Práctica 1. Introducción a los sistemas de control

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 1. Introducción a los sistemas de control"

Transcripción

1 Práctica. Introducción a los sistemas de control Asignatura: Sistemas Electrónicos de Control Curso: 03/04- Realización: D4-005, 4/3/3 (g), /3/3 (g9), 8h-0h Nota: Para la realización de la práctica es imprescindible traer el estudio previo hecho individualmente. El estudio previo consiste en resolver los ejercicios marcados con el símbolo y se recogerá a final de la sesión. Case Study: Antena seguidora Descripción de la planta. La antena consiste en una masa rotativa apoyada en cojinetes bien engrasados, caracterizada por un momento de inercia J L, y que puede ser accionada a través de unos engranajes cónicos con n = N /N =. r T m Modelo de la planta. La función de transferencia que relaciona la posición de la antena c (el subíndice c indica que es la variable a controlar) con el par de mando T m es c ( G(. Supondremos que la posición inicial de la antena es c (0) =0. T ( s m c Objetivo del diseño. Conseguir que sea poco sensible a la acción del viento, es decir, ha de mantener la orientación deseada r (establecida mediante un dial) frente a un par debido al viento (constante o racheado) de valor T L, recuperando la orientación después de un golpe de viento. Planta sin control. Efecto de las perturbaciones en la carga de la antena: Considerar la planta en lazo abierto, G (, con ángulo de apuntamiento inicial 0) = 0. T ( s Suponer que en el instante t = s se produce una racha de viento constante que modelaremos como un par perturbador T( de tipo escalón unitario, T(=/s. Queremos saber cómo evolucionará t). Para ello, obtenemos la expresión de dicho ángulo en el dominio transformado: A B G( T ( s s s s A y B son los residuos: A ( s ), B s. s s 0 s s s s 0 ETSETB. Sistemas Electrónicos de Control 34a

2 Práctica. Introducción a los sistemas de control La transformada inversa de Laplace de nos da la expresión de t): s ) s s t ( t) e, t El efecto del escalón unitario de viento es que la antena ya no apunta a 0 sino que acaba apuntando a. Ejercicio. Planta sin control. Comprobar el resultado anterior con ayuda del Simulink. Para ello crear el siguiente modelo y ejecutarlo. Control en lazo abierto. Feedforward (FF). Nos interesa que la antena apunte siempre a 0, haya o no viento. Por ello, a fin de contrarrestrar el efecto del par perturbador, se propone generar con ayuda de un motor un par de mando T m de igual magnitud pero de signo contrario al viento T m = -T L, según muestra el esquema de bloques de la figura. T L T m = -T L c s Ejercicio. Control en lazo abierto. Feedforward (FF). Representar vía Simulink la nueva evolución del ángulo de apuntamiento así controlado c (t). Valorar las dificultades tecnológicas de esta solución. ETSETB. Sistemas Electrónicos de Control 34a

3 Práctica. Introducción a los sistemas de control Control en lazo cerrado (I). Proporcional A fin de superar las dificultades prácticas que presenta la solución anterior, se decide generar el par motor T m con ayuda de la configuración de control (automático) en lazo cerrado que muestra el esquema de bloques de la figura. d=t L r = r H = e u k _ Controlador s 0 Actuador v=t m s Antena y = c H = Fig.. Sistema de control retroactivo Ejercicio 3. Control en lazo cerrado. Feedback (FB). Se pide: ) Indicar con qué componentes físicos instrumentaría esta configuración. ) Ordenar los componentes que forman el lazo según sea su velocidad de respuesta. Indicar cuál es la constante de tiempo de cada uno de ellos. Comentar dichos valores. 3) Poner nombre a los símbolos empleados en el esquema (r, e, d, u, y). 4) Qué tipo de controlador se ha utilizado? Objetivo del control: Se pretende (a) que la salida y siga señales de referencia r de tipo escalón unitario (especificación de seguimiento) y (b) que las perturbaciones d de tipo escalón unitario no se vean reflejadas en la salida y (especificación de rechazo de perturbacione. Análisis del comportamiento: En los próximos ejercicios vamos a ver si hay offset en la salida y (el offset es la diferencia entre el valor de régimen de la salida y el valor de consigna o set point r ). También se quiere ver si la salida oscila y, si es así, con qué periodo, rebasamiento (overshoot) y tiempo de establecimiento. Ejercicio 4. Control proporcional (P). Estudio Previo. Se pide: ) Obtener a mano las siguientes funciones de transferencia en lazo cerrado del sistema de la Fig.. Dejarlas expresadas en función de k:,, ) Particularizar el resultado para k=0. 3) Para k=0, obtener la ganancia en continua de cada una de ellas, T (0), T (0) y T 3 (0). (Nota: La ganancia en continua indica la ganancia a señales tipo escalón unitario y se obtiene sustituyendo el valor s=0 en las funciones de transferencia) 4) Cuánto debería valer k para que la ganancia en continua de T ( fuera, es decir, para que no hubiera offset a entradas en escalón? ETSETB. Sistemas Electrónicos de Control 34a 3

