos no afectan la solución A + b. Por otra parte, los errores correspondientes a valores singulares pequeños amplificarán el error por un factor de 1 σ i, de manera que estos errores en los datos son muy dañinos; esto demuestra inestabilidad numérica. Si A tiene autovalores pequeños, una idea para reducir esta inestabilidad es reemplazar la suma x = n vi tb i=1 σ i u i por: x α = r i=1 v t i b σ i u i, σ i > α, siendo α un parámetro de regularización que es seleccionado convenientemente Bibliografía [1] Golub, G.; Van Loan, C. Matrix Computation. Johns Hopkins Studies in the Mathematical Science, [] Engl, H. Inverse Problems. Aportaciones Matemáticas, [3] Somersalo, J. Statistical and Computational Inverse Problems. Springer Verlag. Applied Mathematical Sciences, Boris Mederos Madrazo boris.mederos@uacj.mx David Gardea david fwb@hotmail.com Gustavo Tapia Sanchez gtapia@uacj.mx Jaime Romero jromero@uacj.mx Departamento de Física y Matemáticas, IIT, Universidad Autónoma de Ciudad Juárez, Av. Del Charro núm. 45 norte, Ciudad Juárez, Chih., México, C.P. 331, A.P D.

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Matrices ortogonales y descomposición QR

Matrices ortogonales y descomposición QR Matrices ortogonales y descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Invertibilidad por la izquierda y por la derecha (repaso) 1. Conceptos

Más detalles

2.2 Normas matriciales

2.2 Normas matriciales P Castillo Capítulo 2 13 22 Normas matriciales En el caso de las matrices cuadradas de orden n la estructura algebraica es mucho más rica que la de un espacio vectorial K n ; además de tener operaciones

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Nota: en todos los casos en que no se indique lo contrario, considere el producto interno canónico en K n (K = R o C). 1.

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

c-inversa o inversa generalizada de Rao

c-inversa o inversa generalizada de Rao c-inversa o inversa generalizada de Rao Definición.- Sea A m n. Se dice que una matriz A c de orden n m es una c-inversa o inversa generalizada en el sentido de Rao si y sólo si se verifica AA c A = A.

Más detalles

Repaso de algebra matricial

Repaso de algebra matricial Clase No. 3 (Parte 1): MAT 251 Repaso de algebra matricial Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín

Más detalles

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1

Más detalles

ALN - SVD. In. Co. Facultad de Ingeniería Universidad de la República

ALN - SVD. In. Co. Facultad de Ingeniería Universidad de la República ALN - SVD In. Co. Facultad de Ingeniería Universidad de la República Índice Definición Propiedades de SVD Ejemplo de SVD Métodos para calcular SVD Aplicaciones de SVD Repaso de matrices: m xm Una matriz

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

Matriz inversa generalizada y descomposición del valor singular

Matriz inversa generalizada y descomposición del valor singular Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 207 Práctica N : Número de condición.

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Bases ortogonales Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 9 Definición Sea V un espacio vectorial y {v,..., v n} una base para V. decimos que {v,..., v n} es una base ortogonal

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 2016

Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 2016 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 206 Práctica N : Número de condición.

Más detalles

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 3. Mínimos cuadrados Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Matrices de Proyección

Matrices de Proyección Matrices de Proyección Departamento de Matemáticas, CSI/ITESM 4 de abril de 8 Índice.. Proyección ortogonal............................................ Proyección de un vector en R m....................................

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Algebra lineal de dimensión finita

Algebra lineal de dimensión finita Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

3. Sistemas inconsistentes y sistemas indeterminados

3. Sistemas inconsistentes y sistemas indeterminados 3 Sistemas inconsistentes y sistemas indeterminados 31 Factorizaciones ortogonales Si tratamos de resolver un sistema Ax = b mediante la factorización LU o la de Cholesky, lo que hacemos es transformar

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Descomposición QR. Problemas para examen. Agradezco a Aldo Iván Leal García por varias correcciones importantes.

Descomposición QR. Problemas para examen. Agradezco a Aldo Iván Leal García por varias correcciones importantes. Descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Reflexión de Householder (repaso) 1. Reflexión ortogonal respecto a un hipersubespacio (repaso).

