Reducción a una forma separable

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Reducción a una forma separable"

Transcripción

1 1.2. Ecuaciones diferenciales de 1er orden separables Lasecuacionesdiferenciales ordinarias de primer orden involucran sólo la primera derivada de una función desconocida 0, nunca derivadas de orden superior. Además, pueden contener, y cualquier función de la variable independiente o, éstas se pueden escribir en forma explícita como: o en forma implícita: = ( ) (1.92) ( ) =0 (1.93) Reducción a una forma separable Algunas EDO pueden reducirse, mediante manipulaciones algebraicas, a la forma ( ) 0 = ( ) (1.94) Integranado la ecuación anterior en ambos lados respecto a, setiene Z Z ( ) 0 = ( ) + (1.95) por enlaparteizquierdadelaec.(1.95)secambialavariabledeinte- Z Z ( ) = ( ) + (1.96) Sustituyendo 0 gración a, así Ejemplo 1 De una mezcla de concreto se construyeron dos cilindros de concreto, a los cuales se obtuvo a los 5 y a los 28 días su resistencia a compresión de (5) = 180 kgcm 2 y (28) = 260 kgcm 2, respectivamente. Determínese con el modelo de crecimiento exponencial una función, como la que se muestra en la figura 1.15, que describa el incremento de resistencia del esfuerzo en compresión y la resistencia a los 10 días. Solución. Formulación del modelo. Sea ( ) la resistencia a compresión del concreto. Así, mediante la siguiente relación = (1.97) Solución General. La ec. (1.97) es separable, la cual separando, integrando y aplicando los exponentes se obtiene la solución general c Gelacio Juárez, UAM 29

2 Figura 1.15: Resistencia a compresión contra tiempo. = ln = + ( ) = (1.98) Solución particular. Aplicando las condición iniciales (5) = 180 kgcm 2 y (28) = 260 kgcm 2 en la ec. (1.98) se obtiene: 5 = 180 (1.99) 28 = 260 (1.100) Determinación de kyc. Resolviendo algebraicamente las ecs. (1.99) y (1.100). = = ln =0 016 = = (1.101) 5(0 016) Sustituyendo el valor de kycde la ec. (1.101) en la ec.(1.98), se obtiene la ecuación que describe el incremento de resistencia en compresión, la cual se muestra en la figura ( ) = (1.102) Respuesta e interpretación. A los 10 días se tiene de la ec. (1.102) (10) = (10) = kgcm 2 (1.103) Ejemplo 2 De la prueba de un cilindro de concreto a compresión se obtuvo la curva mostrada en la figura 1.17, en la que en el intervalo no lineal se tienen esfuerzos de (0 003) = 300 kgcm 2 y (0 015) = 30 kgcm 2, respectivamente. Determínese la función de esfuerzo en el intervalo no lineal que describa el decremento del esfuerzo y su valor para =0 01. Solución. Formulación del modelo. Sea ( ) el esfuerzo del concreto. Así, mediante la siguc Gelacio Juárez, UAM 30

3 su(kgf/cm2) t(días) Figura 1.16: Variación del esfuerzo. Figura 1.17: Resistencia a compresión contra deformación. iente relación = (1.104) Solución General. La ec. (1.104) es separable, la cual separando, integrando y aplicando los exponentes se obtiene la solución general = ln = + ( ) = (1.105) Solución particular. Aplicando las condición iniciales (0 003) = 300 kgcm 2 y (0 015) = 30 kgcm 2 en la ec. (1.105)se obtiene: = 300 (1.106) = 30 (1.107) Determinación de kyc. Resolviendo algebraicamente las ecs. (1.106) y (1.107). c Gelacio Juárez, UAM 31