4 Práctica. Introducción a los sistemas de control 5) Para k=0, obtener los polos y ceros de cada una de las funciones de transferencia en lazo cerrado. 6) Representar a mano y aproximadamente la respuesta indicial (esto es, la respuesta a escalón unitario) de cada una de las tres funciones T i (. Para ello, a la vista de los polos, indicar el periodo de las oscilaciones, si éstas van a ser muy persistentes en el tiempo y si estarán mucho o poco amortiguadas. Y, a la vista del exceso de polos sobre ceros, indicar cómo será el arranque de la respuesta. Pista: Vamos a obtener a fin de mostrar el procedimiento. En el numerador va la ganancia directa entre la entrada r y la salida y (cuidado: si hubiera un cambio de signo en el camino directo entre la entrada y la salida, por ejemplo al pasar por un restador, también hay que incluirlo). El denominador es ( ganancia de lazo). La ganancia de lazo es la cascada de todos los bloques que forman el lazo. Así: k 0 k T( H s s k H s s (0 k) s 0 s Ejercicio 5. Control proporcional (P). Simulación. Comprobar las tres respuestas indiciales anteriores con ayuda del Simulink. Para ello: ) Construir el modelo Simulink correspondiente (bloques Step, Sum, Gain, Transfer Fcn, Mux, Scope). ) Excitar el sistema con una consigna r tipo escalón unitario (dejar la perturbación d a cero) y representar en una misma gráfica la entrada y la salida del servo. Comprobar que el resultado es consistente con la función de transferencia T ( calculada en el estudio previo. 3) Poner la consigna a cero y excitar el servo con una perturbación tipo escalón unitario. Representar en una misma gráfica la salida del servo y la perturbación. Comprobar que el resultado es consistente con la función de transferencia T ( calculada en el estudio previo. 4) Poner la consigna a cero y excitar el servo con una perturbación tipo escalón unitario. Representar en una misma gráfica el par de mando v y la perturbación d. Comprobar que el resultado es consistente con la función de transferencia T 3 ( calculada en el estudio previo. 3 Control en lazo cerrado (II). Integral A fin de eliminar el offset se decide cambiar el control proporcional por uno integral: d=t L r = r H = e k u s _ Controlador s 0 Actuador v=t m s Antena y = c H = Fig.. Sistema de control retroactivo integral ETSETB. Sistemas Electrónicos de Control 34a 4

