MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS"

Transcripción

1 MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS 0

2 . POLEAS Y CORREAS Figura : correas abiertas. La figura, muestra el caso e correas abiertas. En este caso, poemos obtener la expresión e la longitu exacta e la correa e la siguiente forma a partir e la figura : C sen / C Figura. Del ibujo obtenemos que: arcsen C (en correas cruzaas y se suman) 80º

3 Para hallar la longitu exacta, consieraremos tres términos: Primer término: las os meias circunferencias e caa polea. ) ( r r r r Seguno término: los tramos rectos e la correa. sen C Tercer término: os veces el arco bajo el ángulo para la primera polea, a lo que ebemos restar los arcos corresponientes a la polea menor, a la que hemos llamao. En el caso e correas cruzaas, en lugar e restar hay que sumar. ) ( ) ( r r r r one se expresa en raianes. Así pues, sumano los tres términos tenremos que (expresano en graos sexagesimales): º 80º sen C L existieno una expresión para la longitu aproximaa, aplicable en el caso e que > 40º: Primer término: quea igual que antes. Seguno término: consierano que > 40º, entonces < 0º, con lo cual sen C sen C Tercer término: al ser un ángulo pequeño; C sen en raianes ). ( C ) ( ) ( con lo cual sumano los tres términos obtenemos la siguiente expresión: C C L aproximaa 4 en la que el último término se reuce a la mita el valor obtenio por consieraciones empíricas.

4 3 En el caso e correas cruzaas, tal y como aparece en la figura 3, las expresiones anteriores son las siguientes: Figura 3: correas cruzaas, se invierte el sentio e giro. º 80º sen C L C C L aproximaa 4

5 . RUEDAS DE FRICCIÓN Figura 4: rueas e fricción: a) exteriores, b) interiores y c) troncocónicas. 4

6 En toos los tipos e rueas e fricción estuiaos, suponieno que no existe eslizamiento, la velocia tangencial e ambas rueas (V y V ) ha e ser la misma. En consecuencia, la relación e transmisión (UNE ) se etermina, a partir e los iámetros e las rueas: V = r = r = V i n n r r D D sieno: - el subínice el corresponiente al elemento conuctor o motriz. - el subínice el corresponiente al elemento conucio. - el ángulo girao por caa ruea (en graos, o en raianes). - la velocia angular e caa ruea (en ra/seg). - n la velocia angular e caa ruea en rpm. - r y D, el raio y el iámetro e la corresponiente ruea. Como es lógico la istancia (E) que separa los ejes e las rueas, en el caso e rueas e fricción exteriores valrá: E r r D D y, en el caso e rueas e fricción interiores: E r r D D 5

7 3. RUEDAS DENTADAS 3.. ASPECTOS GENERALES. Figura 5: tipos e engranajes. Figura 6: transmisión por caena o correa entaa. 6

8 3.. DIMENSIONES DE UN ENGRANAJE. 7

9 8

10 A continuación reflejamos una serie e abreviaturas (aemás e las vistas antes), e uso común en las expresiones referentes a los engranajes: m e f z p móulo iámetro primitivo iámetro exterior iámetro e fono número e ientes paso circular h h=hc h=hp b=b E=C Lt s=e espesor el iente w=s espacio interental n v profunia el iente altura e corona (o cabeza) altura e pie o e fono longitu el iente istancia entre centros largo total ocupao por os engranajes revoluciones por minuto velocia tangencial e la circunferencia primitiva en m/s. En general las meias se inican en mm. Diremos que os rueas entaas forman un engranaje; one la ruea motriz suele llamarse piñón, y se esigna con el subínice, mientras que el subínice se reserva para la ruea conucia, llamaa simplemente ruea. Para engranajes rectos, añaimos a las expresiones vistas antes las siguientes: m perímetro p (ver figura 7) z z C z z m C z C n z z n n C z C n z z n n 9

11 Figura 7. 0

12 3.3. DIENTES HELICOIDALES.

13 Las abreviaturas más utilizaas en este caso son: pz pn pc=pt px paso e la hélice ángulo e la hélice paso normal mn móulo normal paso circunferencial mc=mt móulo circunferencial paso axial Veamos a continuación las expresiones más utilizaas para este tipo e engranajes: pz tg px pn sen pn = pc cos pc z = = perímetro pc = mc z pn = mn mn = mc cos (el móulo normal ebe ser iéntico en las os rueas para que engranen) h = 5 mn e = + mn C tg n n tg n n sieno el ángulo que forman los ejes e giro e las rueas entaas.