4 = = ln 1 10 = = 300 = (1.108) 0 003(191 88) Sustituyendo el valor de kycde la ec. (1.108) en la ec.(1.105), se obtiene la ecuación que describe el decremento del esfuerzo, la cual se muestra en la figura ( ) = (1.109) su(kgf/cm2) e Figura 1.18: Variación del esfuerzo. Respuesta e interpretación. Cuando =0 01 se tiene de la ec. (1.109) (0 01) = (0 01) = kgcm 2 (1.110) Ejemplo 3 Suponga que se monitorea la temperatura en una carpeta de concreto de 30 cm de espesor. Un ciertodíalatemperatura, en la parte inferior de la carpeta es de 3 alas6 h yde7 a las 10 h. Latemperatura,enlasuperficie de la carpeta, fue de 5 alas6 h yde25 a las 13 h. Cuál es la temperatura debajo de la carpeta a las 13 h? Solución. Formulación del modelo. Sea ( ) la temperatura en la parte inferior de la carpeta de concreto y la temperatura en la parte superior. Así, mediante la ley de Newton, = ( ) (1.111) Solución General. La ec. (1.111) es separable, la cual se separando, integrando y se aplican los exponentes se obtiene la solución general ( ) = ln = + ( ) = + (1.112) c Gelacio Juárez, UAM 32

5 Figura 1.19: Carpeta asfáltica. Puesto que no se conoce el valor de la temperatura, sólo que esta varía entre 5 y 25,se plantea por simplificación que se tome el valor promedio = =15 (1.113) 2 Sustituyendo la ec. (1.113) en la ec. (1.112) se obtiene la solución general. ( ) =15 + (1.114) Solución particular. Se considera que =0alas6h. Por lo que la condición inicial (0 h) = 3 en la ec. (1.114) proporciona la solución particular (0 h) = =3 = 12 ( ) =15 12 (1.115) Determinación de k. Utilizando (4 h) = 7, donde =4corresponde a las 10 h. Resolviendo algebraicamente para en la ec. (1.115). (4 h) = =7 4 = 2 3 = 1 4 ln 2 3 = (1.116) Sustituyendo el valor de k de la ec. (1.116) en la ec.(1.115), se obtiene la ecuación que describe el cambio de temperatura en la parte inferior de la losa, la cual se muestra en la figura ( ) = (1.117) Respuesta e interpretación. Alas13 h corresponde a =7,elcualsesustituyeenlaec. c Gelacio Juárez, UAM 33

6 T(C) t(h) Figura 1.20: Variación de la temperatura (1.117), así (7) = (7) = (1.118) Ejemplo 4 Un tanque de almacenamiento de agua con capacidad de l tiene un radio =0 935 m y una altura de =2 15 m el cual se muestra en la figura Un cierto día se desea vaciar el tanque cuando tiene una altura de llenado =2 0m por un orificioenlaparteinferiordel tanque con un rádio = m. Determine el tiempo en que el tanque estará vacío. Para la solución de este tipo de problemas se utiliza la ley de Torricelli para determinar la velocidad del flujo de salida de agua, la cual está definida por ( ) =0 6 p 2( ) (1.119) donde ( ) es la altura del agua sobre el agujero en el tiempo, =9 807 m s 2 es la aceleración de la gravedad. Solución. Formulación del modelo. Se determina el área del tanque =2 746 m 2 ydel orificio de salida = m 2. Para la formulación del modelo se establece la razón de cambio del volumen dentro del tanque como = (1.120) El signo negativo representa que el volumen dentro del tanque decrece. La razón de cambio del volumen fuera del tanque es: c Gelacio Juárez, UAM 34

7 Figura 1.21: Tanque. Sustituyendo la ec. (1.119) en la ec.(1.121) = ( ) (1.121) =0 6 p 2( ) (1.122) Puesto que la razón de cambio dentro del tanque es igual fuera de éste, igualando las ecs. (1.120) y (1.122) =0 6 p 2( ) (1.123) la EDO para la solución de este ejemplo lo representa la ec. (1.122), la cual se reescribe como: = 0 6 p p 2 ( ) (1.124) Solución general. Separando e integrando la ec.(1.124) p = 0 6 p Z 2 ( ) Z 1 p = ( ) 0 6 p p p 2 2 ( ) = (1.125) Dividiendo entre 2 y elevando al cuadrado la ec. (1.125) se tiene la solución general ( ) = ³ 0 3 p 2 2 (1.126) Solución particular. Con la condición inicial que el tanque está lleno hasta una altura = c Gelacio Juárez, UAM 35