5 Práctica. Introducción a los sistemas de control Ejercicio 6. Control integral (I). Estudio Previo. Se pide: ) Obtener a mano las siguientes funciones de transferencia en lazo cerrado del sistema de la Fig.. Dejarlas expresadas en función de k:,, ) Particularizar el resultado para k=0. 3) Para k=0, obtener la ganancia en continua de cada una de ellas, T (0), T (0) y T 3 (0). 4) Para k=0, obtener los polos y ceros de cada una de las funciones de transferencia en lazo cerrado. 5) A la vista de los polos y ceros representar a mano y aproximadamente la respuesta indicial (es decir, a escalón unitario) de cada una de las tres funciones T i (. Indicar el periodo de las oscilaciones, si éstas van a ser muy persistentes en el tiempo y si estarán mucho o poco amortiguadas. Y, a la vista del exceso de polos sobre ceros, indicar cómo será el arranque de la respuesta. Ejercicio 7. Control integral (I). Simulación. Comprobar las tres respuestas indiciales anteriores con ayuda del Simulink. Para ello: ) Construir el modelo Simulink correspondiente (bloques step, sum, gain, transfer function, mux, scope). ) Excitar el sistema con una consigna r tipo escalón unitario (dejar la perturbación d a cero) y representar en una misma gráfica la entrada y la salida del servo. Comprobar que el resultado es consistente con la función de transferencia T ( calculada en el estudio previo. 3) Poner la consigna a cero y excitar el servo con una perturbación tipo escalón unitario. Representar en una misma gráfica la salida del servo y la perturbación. Comprobar que el resultado es consistente con la función de transferencia T ( calculada en el estudio previo. 4) Poner la consigna a cero y excitar el servo con una perturbación tipo escalón unitario. Representar en una misma gráfica el par de mando v y la perturbación d. Comprobar que el resultado es consistente con la función de transferencia T 3 ( calculada en el estudio previo. 5) Aumentar la k hasta hacer el sistema inestable. Pasaba esto con el control P? 6) Añadir una saturación (elemento no lineal) después del controlador I y ensayar los niveles de saturación s = 0, 6, 4,. Observar la degradación del comportamiento del sistema (efecto de integral windup). Por qué se produce? 0 s Transfer Fcn s0 Transfer Fcn s Transfer Fcn Step Saturation Scope Scope 7) Comparar ambos controladores, P e I. Qué ventajas e inconvenientes presenta cada uno? ETSETB. Sistemas Electrónicos de Control 34a 5

Controlador PID con anti-windup

Controlador PID con anti-windup Laboratorio de Control de Procesos Industriales Práctica 1 Controlador PID con anti-windup 1 de noviembre de 2008 Introducción 2 INTRODUCCIÓN REGULADORES PID La idea básica del controlador PID es simple

Más detalles

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO 1. SISTEMA A CONTROLAR El sistema a controlar es el conjunto motor eléctrico-freno conocido de otras prácticas: Se realizarán experimentos de control de posición

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

1. Problema (5 puntos ev. continua, 3 puntos ev. final -60 minutos) La función de transferencia de un proceso a controlar es: ( ) .

1. Problema (5 puntos ev. continua, 3 puntos ev. final -60 minutos) La función de transferencia de un proceso a controlar es: ( ) . Imaginary Axis APELLIDOS CURSO 3º GRUPO Enero 214 1. Problema (5 puntos ev. continua, 3 puntos ev. final -6 minutos) La función de transferencia de un proceso a controlar es: ( ). Se desea que la ( )(

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD DEFINICIÓN Un Sistema de Control es un conjunto de elementos o componentes relacionados entre si que controlan alguna

Más detalles

GRADO: CURSO: 3 CUATRIMESTRE:

GRADO: CURSO: 3 CUATRIMESTRE: DENOMINACIÓN ASIGNATURA: Ingeniería de Control I GRADO: CURSO: 3 CUATRIMESTRE: La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera

Más detalles

MATLAB. (PARTE III) APLICACIONES EN CONTROL CON SIMULINK SIMULINK

MATLAB. (PARTE III) APLICACIONES EN CONTROL CON SIMULINK SIMULINK UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA DEPARTAMENTO DE INGENIERIA ELECTRONICA NUCLEO DE INSTRUMENTACION CONTROL Y SEÑALES LABORATORIO DE INSTRUMENTACION Y CONTROL MATLAB. (PARTE III) APLICACIONES

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es: 1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas

Más detalles

PRIMERA PARTE. F roz 1 K Ms

PRIMERA PARTE. F roz 1 K Ms Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA Ingeniería de Control I 4º NOMBRE IZENA CURSO KURTSOA FECHA DATA 6 de septiembre

Más detalles

Práctica 6 Regulador Linear Optimo Cuadrático (LQR)

Práctica 6 Regulador Linear Optimo Cuadrático (LQR) INGENIERO DE TELECOMUNICACIÓN LABORATORIO DE CONTROL POR COMPUTADOR Departamento de Ingeniería de Sistemas y Automática ESI- Universidad de Sevilla Práctica 6 Regulador Linear Optimo Cuadrático (LQR) 1.