14 3.4. TRENES EPICICLOIDALES. El piñón planetario y su árbol son soliarios, al igual que ocurre con la corona y el suyo. Los satélites, por su parte, giran locos sobre los pernos el árbol portasatélites. Para el cálculo e este tipo e engranajes se usa la fórmula e Willis, en la que los signos que se obtuviesen negativos inicarían inversión e giro entre entraa y salia. n z 3 n3 z n z 3 z 3

15 3.5. EL MECANISMO DIFERENCIAL. 4

16 Cuano un vehículo toma una curva, las rueas motrices interiores escriben un movimiento más corto que las exteriores. Si ambas rueas estuvieran unias e forma rígia siempre arían igual número e vueltas y, al tomar una curva, la ruea interior patinaría y sería arrastraa. Para corregir este efecto, los automóviles tienen un mecanismo iferencial, que aapta la velocia angular e las rueas motrices al recorrio que eben efectuar. En la figura 8 poemos observar la constitución e un iferencial simple con rueas cónicas. Figura 8. En los extremos e los palieres van las rueas motrices. El piñón planetario D es soliario al semiárbol o palier D. El planetario I lo es al palier I. La corona y la carcasa forman un bloque. Por ello giran conjuntamente. Los satélites pueen girar con liberta sobre los ejes portasatélites. 5

17 4. LA RELACIÓN DE TRANSMISIÓN En lo referente a la relación e transmisión (UNE ) iremos que, partieno e la expresión obtenia en el caso e rueas e fricción: i n r D n r D one ahora consieramos que D y D son los iámetros primitivos e las rueas entaas que engranan; y sabieno que según vimos: D = z m y D = z m, sieno z y z los números e ientes e las rueas entaas, y el móulo m lógicamente común a ambas (conición para poer engranar), obtenemos fácilmente que: i n r D z n r D z Por otra parte, si consieramos que: N N tranmisión one: - N es la potencia obtenia en el elemento conucio. N es la potencia el elemento conuctor o motriz. transmisión es el renimiento e la transmisión el elemento al. Y tenieno en cuenta que: N F r M N F r M one: - F es la fuerza transmitia por la ruea entaa F es la fuerza recibia por la ruea entaa. r es la mita el iámetro primitivo e la ruea entaa. r es la mita el iámetro primitivo e la ruea entaa. y son las velociaes angulares e caa ruea entaa, tal y como vimos anteriormente. M es el par (momento torsor) transmitio por la ruea entaa. M es el par (momento torsor) recibio por la ruea entaa. obtenemos la expresión: N M M transmisión N tranmisión con lo cual, la relación e transmisión puee expresarse como: i n r D z M n r D z M transmisión 6

18 5. MÁQUINAS SIMPLES 5.. PALANCA. F bf = R br F: bf: R: br: es la fuerza que ejercemos, también la mal llamaa potencia. es el llamao brazo o istancia e potencia. es la resistencia a vencer. es el llamao brazo o istancia e resistencia. 5.. POLEA. Polea fija: FF = R F Polea móvil: FM = RM / 7

19 5.3. TORNO. P r R r 5.4. PLANO INCLINADO. P h R l 8

20 5.5. TORNILLO. P paso( p ) R l o expresao e otra forma: F R Avance I F 5.6. CUÑA. P b R l sieno l el lao e la cuña (AC ó BC) y b la base (AB). 9

21 6. MÁQUINAS COMPUESTAS 6.. COMBINACIÓN DE POLEAS. A) EXPONENCIAL En general tenremos que, sieno n el número e poleas móviles: F R n F R n B) POTENCIAL sieno n, el número e poleas móviles. 0

22 La combinación potencial, se presenta bajo iversas formas, tal y como puee observarse en la figura siguiente: a) trócola, b) polipasto C) POLEA DIFERENCIAL O WESTON P r r' R r

23 6.. TREN DE ENGRANAJES. i i3 4 n n3 D D4 z z 4 n n 4 D D3 z z 3 Ahora bien, como las rueas y 3 giran soliariamente sobre el mismo eje, resulta que n = n3. En consecuencia: i i3 4 D D4 z z 4 n it D D3 z z 3 n 4 La relación e transmisión total, it, e un tren compuesto es igual al proucto e las relaciones e transmisión e los engranajes simples que lo componen. Veamos ahora otra expresión: P z z 3 r R z z 4 r sieno z y z3 las rueas entaas motrices, y z, z4 las conucias.