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2)

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2) CÁLCULO NUMÉRICO I (Tema - Relación 2) 5 Resolver mediante el método de Gauss los siguientes sistemas de ecuaciones. 2x 2 + x = 0 2x + 2x 2 + x + 2x = 2 x x 2 + x = 7 6x + x 2 6x 5x = 6. x + x 2 x = x

Más detalles

Sistema de Ecuaciones Lineales

Sistema de Ecuaciones Lineales Pantoja Carhuavilca Métodos Computacionales Agenda Ejemplos Ejemplos Aplicaciones de los Sistemas La solución de sistemas lineales de ecuaciones lineales es un tema clásico de las matemáticas, rico en

Más detalles

El problema de Maxwell Una formulación contemporánea

El problema de Maxwell Una formulación contemporánea El problema de Maxwell Una formulación contemporánea Mariano Vázquez de septiembre de 22 Índice. El problema estructural.. Direcciones principales de acción y reacción............ 3 2. El problema de Maxwell

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Elementos de Cálculo Numérico (M) - Cálculo Numérico

Elementos de Cálculo Numérico (M) - Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico (M) - Cálculo Numérico Primer Cuatrimestre 204 Práctica N 2: Normas y Condicionamiento.

Más detalles

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas.

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Teoremas con demostraciones que se pueden incluir en el examen: 1. Teorema del determinante de la matriz transpuesta. 2. Propiedad

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

Deducción de las fórmulas del método del gradiente conjugado

Deducción de las fórmulas del método del gradiente conjugado Deducción de las fórmulas del método del gradiente conjugado Objetivos. Demostrar el teorema sobre los subespacios de Krylov en el método del gradiente conjugado. Requisitos. Subespacios generados por

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Práctica 2. Producto interno

Práctica 2. Producto interno Práctica 2. Producto interno 1. (a) Encontrar las condiciones que deben cumplir los coeficientes a 11, a 12, a 21 y a 22 para que la expresión defina un producto interno en R 2. (u, v) = a 11 u 1 v 1 +

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

1. Normas matriciales

1. Normas matriciales Guía álgebra lineal ING 40: Cálculo numérico 203-20 Facultad de Ingeniería y Ciencias Aplicadas Profesor cátedra: Marcelo Tapia Ayudantes de corrección: José Manuel Barberis Ignacia Scarneo Normas matriciales

Más detalles

Examen Extraordinario de Álgebra III, licenciatura

Examen Extraordinario de Álgebra III, licenciatura Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma

Más detalles

Geometría de Señales Espacios de Hilbert y aproximaciones

Geometría de Señales Espacios de Hilbert y aproximaciones Geometría de Señales Espacios de Hilbert y aproximaciones Temario Teorema de Parseval y Conservación de la Norma. Aproximaciones por proyección Ejemplos Teorema de Parseval Sea x la representación de un

Más detalles

Optimización. Matrices de Proyección ITESM. Matrices de Proyección Profr. E. Uresti - p. 1/21. Dr. E Uresti

Optimización. Matrices de Proyección ITESM. Matrices de Proyección Profr. E. Uresti - p. 1/21. Dr. E Uresti Optimización Matrices de Dr. E Uresti ITESM Matrices de Profr. E. Uresti - p. 1/21 ortogonal Teorema Sea Y una matriz m n y un espacio lineal V de dimensión r, ambos dentro de un espacio lineal U. de un

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Factorización de rango completo y aplicaciones

Factorización de rango completo y aplicaciones XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de rango completo y aplicaciones R. Cantó 1, B. Ricarte

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPíTULO 6 Sistemas de ecuaciones lineales 1 Rango de una matriz a 11 a 1n Sea A = M m n (K) El rango por filas de la matriz A es la dimensión del a m1 a mn subespacio vectorial de K n generado por sus

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 23 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Introducción La existencia de bases ortonormales es los espacios es muy útil

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Álgebra Lineal Curso 206/7 6 de junio de 207 Soluciones a los ejercicios del examen final Se considera la aplicación lineal L : R 3 R 3 definida por L(x, y, z) = (z x, x + y + z, x y 3z). a) Hallar la