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

Práctica 4 Simulación del sistema de control de motor de CD

Práctica 4 Simulación del sistema de control de motor de CD Práctica 4 Simulación del sistema de control de motor de CD Objetivo: Se realiza la simulación detallada de cada bloque del sistema de control de un motor de CD en base al modelado matemático del motor

Más detalles

MODOS O ACCIONES DEL CONTROLADOR

MODOS O ACCIONES DEL CONTROLADOR MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde

Más detalles

Problema 1 (60 minutos - 5 puntos)

Problema 1 (60 minutos - 5 puntos) Amplitude Imaginary Axis EXAMEN DE JULIO DE REGULACIÓN AUTOMÁTICA (13/14) Problema 1 (6 minutos - 5 puntos) El control de temperatura de la planta Peltier de la asignatura es realizado mediante un sistema

Más detalles

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control.

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. . Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Herramientas del control

Más detalles

Práctica 1. Ajuste y sintonización de controladores

Práctica 1. Ajuste y sintonización de controladores Sistemas de Control Automático Práctica 1. Ajuste y sintonización de controladores Jorge Pomares Baeza Grupo de Innovación Educativa en Automática 211 GITE IEA - 1 - Práctica 1. Ajuste y sintonización

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

Por ej. la respuesta de un sistema de segundo orden a una entrada escalón unitaria es:

Por ej. la respuesta de un sistema de segundo orden a una entrada escalón unitaria es: ERROR EN ESTADO ESTABLE La respuesta en el dominio del tiempo de un sistema de control correspondiente a cierta entrada se puede dividir normalmente en dos partes: a) respuesta transitoria: es la que tiende

Más detalles

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA Profesor: Adrián Peidró (apeidro@umh.es) OBJETIVOS Afianzar los conocimientos

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

4-1 INTRODUCCIÓN Señales de prueba típicas. 134

4-1 INTRODUCCIÓN Señales de prueba típicas. 134 4-1 INTRODUCCIÓN En el capítulo 3 se planteó que el primer paso para analizar un sistema de control era obtener un modelo matemático del mismo. Una vez obtenido tal modelo, existen varios métodos para

Más detalles

SISTEMAS ELECTRÓNICOS DE CONTROL

SISTEMAS ELECTRÓNICOS DE CONTROL SISTEMAS ELECTRÓNICOS DE CONTROL PRÁCTICA 4: Diseño de Reguladores PID Discretos Objetivos Conocer los comandos de Matlab para discretizar sistemas continuos. Realizar simulaciones de sistemas discretos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

CONTROLADORES DE CANCELACIÓN I Controladores de tiempo mínimo

CONTROLADORES DE CANCELACIÓN I Controladores de tiempo mínimo SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL CONTROLADORES DE CANCELACIÓN I Controladores de tiempo mínimo 1. OBJETIVOS Los objetivos de esta práctica son: Diseñar y estudiar el funcionamiento

Más detalles

Sistemas de control de un horno

Sistemas de control de un horno Sistemas de control de un horno En la figura se muestra el diagrama P&I correspondiente a un horno de una compañía petroquímica. En esta unidad se calienta un líquido aprovechando el calor liberado en

Más detalles

TEORÍA DE SISTEMAS PRÁCTICA 5: ESTABILIDAD Y COMPORTAMIENTO DINÁMICO DE SISTEMAS

TEORÍA DE SISTEMAS PRÁCTICA 5: ESTABILIDAD Y COMPORTAMIENTO DINÁMICO DE SISTEMAS TEORÍA DE SISTEMAS PRÁCTICA 5: ESTABILIDAD Y COMPORTAMIENTO DINÁMICO DE SISTEMAS 1. ESTUDIO DE LA ESTABILIDAD DE SISTEMAS Teóricamente se dispone de tres medios para determinar la estabilidad de un sistema:

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA 1 er Cuatrimestre: Martes 12:30-14:30 16:00-17:00 2º Cuatrimestre: Jueves 12:30-14:30 16:00-17:00 Profesor: Andrés S. Vázquez email: AndresS.Vazquez@uclm.es

Más detalles

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo

Más detalles

Control Automático DIAPOSITIVAS. Dr. Roberto Cárdenas Dobson Profesor de la Asignatura