24 6.3. TORNO DIFERENCIAL. P r r' R l 6.4. TORNILLO SIN FIN. 3

25 Sentio e la rosca. Se establece por norma UNE. Los tornillos pueen ser e «rosca a erechas» o e «rosca a izquieras». El observaor se sitúa en el extremo one se inicia el avance. Rosca a erechas: es aquella en la que una tuerca, colocaa en el extremo e un tornillo para avanzar a lo largo e él, ebe girar en sentio horario para alejarse el observaor. El sacacorchos está roscao a erechas. Rosca a izquieras: es aquella en la que una tuerca, colocaa en el extremo e un tornillo para avanzar a lo largo e él, ebe girar en sentio antihorario para alejarse cl observaor. De acuero a lo expuesto, si un tornillo se utiliza para accionar un ruea entaa perpenicular a él, se obtenrán los siguientes sentios angulares en el piñón. Partieno e la siguiente figura, la expresión matemática entre P y R sería: P r n º.e.entraas.el.tornillo R l z La relación e transmisión, aquí, tiene la misma expresión que en el resto e los engranajes, si bien, en el caso el tornillo sin fin el número e entraas o filetes es el equivalente al número e ientes el engranaje en cuestión. 4

26 7. OTROS SISTEMAS 7. CRUZ DE MALTA. 5

27 7.. LEVAS. 6

28 7.3. PIÑÓN-CREMALLERA BIELA-MANIVELA. 7

29 7.5. TRINQUETES CARDAN. 8

30 7.7. RUEDA LIBRE. 9

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II º. LA PALANCA. En una palanca e primer género colocamos en uno e sus extremos una peso e 0 N. Si la palanca tiene una longitu e 3 m, calcular la istancia e la resistencia al fulcro para poerla equilibrar

Más detalles

ENGRANAJES TIPOS DE ENGRANAJES

ENGRANAJES TIPOS DE ENGRANAJES EGRAAJES Son piezas generalmente e forma cilínrica provistas e ientes en una e sus superficies, con el fin e embonarse (conectarse) con otra pieza similar y transmitir potencia. TIPOS DE EGRAAJES RECTOS:

Más detalles

LOS MECANISMOS. (Tomado de slideshare.net Junio )

LOS MECANISMOS. (Tomado de slideshare.net Junio ) LOS MECANISMOS (Tomado de slideshare.net Junio 7 2012) LOS MECANISMOS Todas las máquinas, sean básicas o complejas, se componen de mecanismos sencillos. Mecanismo: dispositivo que transforma un movimiento

Más detalles

MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR

MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR MECANISMOS LOS MECANISMOS SON ELEMENTOS DESTINADOS A TRANSMITIR Y TRANSFORMAR FUERZAS Y MOVIMIENTOS DESDE UN ELEMENTO MOTRIZ A UN ELEMENTO RECEPTOR MECANISMOS DE TRANSMISIÓN LINEAL PALANCA : MÁQUINA SIMPLE.

Más detalles

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS 1. Con un remo de 3 m de longitud se quiere vencer la resistencia de 400 kg que ofrece una barca mediante una potencia de 300 kg. A qué distancia del

Más detalles

Según la colocación del punto de apoyo, hay tres tipos o géneros de palanca

Según la colocación del punto de apoyo, hay tres tipos o géneros de palanca MECANISMOS QUE TRANSMITEN MOVIMIENTO Mecanismos de transmisión lineal: La palanca Consiste en una barra rígida que se articula denominado punto de apoyo (o fulcro), que hace posible que la barra gire.

Más detalles

Máquinas y Mecanismos virtual. Nombre 1- ACTIVIDAD DE MECANISMOS

Máquinas y Mecanismos virtual. Nombre 1- ACTIVIDAD DE MECANISMOS Máquinas y Mecanismos virtual Nombre 1- ACTIVIDAD DE MECANISMOS 15- Las partes de una maquina son 1. Elemento motriz: 2. Mecanismo:. 3. Mecanismos de transmisión del movimiento. 4. Mecanismos de transformación

Más detalles

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas.

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas. 1 12.7. Cadenas cinemáticas A Representación gráfica Cadenas cinemáticas. 2 B Cálculos 3 C Caja de velocidades Ejemplo 7: caja de velocidades con engranajes desplazables. Ejemplo 8: caja de velocidades

Más detalles

Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes.

Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes. QUÉ ES UN ENGRANAJE? Es un conjunto de ruedas dentadas que sirve para transmitir un movimiento circular entre dos ejes. Ruedas normalmente metálicas atravesadas por un eje En su periferia presenta unos

Más detalles

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16 1. Esquematiza los diferentes tipos de palancas, indicando: el tipo de palanca, y donde se encuentran el punto de apoyo, la resistencia (R), y donde se aplica la fuerza (F). 2. Nuestro cuerpo está lleno

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena.

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. Ficha nº:3 Transmisión circular. 1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. 2) Descripción: Ruedas de fricción: Son sistemas formados por

Más detalles

TEORÍA DE MECANISMOS Y MÁQUINAS. EJERCICIOS DE ENGRANAJES.