8 2 15 m cuando =0en la ec se obtiene el valor de la constante = p = p 2 0m (1.127) Sustituyendo la ec. (1.127) en la ec. (1.126) se tiene la solución particular, cuya gráfica se muestra en la figura ³p ( ) = 0 3 p 2 2 (1.128) h(m) t(s) Figura 1.22: Variación de la temperatura Tiempo en el que el tanque está vacío. Esta condición se cumple cuando la altura ( ) =0 en la ec. (1.128) = = m 2 2 0m 0 3( m 2 ) p 2(9 807 m s 2 ) = s=1 602 h (1.129) Tarea 1. Proponga y resuelva un problema de crecimiento y otro de decaimiento natural relacionados con ingeniería estructural. c Gelacio Juárez, UAM 36

La ecuación diferencial + =0es exacta si =. Cuando la ecuación no es exacta ( )= ( ) (1.167)

La ecuación diferencial + =0es exacta si =. Cuando la ecuación no es exacta ( )= ( ) (1.167) 1.2.3. Factores Integrantes La ecuación diferencial + 0es exacta si. Cuando la ecuación no es exacta se busca determinar un factor integrante ( ) tal que ( ) + ( ) 0 (1.166) ( ) () (1.167) desarrollando

Más detalles

Solución por coeficientes indeterminados

Solución por coeficientes indeterminados 1.4.3. Ecuaciones no homogéneas En esta sección se parte de la una ecuación diferencial lineal no homogénea + ( 0 + ( = ( (1.342 donde ( 6= 0. Donde la solución general de la ec. (1.342 es la suma de la

Más detalles

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1.

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1. 1.3. Ecuaciones diferenciales de 2do orden 1.3.1. Ecuaciones lineales homogéneas Una ED de segundo orden se le llama lineal si se escribe como: + ( ) + ( ) = ( ) (1.242) 2 de otra forma se le llama no

Más detalles

Interpretación Gráfica

Interpretación Gráfica Matemáticas Aplicadas MA101 Semana 04 Interpretaciones Gráficas de las EDO EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Interpretación

Más detalles

Matemáticas Aplicadas MA101. Ecuaciones diferenciales y matrices en ingeniería

Matemáticas Aplicadas MA101. Ecuaciones diferenciales y matrices en ingeniería Matemáticas Aplicadas MA101 Semana 01 Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Ecuaciones diferenciales y matrices en ingeniería Contaminación de lagos y ríos

Más detalles

Matemáticas Aplicadas MA101. Semana 01. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Matemáticas Aplicadas MA101. Semana 01. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 01 Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Ecuaciones diferenciales y matrices en ingeniería Contaminación de lagos y ríos

Más detalles

Semana 03 Interpretaciones Gráficas de las EDO - Aplicaciones

Semana 03 Interpretaciones Gráficas de las EDO - Aplicaciones Matemáticas Aplicadas MA101 Semana 03 Interpretaciones Gráficas de las EDO - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Interpretación Gráfica A menudo

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones Homogéneas y aplicaciones) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

Semana 05 EDOs Exactas - Aplicaciones

Semana 05 EDOs Exactas - Aplicaciones Matemáticas Aplicadas MA101 Semana 05 EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería EDOs de 1er orden (Semana 01) Ecuaciones no lineales

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

2.2 Ecuaciones diferenciales de variables separables

2.2 Ecuaciones diferenciales de variables separables 38 Ecuaciones diferenciales. Considerado a t como la variable independiente: s 0 ds dt s 3ts s 4 9ts.s/.s 3t/.s/.s3 9t/ s 3t s 3 9t ; excepto los puntos que están en la curva s 3 9t 0 en el eje t.s 0/.

Más detalles

2. Actividad inicial: Crecimiento del dinero.

2. Actividad inicial: Crecimiento del dinero. Índice 1. Introducción 6 2. Actividad inicial: Crecimiento del dinero. 6 3. EDO de variables separables 7 3.1. Técnica de resolución de una ODE de variables separables........... 8 3.2. Ejemplos desarrollados...............................