Control Automático DIAPOSITIVAS. Dr. Roberto Cárdenas Dobson Profesor de la Asignatura Control Automático DIAPOSITIVAS Dr. Roberto Cárdenas Dobson Profesor de la Asignatura Sistema de Control Interconexión de componentes, que en su conjunto, presenta un comportamiento deseado. Asume relaciones

Más detalles

6.- Lugar Geométrico de la Raíces en Sistemas Discretos

6.- Lugar Geométrico de la Raíces en Sistemas Discretos 6.- Lugar Geométrico de la Raíces en Sistemas Discretos Introducción Como vimos, el diseño de un controlador consiste en colocar los polos y ceros de la función de transferencia del sistema en lazo cerrado,

Más detalles

14. SINTONIZACION EN LINEA

14. SINTONIZACION EN LINEA 14. SINTONIZACION EN LINEA 14.1 INTRODUCCION Por sintonización de un controlador se entiende el ajuste de los parámetros del mismo (Ganancia, Tiempo Integral y Tiempo Derivativo) para enfrentar las características

Más detalles

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación

Más detalles

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015 ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.

Más detalles

INSTITUTO TECNOLOGICO DE MERIDA

INSTITUTO TECNOLOGICO DE MERIDA INSTITUTO TECNOLOGICO DE MERIDA Equipo # Tema: Tipos De Controladores Integrantes: Perez Perez Cesar Interian Cauich Edwin Romero Bojorquez Roberto EL C E R E B R O DE T O D O S L O S S I S T E M A S

Más detalles

TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado

TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado OBJETIVOS: Analizar las características del comportamiento transitorio de sistemas en lazo cerrado con controladores. Manejar el concepto

Más detalles

TEORÍA DE CONTROL CONTROLADOR PID

TEORÍA DE CONTROL CONTROLADOR PID TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional

Más detalles

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X Laboratorio 1. Introducción a MATLAB y Simulink. 1. Uso de MATLAB. Manejo de Vectores y Matrices: Usando el editor de MATLAB, escriba el código necesario para generar: a. Vectores (1x1) (3x1) y (1x7),

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

INTRODUCCION A SIMULINK

INTRODUCCION A SIMULINK INTRODUCCION A SIMULINK Matlab (Matrix Laboratory) es un sistema basado en matrices para realizar cálculos matemáticos y de ingeniería. Entre las múltiples herramientas que presenta este programa se encuentra

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

07 - Control Todo o Nada.doc 1

07 - Control Todo o Nada.doc 1 1. Control Todo o Nada 1. Control Todo o Nada 1 1.1. Problema de control On-Off 2 1.2. Control en realimentación con ganancia elevada 2 1.3. Modelo para la habitación 3 1.4. Respuesta a Lazo Abierto 4

Más detalles

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático:

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático: Modelo matemático de procesos 1. Modelo Matemático Un modelo matemático muy exacto implica un desarrollo matemático muy complejo. Por el contrario, un modelo matemático poco fino nos deparará un desarrollo

Más detalles

REGULACIÓN AUTOMÁTICA

REGULACIÓN AUTOMÁTICA SEGUNDO CURSO ANUAL INGENIERO TÉCNICO INDUSTRIAL ESPECIALIDAD EN ELECTRONICA INDUSTRIAL Plan de la Asignatura REGULACIÓN AUTOMÁTICA CURSO 2005-06 Departamento de Ingeniería de Sistemas y Automática Universidad

Más detalles

Diseño de Controladores I.

Diseño de Controladores I. Departamento de Ingeniería Eléctrica Universidad de Magallanes. Apuntes del curso de Control Automático Roberto Cárdenas Dobson Ingeniero Electricista Msc. Ph.D. Profesor de la asignatura Este apunte se

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA CONTROL DE PROCESOS QUÍMICOS Prof: Ing. (MSc). Juan Enrique Rodríguez

Más detalles

9. Manejo de restricciones. Panorama de la clase: Introducción Efecto wind-up Compensación anti-wind-up

9. Manejo de restricciones. Panorama de la clase: Introducción Efecto wind-up Compensación anti-wind-up 9. Manejo de restricciones Panorama de la clase: Introducción Efecto wind-up Compensación anti-wind-up CAUT1 Clase 16 1 Introducción Un problema inevitable en la mayoría de los problemas de control prácticos