TEORÍA DE MECANISMOS Y MÁQUINAS. EJERCICIOS DE ENGRANAJES. 1. Realice un boceto de cada uno de los elementos siguientes: a. Engranaje helicoidal paralelo, con ángulo de hélice de 30º y relación e = 1/3. b. Engranaje de tornillo sinfín, con ángulo de hélice de

Más detalles

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO

MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS MÁQUINAS SIMPLES MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE ACOPLAMIENTO MECANISMOS DISIPADORES DE ENERGÍA Y RETENCIÓN MECANISMOS ACUMULADORES

Más detalles

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO

2º E.S.O. INDICE 1. QUE SON LOS MECANISMOS 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 1. QUE SON LOS MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. TECNOLOGÍA - 2º ESO TEMA 5: LOS

Más detalles

BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS

BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS BLOQUE 2: ELEMENTOS DE MAQUINAS Y SISTEMAS Índice 1. Mecanismos y sistemas mecánicos... 2 2. Mecanismos de transmisión del movimiento...5 A. Mecanismos de transmisión lineal...5 La palanca... 5 La polea...

Más detalles

MECANISMOS Y MÁQUINAS SIMPLES

MECANISMOS Y MÁQUINAS SIMPLES MECANISMOS Y MÁQUINAS SIMPLES Los mecanismos y máquinas simples son dispositivos que se utilizan para reducir la cantidad de esfuerzo necesario para realizar diversas actividades o para transmitir y /

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta.

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Brazo Caso z 2 z 3 z 4 z 5 z 6 2 6 Brazo 1 30 25 45 50

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C) EXMEN DE FÍSIC. 4 DE JUNIO DE 999. TEORÍ. GRUPOS 6() Y 7(C) C. Tenemos una superficie cónica e raio r = 0.5 m y altura h = m (ver figura), entro e un campo eléctrico E uniforme y paralelo al eje el cono

Más detalles

1.- Con la carretilla de la figura queremos transportar una carga de tierra.

1.- Con la carretilla de la figura queremos transportar una carga de tierra. MECANISMOS 1.- Con la carretilla de la figura queremos transportar una carga de tierra. A) qué tipo de palanca estamos empleando? B) Qué esfuerzo tenemos que realizar si el peso de la arena a transportar

Más detalles

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15 Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II Título TRANSMISIONES MECANICAS Curso 2 AÑO Año: 2006 Pag.1/15 INTRODUCCION Desde tiempos inmemorables el hombre realizó grandes esfuerzos para las

Más detalles

1.- INTRODUCCIÓN. Un tren de engranajes epicicloidal se diferencia de uno normal en que uno de los engranajes rueda en torno a la periferia del otro.

1.- INTRODUCCIÓN. Un tren de engranajes epicicloidal se diferencia de uno normal en que uno de los engranajes rueda en torno a la periferia del otro. 1.- INTRODUCCIÓN. Existen muchas formas de tallar engranajes. Durante la realización de esta práctica se verán algunas de ellas, así como la influencia del desplazamiento en la forma y propiedades de los

Más detalles

Clasificación de los mecanismos.

Clasificación de los mecanismos. MECANISMOS - II MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

QUÉ SON LOS MECANISMOS?

QUÉ SON LOS MECANISMOS? QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor

Más detalles

Máquinas y mecanismos

Máquinas y mecanismos Máquinas y mecanismos Las máquinas Una máquina es un conjunto de mecanismos que transforman un tipo de energía o de trabajo en energía útil. Estos mecanismos aprovechan la acción de una fuerza para producir

Más detalles

MECANISMOS. Son elementos destinados a trasmitir y transformar. Clasificación de los mecanismos.

MECANISMOS. Son elementos destinados a trasmitir y transformar. Clasificación de los mecanismos. TEMA MECANISMOS MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

Transmisión. Rt=θC/θM=Z1/Z2. Rtt=Rt1*Rt2*Rt3*Rtα. Trenes de engranaje. Trenes de engranaje fijos. Cátedra de Mecánica y Maquinaria Agrícola

Transmisión. Rt=θC/θM=Z1/Z2. Rtt=Rt1*Rt2*Rt3*Rtα. Trenes de engranaje. Trenes de engranaje fijos. Cátedra de Mecánica y Maquinaria Agrícola Transmisión Trenes de engranaje Se llama trenes de engranaje a la combinación de rueda dentada, donde el movimiento de salida de una es el movimiento de entrada de otra. Una transmisión mediante engranajes,

Más detalles

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN

1. Introducción TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO Trabajo, energía y rendimiento MECANISMOS QUE TRANSFORMAN Mecanismos I Tecnología 3º ESO 1. Introducción.... 2 2. TRABAJO, ENERGÍA, POTENCIA Y RENDIMIENTO... 3 2.1 Trabajo, energía y rendimiento...3 3. MECANISMOS QUE TRANSFORMAN MOVIMIENTOS RECTILÍNEOS EN MOVIMIENTOS

Más detalles

2º E.S.O. Instagram: skyrider INDICE 1.

2º E.S.O. Instagram: skyrider INDICE 1. 1. MECANISMOS INDICE 2. CLASIFICACION DE LOS MECANISMOS 2.1. MECANISMOS DE TRASMISION DE MOVIMIENTO 2.2 MECANISMOS DE TRANSFORMACION DE MOVIMIENTO 2º E.S.O. Instagram: skyrider428 http://skytecnoreader.worpress.com

Más detalles

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N.