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

MATEMÁTICAS APLICADAS A LA INGENIERÍA ESTRUCTURAL (1a Edición) Gelacio Juárez

MATEMÁTICAS APLICADAS A LA INGENIERÍA ESTRUCTURAL (1a Edición) Gelacio Juárez MATEMÁTICAS APLICADAS A LA INGENIERÍA ESTRUCTURAL (1a Edición) Gelacio Juárez Septiembre 2012 Índice general 1. Ecuaciones diferenciales ordinarias lineales de primer orden, segundo orden y de orden superior

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sM

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sM Universidad de San Carlos SEGUNDO PARCIAL Departamento de Matemática Facultad de Ingeniería MATEMATICA INTERMEDIA 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

Más detalles

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1.

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1. 1.1.7. Solución de ecuaciones por integración directa Barra sección constante Determine la función, (), que satisface el PVF del elemento barra de definido en la ec. (1.14). Se considerando que la fuerza

Más detalles

Sustituyendo la ec. (2.61) en la ecs. (2.26) se tienen las componentes del tensor de esfuerzos: = = =

Sustituyendo la ec. (2.61) en la ecs. (2.26) se tienen las componentes del tensor de esfuerzos: = = = 2.4. Termo-elasticidad en materiales isotrópicos Considere un medio continuo no restringido constituido por un material elástico isotrópico en una configuración no deformada. Si se presenta un cambio uniforme

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Reacciones Químicas. (molaridad) pues una mol de sustancia química contiene el mismo número de moléculas.

Reacciones Químicas. (molaridad) pues una mol de sustancia química contiene el mismo número de moléculas. Reacciones Químicas Consideremos una reacción química que ocurre en una disolución bien mezclada. Se supondrá que la reacción es irreversible y que ningún otro proceso se lleva a cabo para afectar la cantidad

Más detalles

CINEMÁTICA 3. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 3. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 3 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA ECUACION DE EULER (1) Para un volumen diferencial de fluido,

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales Por: Iván Cruz Una ecuación diferencial es la que involucra mínimo una derivada entre sus términos, como puede ser: El principal problema radica en el hecho de determinar una función

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.

Elevar a la cuarto potencia.   raíz Elevar a   potencia. ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES INGENIERÍA (NIVEL LICENCIATURA) Curso Básico - Primavera 2017 Omar De la Peña-Seaman Instituto de Física (IFUAP) Benemérita Universidad Autónoma de Puebla (BUAP) 1 / Omar De la

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

LEYES DEL MOVIMIENTO DE NEWTON

LEYES DEL MOVIMIENTO DE NEWTON Universidad de Oriente Núcleo Bolívar Curso Básico Matemática IV Sección: 01 LEYES DEL MOVIMIENTO DE NEWTON Profesor: Bachilleres: Cristian Castillo Javier Abreu C.I: 14.517.875 Jesús Sigala C.I: 17.045.285

Más detalles

Ecuaciones Diferenciales (MA-841)

Ecuaciones Diferenciales (MA-841) Ecuaciones Diferenciales (MA-841) Ecuaciones de Departmento de Matemáticas / CSI ITESM Ecuaciones de Ecuaciones Diferenciales - p. 1/16 Ecuaciones de Iniciaremos nuestras técnicas de solución a ED con

Más detalles

ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES

ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES 2010 ECUACIONES DIFERENCIALES TEORÍAS Y APLICACIONES El siguiente documento desarrolla el contenido programático de Ecuaciones Diferenciales del programa de Ingeniería Industrial de la Universidad de La

Más detalles

Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional

Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional 1.6. Introducción al cálculo variacional El cálculo variacional estudia los métodos, llamados variacionales, que permiten hallar los valores estacionarios de los funcionales. Puesto que un funcional representa

Más detalles

2. Localice el centro del círculo en el punto con coordenadas y =0. = + 2

2. Localice el centro del círculo en el punto con coordenadas y =0. = + 2 1.13. Círculo de Mohr para deformaciones Construcción del círculo de Mohr para deformaciones: 1. Dibujo de un sistema de ejes coordenados con como abscisa, positivo hacia la derecha, y como ordenada, positivo