Más detalles

Diseño de Estrategias de Control para un Estanque

Diseño de Estrategias de Control para un Estanque Ejercicio Nº 1 EL42D: Control de Sistemas. (Semestre Primavera 2008) Profesora: Dra. Doris Sáez H. Ayudante: Camila Troncoso Solar. (camtroncoso@gmail.cl) Diseño de Estrategias de Control para un Estanque

Más detalles

CAPÍTULO 5. Pruebas y Resultados

CAPÍTULO 5. Pruebas y Resultados CAPÍTULO 5 Pruebas y Resultados 5 Pruebas y Resultados Con este capítulo se concluye el proceso de automatización de la planta piloto de tipo industrial, se presentan las pruebas y resultados del sistema

Más detalles

Diseño Básico de Controladores

Diseño Básico de Controladores Diseño Básico de Controladores No existen reglas para el diseño de controladores. Para una planta y especificaciones dadas pueden existir dos o mas controladores que entreguen buen desempeño. En las siguientes

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS 2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 5 SISTEMAS. ANÁLISIS DE SISTEMAS DISCRETOS. PLANTEAMIENTO DEL PROBLEMA El sistema a analizar es una fundición. El esquema de funcionamiento

Más detalles

representa el ángulo de referencia del rayo de sol, y θ denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ

representa el ángulo de referencia del rayo de sol, y θ denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ gran exactitud. La variable θ r representa el ángulo de referencia del rayo de sol, y θ 0 denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ r, θ 0, α cerca de

Más detalles

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor A b C D E F H I J k Objetivos generales Estado del arte Modelado del motor Análisis del sistema Objetivos y tareas de Innovación Educativa para Modelado PID por asignación de polos Diseño de controladores

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ELECTRÓNICA, AUTOMÁTICA E INFORMÁTICA INDUSTRIAL Prácticas de Regulación Automática Práctica 5 Reguladores continuos 5.2 Reguladores continuos 5 REGULADORES

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 2

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 2 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO 1. TEMA PRÁCTICA N 2 MODELACIÓN DE SISTEMAS LINEALES 2. OBJETIVOS

Más detalles

CAPÍTULO 3. Conceptos y esquemas de control

CAPÍTULO 3. Conceptos y esquemas de control CAPÍTULO 3 Conceptos y esquemas de control 3 Conceptos y esquemas de control En este capítulo se presentan los diferentes esquemas de control aplicados a la planta piloto. Para ello se describe primero

Más detalles

Tema 5 Acciones básicas de control. Controlador PID.

Tema 5 Acciones básicas de control. Controlador PID. Tema 5 Acciones básicas de control. Controlador PID. 1. Control en el dominio del tiempo. PID 2. Estudio del Lugar de las raíces 3. Control en el dominio de la frecuencia. Compensadores Control en el dominio

Más detalles

Orden de un sistema. El orden de un sistema está definido por el grado de su ecuación característica

Orden de un sistema. El orden de un sistema está definido por el grado de su ecuación característica ORDEN DE UN SISTEMA Orden de un sistema El orden de un sistema está definido por el grado de su ecuación característica Normalmente la ecuación característica (denominador) de un sistema tiene mayor grado

Más detalles

Sistemas de Control. UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación. Docente: Alejandro A Méndez T

Sistemas de Control. UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación. Docente: Alejandro A Méndez T UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación Docente: Alejandro T 2009 Prof. Titular FEC - UNI Sistemas de Control Asistente: Yamil O Jiménez L Programa PIED VRAC - UNI Diseño

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

Práctica 2. Identificación de sistemas

Práctica 2. Identificación de sistemas Asignatura: Sistemas Electrónicos de Control Curso: 213/214-1 Realización: D4-5, 15/3/13 (g19), 18/3/13 (g12), 18h-2h Nota: Para la realización de la práctica es imprescindible traer el estudio previo

Más detalles

FECHA DE ASIGNACIÓN: 05 - febrero

FECHA DE ASIGNACIÓN: 05 - febrero UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FISICOMECÁNICAS ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y TELECOMUNICACIONES Programa de Ingeniería Eléctrica NOMBRE DE LA ASIGNATURA: CONTROL