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N. BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I 1. El cuentakilómetros de una bicicleta marca 30 km/h. El radio de la rueda es de 30 cm. Calcula: a) Velocidad lineal de la rueda en

Más detalles

Examen de MECANISMOS Junio 94 Nombre...

Examen de MECANISMOS Junio 94 Nombre... Examen de MECANISMOS Junio 94 Nombre... Sean dos ruedas talladas a cero con una cremallera de módulo m=4 mm, ángulo de presión 20 o, addendum igual al módulo y dedendum igual también al módulo. Los números

Más detalles

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO

0.- INTRODUCCIÓN. Fuerza y movimiento obtenidos en el elemento RECEPTOR. Fuerza y movimiento proporcionado por el elemento MOTRIZ MECANISMO 0.- INTRODUCCIÓN. En general, todas las máquinas se componen de mecanismos; gracias a ellos, el impulso que proviene del esfuerzo muscular o de un motor se traduce en el tipo de movimiento y la fuerza

Más detalles

TECNOLOGÍA INDUSTRIAL I

TECNOLOGÍA INDUSTRIAL I TECNOLOGÍA INDUSTRIAL I MÁQUINAS MÁQUINAS O SISTEMAS TÉCNICOS ELEMENTOS MOTRICES ELEMENTOS DE MÁQUINAS (MECANISMOS) MOTORES PRIMARIOS MOTORES SECUNDARIOS MECÁNICOS ELÉCTRICOS Y ELECTRÓNICOS NEUMÁTICOS

Más detalles

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?.

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?. PROBLEMAS DE MÁQUINAS Y MECANISMOS LA PALANCA 1. Indica el tipo de palanca en cada uno de los casos siguientes: 2. A qué distancia del eje de un balancín se tendrá que sentar un niño de 30 kg para que

Más detalles

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS

Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS 1. QUÉ SON LOS MECANISMOS? Dpto. de Tecnología del I.E.S. Trassierra. Córdoba. MECANISMOS Si miras a tu alrededor, veras muchos objetos que se mueven. Todos estos objetos y cualquier máquina que realice

Más detalles

Tecnología Industrial I

Tecnología Industrial I Tecnología Industrial I Máquinas y Mecanismos Ejercicios de repaso 1. A qué distancia del punto de apoyo deberá colocarse Ana para equilibrar el balancín con su hermano Javier? sol. 3m 2. A qué distancia

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento.

Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. MECANISMOS 2º ESO A. Introducción. Un mecanismo es un dispositivo que transforma el producido por un elemento (fuerza de ) en un movimiento deseado de (fuerza de ) llamado elemento. Elemento motriz Elemento

Más detalles

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una

Más detalles

Unidad. Elementos transmisores del movimiento

Unidad. Elementos transmisores del movimiento Unidad 12 Elementos transmisores del movimiento 12.1. Breve introducción histórica sobre las máquinas Leonardo da Vinci (Italia, año 1600). Christopher Polhem (Suecia, año 1696). Constedt (Suecia, año

Más detalles

Actividad de Aula 2.0. Engranajes

Actividad de Aula 2.0. Engranajes Apellidos, Nombre: Curso: Nota: Fecha: Realiza los montajes que se indican a continuación y contesta a las siguientes preguntas: 1.1. Engranaje recto sin cambio de velocidad Cuál es la relación de transmisión?

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

TEMA 6 LOS MECANISMOS

TEMA 6 LOS MECANISMOS TEMA 6 LOS MECANISMOS 1. MÁQUINAS SIMPLES. MECANISMOS DE TRANSMISIÓN LINEAL Para ahorrar esfuerzo en la realización de diversas tareas, el ser humano ha inventado artilugios como la palanca o polea. Estos

Más detalles

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante)

CEJAROSU 01 -Departamento de Tecnología- Levogiro. Dextrogiro. (oscilante) TIPOS DE MOVIMIENTOS Giratorio Lineal Continuo Levogiro Dextrogiro TRANSMISIÓN DE MOVIMIENTOS I Tipos de movimientos Alternativo (oscilante) TRANSMISIÓN DE MOVIMIENTOS Movimiento de entrada Movimiento

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

Ejercicios de Transmisión por Correa

Ejercicios de Transmisión por Correa Ejercicios de Transmisión por Correa 1. En un sistema de transmisión por correa la polea motriz tiene un diámetro de 10 mm y la conducida de 40 mm. Si la velocidad angular del eje motriz es de 100 rpm

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C . Un electrón que se mueve a través e un tubo e rayos catóicos a 7 m/s, penetra perpenicularmente en un campo e -3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que ha

Más detalles

Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología

Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología Esta presentación ha sido realizada por Francisco Montero, en base a textps e imágenes tomadas de La Enciclopedia del Estudiante, Tomo 13 (Tecnología e Informática) Ed. SANTILLANA, el libro de texto de

Más detalles

=, perpendicular al eje.