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 4 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en régimen transitorio Consideraremos la variación de la temperatura con el tiempo así como con la posición,

Más detalles

Ecuaciones Diferenciales (0256) Tema 1. Ecuaciones Diferenciales de 1 er Orden

Ecuaciones Diferenciales (0256) Tema 1. Ecuaciones Diferenciales de 1 er Orden Jah0 Ecuaciones Diferenciales (056) Tema Ecuaciones Diferenciales de er Orden.- Determine el grado, el orden linealidad de las siguientes ecuaciones diferenciales: a) d ( cos ) d 0 b) '' ' ' ( ' ) 0 d

Más detalles

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN

UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN CURSO: Matemática Básica 1 CODIGO DE CURSO: 101 TIPO DE EXAMEN : NOMBRE AUXILIAR: Primera Retrasada

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales Ecuaciones diferenciales 1. Conceptos generales Ecuación diferencial ordinaria. Definición Se llama ecuación diferencial ordinaria (E.D.O.) a una relación entre la variable independiente x, una función

Más detalles

Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales

Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales Ecuaciones Diferenciales Tema 1. Parte 1: Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Qué es una Ecuación Diferencial Ordinaria? 2. Solución de una EDO 3. Tipos de EDO 4. Solución

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256)

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) UCV-INGENIERÍA ECUACIONES DIFERENCIALES (056) EJERCICIOS PROPUESTOS SOBRE ECUACIONES DIFERENCIALES Tema : Introducción a las Ecuaciones diferenciales ordinarias de primer orden sus aplicaciones. Contenidos

Más detalles

División Académica de Ciencias Biológicas

División Académica de Ciencias Biológicas Nombre de la asignatura ECUACIONES DIFERENCIALES Clave de la asignatura Área de formación Docencia frente a grupo según SATCA Trabajo de Campo Supervisado según SATCA Carácter de la asignatura Sustantiva

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

( ) (ma) ,

( ) (ma) , Discrimina el tipo de relación de proporcionalidad entre dos magnitudes. Modela fórmulas a partir de las relaciones de proporcionalidad entre magnitudes. Evalúa fórmulas relacionadas con la ingeniería

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE PRIMER ORDEN Solución Taller preparativo para el parcial 1 Ecuaciones diferenciales de primer

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

SOLUCIONARIO Sistema de inecuaciones de primer grado

SOLUCIONARIO Sistema de inecuaciones de primer grado SOLUCIONARIO Sistema de inecuaciones de primer grado SGUICEG032EM31-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Sistema de inecuaciones de primer grado Ítem Alternativa 1 C 2 A 3 E 4 D 5 C 6 A 7 E 8 C 9

Más detalles

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0. Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene

Más detalles

Otros circuitos RLC de 2do orden

Otros circuitos RLC de 2do orden Matemáticas Aplicadas MA101 Semana 08 EDO de 2do orden no homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Otros circuitos RLC de 2do orden

Más detalles

Semana 07 EDO de 2do orden no homogénea - Aplicaciones

Semana 07 EDO de 2do orden no homogénea - Aplicaciones Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden no homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Otros circuitos RLC de 2do orden

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Pauta Control N o 2. 2 do Semestre Mecánica de Fluidos. a) Encuentre la velocidad del líquido en el agujero en función de los datos entregados.

Pauta Control N o 2. 2 do Semestre Mecánica de Fluidos. a) Encuentre la velocidad del líquido en el agujero en función de los datos entregados. Pauta Control N o 2 2 do Semestre 2014 Mecánica de Fluidos Problema 1 (50 ptos.) La figura 1 muestra un estanque abierto con agua hasta una altura H. Se perfora un agujero muy pequeño en una pared a una

Más detalles

1.5 Construcción de funcionales Método de Rayleigh-Ritz para la aproximación de funcionales

1.5 Construcción de funcionales Método de Rayleigh-Ritz para la aproximación de funcionales .5.8. Método de Rayleigh-Ritz para la aproximación de funcionales La idea de este método consiste en que al buscar el extremo de un funcional: () = ( ) considerando sólo las combinaciones lineales posibles