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 z) ( z.5) z C. a) Determinar la región del plano z donde

Más detalles

3. El sistema electrónico contiene el amplificador de error y

3. El sistema electrónico contiene el amplificador de error y EXAMEN DE FEBRERO DE REULACIÓN AUTOMÁTICA I (34 3UREOPD La siguiente figura representa un péndulo controlado por medio de un electroimán. Un complejo sistema electromecánico permite ejercer una fuera horizontal

Más detalles

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso 2007-2008 I INTRODUCCIÓN La práctica descrita en este documento pretende familiarizar al alumno con los conceptos

Más detalles

ANEXO 1: SINTONIZACION A TRAVÉS DEL METODO DE ZIEGLER-NICHOLS

ANEXO 1: SINTONIZACION A TRAVÉS DEL METODO DE ZIEGLER-NICHOLS ANEXO 1: SINTONIZACION A TRAVÉS DEL METODO DE ZIEGLER-NICHOLS Luego de realizar las pruebas necesarias con el modelo de planta obtenido y no lograr los resultados esperados, se diseñará el controlador

Más detalles

IQ57A: Dinámica y control de procesos Capítulo 3: Control Feedback

IQ57A: Dinámica y control de procesos Capítulo 3: Control Feedback IQ57A: Dinámica y control de procesos Capítulo 3: J. Cristian Salgado - jsalgado@ing.uchile.cl Departamento de Ingeniería Química y Biotecnología, Universidad de Chile September 23, 2008 Objetivos Al final

Más detalles

Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink.

Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink. Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink. Por: Felipe Fernández G., Escuela Universitaria de Ingeniería Eléctrica y Electrónica. Universidad de Tarapacá, Sede

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

Manual de la Práctica 5: Diseño de un controlador digital

Manual de la Práctica 5: Diseño de un controlador digital Control por Computador Manual de la Práctica 5: Diseño de un controlador digital Jorge Pomares Baeza Francisco Andrés Candelas Herías Grupo de Innovación Educativa en Automática 009 GITE IEA - 1 - Introducción

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

Universidad de Oviedo. Realimentación. Tema 3. Sistemas Automáticos

Universidad de Oviedo. Realimentación. Tema 3. Sistemas Automáticos Realimentación Tema 3 1 Índice Ventajas Inconvenientes El regulador todo-nada El regulador PID Funciones de Sensibilidad 2 Lazo típico de realimentación Perturbaciones p i (t) Señal de Mando Referencia

Más detalles

Diseño de Estrategias de Control para un Estanque Piloto

Diseño de Estrategias de Control para un Estanque Piloto Ejercicio Nº 1 EL42D: Control de Sistemas. (Semestre Otoño 2008) Profesora: Dra. Doris Sáez H. Ayudante: Gabriel Moreno C. (gmoreno@ing.uchile.cl) Diseño de Estrategias de Control para un Estanque Piloto

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Estructura

Más detalles

Tema 6 Control de sistemas de orientación de antenas y de telescopios

Tema 6 Control de sistemas de orientación de antenas y de telescopios Tema 6 Control de sistemas de orientación de antenas y de telescopios. Métodos de control de sistemas de orientación 2. Métodos de ajuste de PIDs 3. Estudio de las perturbaciones 4. Técnicas y diseño de

Más detalles

Salida = Valor deseado (referencia) Para todo el tiempo posible!!! jlc

Salida = Valor deseado (referencia) Para todo el tiempo posible!!! jlc Control: Se debe lograr que unas variables de salida de un sistema se comporten de acuerdo a nuestro deseo. La fuerza del ego humana puesta al servicio de la ingeniería Salida = Valor deseado (referencia)

Más detalles

CONCEPTOS. Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera.