=, perpendicular al eje. E1: Una esfera e raio R cargaa con ensia e carga volumétrica uniforme, se encuentra centraa en el origen e coorenaas. emás, se tiene una barra elgaa e longitu R situaa en el semieje x positivo, cargaa

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C 1. Un electrón que se mueve a través e un tubo e rayos catóicos a 1 7 m/s, penetra perpenicularmente en un campo e 1-3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que

Más detalles

TERCER EXAMEN PARCIAL INTRODUCCIÓN AL ESTUDIO DE LOS MECANISMOS PROFESOR: ING. MOISES MENDOZA LINARES

TERCER EXAMEN PARCIAL INTRODUCCIÓN AL ESTUDIO DE LOS MECANISMOS PROFESOR: ING. MOISES MENDOZA LINARES 1. En el tren de engranes mostrado en la figura el engrane 5 está maquinado en tal forma que tiene dientes externos e internos. Si el planetario 2 gira a 3000 rpm y el piñón 6 lo hace a 1200 rpm, ambos

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

K

K Universia e Navarra Naarroako Unibertsitatea Escuela Superior e Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: TECNOLOGÍAS DE FABRICACIÓN CURSO KURTSOA: 4º Tiempo: 1 hora, 30 minutos P_JUN_09

Más detalles

E N G R A N A J E S INTRODUCCION

E N G R A N A J E S INTRODUCCION E N G R A N A J E S INTRODUCCION Un engranaje es un mecanismo de transmisión, es decir, se utiliza para transmitir el movimiento de rotación entre dos árboles. Está formado por dos ruedas dentadas que

Más detalles

TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:...

TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:... TECNOLOGÍA PRIMER CONTROL. TERCERA EVALUACIÓN. Unidad 8: Estructuras y mecanismos. Curso: 2º ESO B 15 MAYO DE 2015 APELLIDOS:... NOMBRE:... Nº:... 1º) Tipos de cargas. Explícalas e indica tres ejemplos

Más detalles

ENGRANAJES. Indica en qué sentido girará la última rueda conducida y cuál es el mecanismo de transmisión utilizado.

ENGRANAJES. Indica en qué sentido girará la última rueda conducida y cuál es el mecanismo de transmisión utilizado. ENGRANAJES. Indica en qué sentido girará la última rueda conducida y cuál es el mecanismo de transmisión utilizado.. Cuál de las ruedas, A o C, girará más deprisa en la transmisión de la figura?. Razónalo....

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena. Mecanismos 2. Mecanismos que transforman movimientos: Rotación en rotación. Poleas y engranajes Transmisión por cadena. Rotación en traslación y viceversa : Piñón Cremallera. Rotación en alternativo regular

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

BLOQUE 2. OPERADORES MECÁNICOS

BLOQUE 2. OPERADORES MECÁNICOS BLOQUE 2. OPERADORES MECÁNICOS 1. INTRODUCCIÓN Hay muchas maneras de definir una máquina. Nosotros vamos a usar la siguiente definición: Máquina: es el conjunto de mecanismos (operadores mecánicos) capaz

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca la potencia, la resistencia, los brazos de potencia y de resistencia y el fulcro.

Más detalles

DIOS TECNOLOGÍA MECANISMOS. Diseño y Diagramación Camilo Andrés Paz. Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz

DIOS TECNOLOGÍA MECANISMOS. Diseño y Diagramación Camilo Andrés Paz. Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz TECNOLOGÍA MECANISMOS Diseño y Diagramación Camilo Andrés Paz Elaboración Docente Carlos Felipe Caicedo Camilo Andrés Paz I.E.M MARÍA GORETTI 2015 MECANISMOS 1. Definición de mecanismos y maquinas Mecanismos

Más detalles

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg.

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. EJERCICIOS EJERCICIOS DE PALANCAS 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. 2) Se desea que dos personas de 40 y 60 kg permanezcan en

Más detalles

Guía didáctica Operadores Tecnológicos

Guía didáctica Operadores Tecnológicos Guía didáctica Operadores Tecnológicos os operadores mecánicos son elementos que facilitan la realización de una tarea o que transforman un tipo de energía en otro. 2 OPERADORES MECANICOS BASICOS 1. Palanca

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE DE MEDELLIN DEPARTAMENTO DE SISTEMAS Y ADMINISTRACIÓN SECCIÓN DE PRODUCCIÓN.