Más detalles

5.En una prueba de calibración de un termistor se obtiene para una temperatura de

5.En una prueba de calibración de un termistor se obtiene para una temperatura de FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN COLEGIADO 2013-2 SÁBADO 23 DE MARZO 7:00 (h) Guillaume Amontons Instrucciones:

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES EN LA INGENIERIA CURVA DEL CABLE COLGANTE BAJO SU PROPIO PESO

APLICACIONES DE LAS ECUACIONES DIFERENCIALES EN LA INGENIERIA CURVA DEL CABLE COLGANTE BAJO SU PROPIO PESO APLICACIONES DE LAS ECUACIONES DIFERENCIALES EN LA INGENIERIA CURVA DEL CABLE COLGANTE BAJO SU PROPIO PESO ECUACIÓN DEL CABLE COLGANTE BAJO SU PROPIO PESO Se considera el caso de un cable colgado en sus

Más detalles

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS (Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 7 Ecuaciones diferenciales de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

a) La deformación de fluencia y las relaciones esfuerzo deformación en el rango elástico e inelástico.

a) La deformación de fluencia y las relaciones esfuerzo deformación en el rango elástico e inelástico. Ejemplo La viga rígida mostrada en la fig. 2.18 está soportada por tres barras de acero con un diámetro de 2.54 cm, la longitud de éstas son: 1 =1.0 m, 2 =1.75 m y 3 =2.0 m. Lasbarrassonde acero con un

Más detalles

Universidad de Antioquia, Depto. de Matematicas

Universidad de Antioquia, Depto. de Matematicas minuto. Si la cantidad máxima de sal en el tanque se obtiene a los 0 minutos. Cual era la cantidad de sal inicial en el tanque? (ta.: 375 libras) Ejercicio 10. Un tanque contiene 00 litros de una solución

Más detalles

3. (a+b) 3 = a 3 +3a 2 b+3ab 2 +b (a b) 3 = a 3 3a 2 b 3ab 2 b 3. 9x 12 2x 3 3x+4 = 9/ x 2x 3x = x = 20 x = 5

3. (a+b) 3 = a 3 +3a 2 b+3ab 2 +b (a b) 3 = a 3 3a 2 b 3ab 2 b 3. 9x 12 2x 3 3x+4 = 9/ x 2x 3x = x = 20 x = 5 Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Ecuaciones Algebraicas J. Labrin - G.Riquelme Productos Notables: 1. (a±b) = a ±ab+b. (a+b) (a b) = a b 1. Resuelva

Más detalles

Por tanto, la anterior ecuación puede reescribirse de la siguiente manera:

Por tanto, la anterior ecuación puede reescribirse de la siguiente manera: TUTORIAL ECUACIONES DIFERENCIALES Las ecuaciones diferenciales regulan muchos fenómenos físicos, como entenderéis perfectamente con este tutorial, resultando fundamental entender como ingeniero los métodos

Más detalles

FLUIDOS. sólido líquido gas

FLUIDOS. sólido líquido gas FLUIDOS sólido líquido gas INTRODUCCIÓN La materia puede clasificarse por su forma física como un sólido, un líquido o un gas. Las moléculas de los solidos a temperaturas y presiones ordinarias tienen

Más detalles

Temas e Indicadores - Matemática

Temas e Indicadores - Matemática Temas e - Matemática Tema Magnitudes proporcionales Cálculos algebraicos Ecuaciones Inecuaciones Tópicos de Geometría Euclidiana y Trigonometría Tópicos de Geometría Analítica Indicador 1. Resuelve problemas

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE: CIENCIAS DE LA EDUCACIÓN PROGRAMA DE: LICENCIATURA EN MATEMÁTICAS 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : ECUACIONES DIFERENCIALES CÓDIGO : 22143 SEMESTRE :

Más detalles

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES Objetivo: El alumno conocerá las ecuaciones en derivadas parciales y aplicará el método de separación de variables en su resolución.