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Factorización QR Método iterativo de Jacobi

Factorización QR Método iterativo de Jacobi Clase No. 13: MAT 251 Factorización QR Método iterativo de Jacobi Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

1. Problema clásico de EDO

1. Problema clásico de EDO FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57C Control Óptimo Semestre 27-2 Profesor: Rafael Correa Auxiliar: Oscar Peredo Clase Auxiliar #1 31 de julio de 27 1 Problema clásico de EDO Problema

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Álgebra II A PLANIFICACIONES Actualización: 1ºC/2018. Planificaciones Álgebra II A. Docente responsable: CAMMILLERI ADA LEONOR.

Álgebra II A PLANIFICACIONES Actualización: 1ºC/2018. Planificaciones Álgebra II A. Docente responsable: CAMMILLERI ADA LEONOR. Planificaciones 6108 - Álgebra II A Docente responsable: CAMMILLERI ADA LEONOR 1 de 10 OBJETIVOS Los objetivos centrales de la asignatura son que el alumno logre: - Conocimientos básicos sobre temas de

Más detalles

Álgebra lineal Prof: Leonid Fridman

Álgebra lineal Prof: Leonid Fridman Álgebra lineal Prof: Leonid Fridman Vectores y subespacios lineales Vector: Un vector en Rn es una n-tupla de números reales Espacio lineal: Un conjunto no vacío L de elementos x, y, z, que satisface las

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

La importancia de las factorizaciones matriciales no negativas en la minería de datos y el procesamiento de

La importancia de las factorizaciones matriciales no negativas en la minería de datos y el procesamiento de La importancia de las factorizaciones matriciales no negativas en la minería de datos y el procesamiento de imágenes Humberto Madrid, Irma García, Federico Garza Centro de Investigación en Matemáticas

Más detalles

9. Teoremas espectrales

9. Teoremas espectrales 9 Teoremas espectrales Lema de Schur Ejercicio 9 En los siguientes casos, use el lema de Schur para descomponer, sobre C, la matriz A como producto A = U TU de modo que T sea triangular superior y U unitaria:

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

Optimización de un problema de valor propio inverso para cierta clase de matrices. 1. Introducción. Leila Lebtahi, Néstor Thome

Optimización de un problema de valor propio inverso para cierta clase de matrices. 1. Introducción. Leila Lebtahi, Néstor Thome Optimización de un problema de valor propio inverso para cierta clase de matrices Leila Lebtahi, Néstor Thome Instituto Universitario de Matemática Multidiscilpinar Universitat Politècnica de València

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

FORMATO OFICIAL DE MICRODISEÑO CURRICULAR

FORMATO OFICIAL DE MICRODISEÑO CURRICULAR FACULTAD: Ciencias Exactas y Naturales PROGRAMA: Matemática Aplicada FORMATO OFICIAL DE MICRODISEÑO CURRICULAR 1. IDENTIFICACIÓN DEL CURSO NOMBRE DEL CURSO: Algebra Lineal II CÓDIGO: BFEXMA04 No. DE CRÉDITOS

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Una revisión de la inversa core EP D.E. FERREYRA, F.E. LEVIS, N. THOME

Una revisión de la inversa core EP D.E. FERREYRA, F.E. LEVIS, N. THOME Una revisión de la inversa core EP D.E. FERREYRA, F.E. LEVIS, N. THOME 1 Índice I Introducción Resumen Notaciones y Definiciones Motivación Antecedentes del Problema Una nueva caracterización de la inversa

Más detalles

Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.

Determinantes. Definiciones básicas sobre determinantes.  José de Jesús Angel Angel. Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa

Más detalles

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN José Carlos de Miguel Domínguez Agustín Ramos Calvo Dpto. de Métodos Cuantitativos para la Economía y la Empresa Fac. de C.C.E.E. Santiago de

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Norma de Frobenius. Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko.

Norma de Frobenius. Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko. Norma de Frobenius Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko. Objetivos. Dada una matriz A M m n (C), su norma de Frobenius (llamada también la norma de Hilbert Schmidt) se

Más detalles