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE DE MEDELLIN DEPARTAMENTO DE SISTEMAS Y ADMINISTRACIÓN SECCIÓN DE PRODUCCIÓN. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE DE MEDELLIN DEPARTAMENTO DE SISTEMAS Y ADMINISTRACIÓN SECCIÓN DE PRODUCCIÓN "MECírAmílS M S" TRABAJO DE PROMOCIÓN A PROFESOR ASOCIADO PRESENTADO POR: Germán Enrique

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I 1. LA PALANCA 1.1 En una palanca de primer género colocamos en uno de sus extremos un peso de 10 N. Si la palanca tiene una longitud de 4 m y el punto de apoyo se encuentra en el punto medio, calcular

Más detalles

ruedas para rieles Microdureza (HDV) 600 0,5

ruedas para rieles Microdureza (HDV) 600 0,5 rueas para rieles Rueas para Rieles Las rueas para rieles e MIGUEL ABA S. A. han sio iseñaas para iferentes usos y aplicaciones e la inustria. Vienen a solucionar y facilitar tanto el iseño, como la provisión

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

El movimiento en las máquinas

El movimiento en las máquinas 1 Mira a tu alrededor. Qué tipo de máquinas hacían los romanos? Marco Vitrubio describió los principios que regulan los aparatos mecánicos como órganos, máquinas para arrastrar o elevar pesos o agua, catapultas

Más detalles

ENGRANAJES ÍNDICE. - Introducción.. - Clasificación de los engranajes - Engranajes cilíndricos.. - Engranajes cónicos... - Tornillo sin fin

ENGRANAJES ÍNDICE. - Introducción.. - Clasificación de los engranajes - Engranajes cilíndricos.. - Engranajes cónicos... - Tornillo sin fin ENGRANAJES ÍNDICE - Introducción.. - Clasificación de los engranajes - Engranajes cilíndricos.. - Engranajes cónicos... - Tornillo sin fin... - Máquinas para la fabricación de engranajes... - Cálculo de

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2012/2013 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

MECANISMOS 1.- INTRODUCCIÓN

MECANISMOS 1.- INTRODUCCIÓN MECANISMOS 1.- INTRODUCCIÓN Una máquina es cualquier aparato o dispositivo que al ser accionado (es decir, cuando se pone en funcionamiento) produce un cierto efecto. Las máquinas tienen la capacidad de

Más detalles

-EXPRESIÓN GRÁFICA :1, 2 5. : 2 1: , 1:50 : ELECTRICIDAD BÁSICA

-EXPRESIÓN GRÁFICA :1, 2 5. : 2 1: , 1:50 : ELECTRICIDAD BÁSICA -EXPRESIÓN GRÁFICA 1. Tipo de escala a la que representarías un coche: 2. Perspectiva en la que se aplica un coeficiente de reducción para corregir la deformación en la representación: 3. Al representar

Más detalles

MECÁNICA II CURSO 2006/07

MECÁNICA II CURSO 2006/07 1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Ing. Automotriz. Curso: Introducción a la Ingeniería Automotriz. Sesión Nº 10: Análisis dinámico de la transmisión.

Ing. Automotriz. Curso: Introducción a la Ingeniería Automotriz. Sesión Nº 10: Análisis dinámico de la transmisión. UTP FIMAAS Sesión Nº 10: Ing. Automotriz Curso: Introducción a la Ingeniería Automotriz Análisis dinámico de la transmisión. Profesor: Carlos Alvarado de la Portilla 1 Bibliografía. http://www.mecanicavirtual.org/cajacambios3.htm

Más detalles

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto)

4º. En el sistema de poleas del dibujo calcula las velocidades de giro de cada polea y las relaciones de transmisión. (2 punto) TECNOLOGÍA. 3º ESO Mecanismos Fecha: 13-XI-07 Nombre: Grupo: Nota: 1º. Tipos de palancas. (1,5 puntos) 2º. En el mecanismo propuesto, indica que tipo de palancas intervienen y la distancia a la que se

Más detalles

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación:

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación: ACTIVIDADES: TEMA MECANISMOS 1) Qué función tienen las máquinas? Nombra cinco ejemplos de máquinas que conozcas. 2) Qué son los mecanismos? Conoces algunos ejemplos de mecanismos? Para qué se utilizan?

Más detalles

TEMA 3: MÁQUINAS Y MECÁNICOS

TEMA 3: MÁQUINAS Y MECÁNICOS TEMA 3: MÁQUINAS Y MECÁNICOS Los mecanismos son los elementos encargados del movimiento en las máquinas. Permiten transmitir el movimiento de giro del motor a las diferentes partes del robot. el movimiento

Más detalles

SOBREANCHO EN CURVAS HORIZONTALES

SOBREANCHO EN CURVAS HORIZONTALES SOBEANCHO EN CUVAS HOIZONTALES Secc. transversal en curvas -. aio e la curva SOBEANCHO (S) -. Ancho e la calzaa -. Velocia e los vehículos -. Tipo e vehículo La transición el sobreancho Parte interna e

Más detalles

Departamento de Tecnología MECANISMOS

Departamento de Tecnología MECANISMOS MECANISMOS 1. Mecanismos de transmisión circular 1.1 Ruedas de fricción 1.2 Poleas y correas 1.3 Ruedas dentadas 1.4 Transmisión por cadenas 1.5 Tornillo sin fin 2. Mecanismos de transformación de movimiento

Más detalles

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza.