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

INTERPRETACION GEOMETRICA DE LA DERIVADA

INTERPRETACION GEOMETRICA DE LA DERIVADA INTRODUCCIÓN A LAS DERIVADAS CON ESTA EXPRESIÓN SE CALCULA: a) La pendiente ( m ) de la recta secante a la función al cambiar. b) La velocidad o cambio promedio de la función al cambiar. c) El cociente

Más detalles

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4.1. Ecuaciones lineales La e.d.o. de primer orden lineal es Si g(x) = 0: ecuación lineal homogénea. a 1 (x) +

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 27/02/17 Programa Ingeniería Química Semestre IV Nombre Ecuaciones Diferenciales. Código 22076 Prerrequisitos Cálculo II, Álgebra

Más detalles

Álgebra Lineal Agosto 2016

Álgebra Lineal Agosto 2016 Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Arranque y Parada de un CSTR. Caso isotérmico

Arranque y Parada de un CSTR. Caso isotérmico Arranque y Parada de un CSTR. Caso isotérmico Alan Didier Pérez Ávila Un CSTR es un reactor ideal con agitación en el que se supone que la concentración en cualquier punto del reactor es la misma. Para

Más detalles

Aplicaciones a Flujo de calor en estado estacionario.

Aplicaciones a Flujo de calor en estado estacionario. Universidad de oriente Núcleo de Bolívar Unidad de Cursos Básicos Matemática IV Aplicaciones a Flujo de calor en estado estacionario. Profesor: Realizado por: Cristian Castillo Ana Ron C.I 20.554.942 Yasser

Más detalles

PRACTICA TEMA 3. Variable Independiente

PRACTICA TEMA 3. Variable Independiente Ejercicio 1. PRACTICA TEMA 3 a Defina ecuación diferencial. Dé un ejemplo b Dada una ecuación diferencial de primer orden y primer grado definida implícitamente por g(x,y,y') = 0, exprese en forma analítica

Más detalles

FLUJO DE CALOR EN BARRAS METÁLICAS

FLUJO DE CALOR EN BARRAS METÁLICAS PRÁCTICA 9 FLUJO DE CALOR EN BARRAS METÁLICAS OBJETIVO Estudio de la transmisión de calor en una barra metálica que se calienta por un extremo. Determinación del coeficiente de enfriamiento de Newton y

Más detalles

Dinámica. Cinemática de Partículas Movimiento Rectilíneo

Dinámica. Cinemática de Partículas Movimiento Rectilíneo Dinámica Cinemática de Partículas Movimiento Rectilíneo Introducción. En general se distinguen dos tipos de movimiento para las partículas, estos son: el movimiento rectilíneo y el movimiento curvilíneo.

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala CLAVE-103-2-N-1-00-2015-S Universid de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática CLAVE-103-2-N-1-00-2015-S Curso: Área Matemática Básica 2 Código de curso: 103 Semestre:

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

GUÍA N 10 CÁLCULO I. 1. Hallar una ecuación para la recta tangente, en el punto ( f ( )) = 3. x 1 x 2 1.

GUÍA N 10 CÁLCULO I. 1. Hallar una ecuación para la recta tangente, en el punto ( f ( )) = 3. x 1 x 2 1. UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva APLICACIONES DE LA DERIVADAS Problemas sobre la tangente Ejemplos:

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver

Más detalles

Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave V

Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave V Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias Departamento de Matemáticas Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

CLAVE V

CLAVE V CLAVE-114-2-V-2-00-2015 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTA DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA SEMESTRE: PRIMERO CÓDIGO DEL CURSO: 114 CURSO: MATEMÁTICA INTERMEDIA 3 JORNADA: TIPO DE EXAMEN:

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE pgandarilla@hotmail.com p.gandarilla@gmail.com Santa Cruz, noviembre de 2009 SUMARIO

Más detalles

DINAMICA DE FLUIDOS O HIDRODINAMICA.

DINAMICA DE FLUIDOS O HIDRODINAMICA. DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene

Más detalles

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 =

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 = Problemas Resueltos 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 T (, ) =, donde T está medida en grados centígrados,,z en metros. 1+ + + z En qué dirección

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria

Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial

Más detalles