CONCEPTOS. Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera. CONCEPTOS Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera. Concepto de Sistema de Control. Interacción de componentes

Más detalles

Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas

Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas Grado en Ingeniería Electrónica Industrial Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas 2 1. Asignatura Modelado y control

Más detalles

Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS

Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS 13 de marzo de 017 Autor: Rubén Velázquez Cuevas Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES

Más detalles

Tema 3: Representación de sistemas lineales. Transformada de Laplace

Tema 3: Representación de sistemas lineales. Transformada de Laplace Fundamentos de Control Automático 2º G. Ing. Tecn. Industrial Tema 3: Representación de sistemas lineales. Transformada de Laplace Índice del tema 1. Transformada de Laplace. Propiedades 1. Definición

Más detalles

Conceptos Básicos de Errores y Lugar de la Raíz

Conceptos Básicos de Errores y Lugar de la Raíz Departamento de Ingeniería Eléctrica Universidad de Magallanes Conceptos Básicos de Errores y Lugar de la Raíz Apuntes del curso de Control Automático Roberto Cárdenas Dobson Ingeniero Electricista Msc.

Más detalles

Guía Para Utilizar Utilizar Simulink Nota: Para la siguiente guía se utilizó como base el programa Matlab 7.0

Guía Para Utilizar Utilizar Simulink Nota: Para la siguiente guía se utilizó como base el programa Matlab 7.0 Guía Para Utilizar Utilizar Simulink Nota: Para la siguiente guía se utilizó como base el programa Matlab 7.0 Una vez instalado el programa en el ordenador se tienen varias opciones de acceso a él: a)

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA LABORATORIO DE INGENIERÍA DE CONTROL PRACTICA N 5 ANÁLISIS DE LA RESPUESTA TRANSITORIA DE SISTEMAS DE PRIMER ORDEN OBJETIVO

Más detalles

CONTROLADORES O REGULADORES PID. Prof. Gerardo Torres Sistemas de Control

CONTROLADORES O REGULADORES PID. Prof. Gerardo Torres Sistemas de Control 1 CONTROLADORES O REGULADORES PID INTRODUCCIÓN PID son los más utilizados en la industria. Son aplicados en general a la mayoría de los procesos. Pueden ser analógicos o digitales. Pueden ser electrónicos

Más detalles

DEPARTAMENTO DE INGENIERÍA MECÁNICA. Cátedra: Sistemas de Control TEO 03/2015

DEPARTAMENTO DE INGENIERÍA MECÁNICA. Cátedra: Sistemas de Control TEO 03/2015 FUNCIÓN TRANSFERENCIA 1 Función Transferencia Es una expresión matemática que caracteriza lasrelacionesde Entrada Salida de sistemas lineales invariantes en el tiempo. Se define como la relación de la

Más detalles

ÍNDICE 1. Introducción 2. La transformada de Laplace 3. Variables y parámetros 4. Elementos básicos

ÍNDICE 1. Introducción 2. La transformada de Laplace 3. Variables y parámetros 4. Elementos básicos ÍNDICE 1. Introducción 1.1 Concepto de sistemas 1 1.2 Concepto de bloque 1 1.3 Diagrama de bloques 2 1.4 Función de transferencias o transmitación 2 1.5 Sistema controlado 5 1.6 Control manual en lazo

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

Tecnicas de diseño y compensación

Tecnicas de diseño y compensación Capítulo 8 Tecnicas de diseño y compensación El objetivo primordial de esta sección es presentar algunos procedimientos para el diseño y compensación de sistemas de control lineales, invariantes en el

Más detalles

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Ingeniería Electrónica Área CONTROL Asignatura: CONTROL I GUIA DE APRENDIZAJE Y AUTOEVALUACION

Más detalles

6 Estudio de Casos Típicos.

6 Estudio de Casos Típicos. 6 Estudio de Casos Típicos. Una vez probados los distintos tipos de controladores desarrollados en el apartado anterior, en este se van a estudiar diversas situaciones que pueden parecerse a algunas de

Más detalles

3º INGENIERÍA INDUSTRIAL AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA DE SISTEMAS DE CONTROL, SESIÓN 20 CONTROL DISCRETO DE UN MOTOR DE CC EN VELOCIDAD

3º INGENIERÍA INDUSTRIAL AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA DE SISTEMAS DE CONTROL, SESIÓN 20 CONTROL DISCRETO DE UN MOTOR DE CC EN VELOCIDAD 3º INGENIERÍA INDUSTRIAL AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA DE SISTEMAS DE CONTROL, SESIÓN 20 CONTROL DISCRETO DE UN MOTOR DE CC EN VELOCIDAD 1. OBJETIVOS Los objetivos de esta práctica son: Mostrar

Más detalles