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Los elementos que constituyen las máquinas se llaman mecanismos. Las palancas

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes.

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes. Mecanismos 1. Introducción Desde la existencia del hombre, éste ha fabricado útiles que le ayudan en sus tareas cotidianas de supervivencia, como hachas y cuchillos. A medida que las sociedades se organizaban,

Más detalles

1. Energía. Trabajo. Potencia.

1. Energía. Trabajo. Potencia. Tema 6. 1. Energía. Trabajo. Potencia. La energía es la capacidad de un sistema físico para producir un trabajo. W = E La unidad es el Julio. J = N. m (Julio = Newton. metro) El trabajo W = F. d La enegía

Más detalles

PRIMERA PARTE. a) DIBUJO TECNICO. 1. Obtener las vistas (alzado, planta y el perfil izquierdo) de las siguientes figuras.

PRIMERA PARTE. a) DIBUJO TECNICO. 1. Obtener las vistas (alzado, planta y el perfil izquierdo) de las siguientes figuras. ACTIVIDADES DE RECUPERACION TECNOLOGIAS 3º ESO PRIMERA PARTE a) DIBUJO TECNICO 1. Obtener las vistas (alzado, planta y el perfil izquierdo) de las siguientes figuras. 2. Obtener el alzado, planta y ambos

Más detalles

Unidad 6: Mecanismos

Unidad 6: Mecanismos Unidad 6: Mecanismos INTROUIÓN Si observamos a nuestro alrededor, observaremos que estamos rodeados de objetos que se mueven o tienen capacidad de movimiento. Los elementos de la transmisión por cadena

Más detalles

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE.

CIDEAD.- TECNOLOGÍA INDUSTRIAL I. TEMA 6.- los MECANISMOS, 1ª PARTE. Desarrollo del tema:. Los mecanismos y los sistemas mecánicos.. Los elementos que transmiten movimientos. 3. La transmisión de movimientos por: a. Palancas. b. Ruedas de fricción. c. Poleas y correas.

Más detalles

M2 - Creación Virtual de Mecanismos Planos en Maquinas v2015- Prof. Dr. José L Oliver

M2 - Creación Virtual de Mecanismos Planos en Maquinas v2015- Prof. Dr. José L Oliver 6. Ejercicios de Trenes Planetarios Rectos y Cónicos. EJEMPLO 1 En la siguiente figura se presenta un tren planterio invertido. El engranaje 2 esta sujeto a su eje y es impulsado a 250 rpm en el mismo

Más detalles

PRÁCTICAS DE MECANISMOS

PRÁCTICAS DE MECANISMOS PRÁCTICAS DE MECANISMOS Nombre:... HERRAMIENTAS: 1 Base de montaje - 1 destornillador plano 1 Bandeja - 2 llaves fijas 6-7 5 Soportes de madera 1 Eje (varilla roscada M4 x 100) 3 Ejes (tornillos M4 x 60)

Más detalles

Mecanismo piñón-corredera/cremallera del mecanismo piñón-cadena, o sea, v4 sabemos que: (1) v1 x z1 = v2 x z2

Mecanismo piñón-corredera/cremallera del mecanismo piñón-cadena, o sea, v4 sabemos que: (1) v1 x z1 = v2 x z2 VALORACIÓN: Todas las preguntas valen lo mismo 1. a) Completa el circuito para que Interruptor funcione e identifica los dispositivos del esquema poniendo su nombre b) Si el eje motor gira a 1.200 rpm,

Más detalles

MECANISMOS. Realizado por Carolina Rubio

MECANISMOS. Realizado por Carolina Rubio MECANISMOS Realizado por Carolina Rubio Maquinas 1. Trabajo 2. Potencia 3. Partes de un maquina Maquinas simples 1. Palanca 2. Plano inclinado 3. Tornillo 4. La rueda 5. La polea INDICE Mecanismos de transmisión

Más detalles

Tecnología 2.º ESO. Actividades. Unidad 3 Mecanismos CUESTIONES SENCILLAS EDITORIAL TEIDE

Tecnología 2.º ESO. Actividades. Unidad 3 Mecanismos CUESTIONES SENCILLAS EDITORIAL TEIDE CUESTIONES SENCILLAS 1. Por qué las carreteras de montaña con pendientes pronunciadas se construyen con muchas curvas? 2. Los pestillos de las puertas tienen una cara inclinada. Explica por qué tienen

Más detalles