Evaluación de modelos para la predicción de la Bolsa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Evaluación de modelos para la predicción de la Bolsa"

Transcripción

1 Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España Rico Hario Abilowo Hardjono Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 1. INTRODUCCION La minería de datos consiste en aplicar una serie de técnicas a un conjunto de datos con el objetivo de llegar a tener un conocimiento sobre estos, gracias a los conocimientos sobre estos datos podemos llegar prever lo que puede ocurrir, y así tomar las medidas oportunas. Además de la predicción la minería de datos se utiliza para construir sistemas computacionales que sean capaces de aprender, esto se hace dotando al sistema de una serie de algoritmos y técnicas que imiten la cualidad humana del aprendizaje, obteniendo una serie de conocimientos de experiencia anteriores. Muchas empresas crean bases de datos especialmente diseñadas para procesos de minería de datos, un ejemplo son los supermercados. Los supermercados utilizan la minería de datos con el objetivo de conocer los hábitos de compra de sus clientes, lo ilustraremos con el siguiente ejemplo, un estudio de los supermercados detecto que los viernes había un gran numero de clientes que adquirían a la vez pañales y cerveza, esto se debía a que los viernes venían muchos padres jóvenes al supermercado, cuya perspectiva del fin de semana era quedarse cuidando a sus hijos, viendo la televisión y tomándose unas cervezas. El supermercado tras conocer lo que ocurría el viernes, decidió emplear una estrategia para conseguir incrementar el número de venta de cervezas. La estrategia consistía en colocar las cervezas justo al lado de los pañales. De esta manera ponemos al alcance de cada cliente lo que necesita en cada momento consiguiendo así que su actividad sea efectiva. Todo proyecto de minería de datos debe seguir una serie de pasos, los pasos a seguir son el filtrado de los datos, selección de variables, extracción de conocimientos, interpretación y evaluación de los resultados obtenidos. El filtrado de los datos se utiliza debido a que muchas veces el formato de los mismos no es el ideal, por lo que la mayoría de las ocasiones no es posible aplicar ninguno de los algoritmos de minería sobre los datos en bruto, el proceso de filtrado se realiza de tal forma que se eliminan aquellos datos que son incorrectos, no validos, desconocidos, según las necesidades de los algoritmos que vayamos a emplear, como consecuencia de este filtrado se obtienen muestras o se reducen el numero de valores posibles, la reducción de estos valores se hace por medio de redondeo o clustering. La selección de variables se realiza justo después de que los datos hayan sido procesado, una vez que los datos han sido procesados la cantidad de información obtenida sigue siendo muy elevada, para reducir dicha cantidad de datos se seleccionan aquellos que tengan una determinada característica eligiendo así los atributos o variables mas determinantes de dicho conjunto de datos, esta elección de variables se debe hacer de tal manera que no afecta a los conocimientos obtenidos del proceso de minería. Tenemos dos métodos de selección de características. El primero de los dos métodos se basa en la elección de los mejores atributos del problema, y el otro consiste en buscar variables independientes mediante test de sensibilidad, algoritmos de distancia o heuristicos. La extracción de los conocimientos se realiza mediante el empleo de una técnica de minería, observando así algunos patrones de comportamiento en las variables del problema, o posibles relaciones entre dichas variables. Finalmente pasamos a la interpretación y la evaluación de los resultados, una vez obtenido el modelo, pasamos a conocer si dicho modelo es o no valido, comprobando si las conclusiones obtenidas son validas y satisfactorias. Si obtenemos más de un modelo, debemos compararlos y tomar aquel modelo que se ajuste más a nuestro problema. En el caso de que ninguno de los modelos obtenidos cumpla nuestras expectativas, deberemos realizar cambios en los pasos anteriores para así generar nuevos modelos.

2 2. TECNICAS DE MINERIA DE DATOS. La minería de datos emplea diferentes técnicas, según el resultado que queramos obtener de nuestro conjunto de datos. Las técnicas empleadas son tres, las cuales describiremos a continuación. Técnicas descriptivas: Las técnicas descriptivas nos proporcionan información sobre las posibles relaciones entre los diferentes datos y sus correspondientes características. Aplicando esta técnica obtenemos información del tipo. Los clientes que compran pañales en supermercado son propensos a comprar cervezas. La combinación de tabaco y alcohol son un factor importante en tiempo de vida de una persona. Los clientes que poseen una bicicleta tienen unas características muy diferentes del resto de clientes. Técnicas predictivas: Las técnicas predictivas se aplican a un conjunto de datos con el objetivo de obtener conocimientos de futuro, las posibles preguntas que se podrían responder utilizando este tipo de conocimientos serian las siguientes. En el caso de un supermercado conocer cuales serian las ventas del año próximo. En el caso de una empresa de seguro conocer el tipo de seguro que podría contratar el cliente X. Técnicas de modelado: Las técnicas de modelado se emplean en la comprensión de sistemas, es decir se obtiene una representación del sistema que le permita imitar su comportamiento. Para ello el modelado emplea agrupamiento, árboles de decisión, y análisis de secuencias/asociaciones. Conocimientos obtenidos gracias a la aplicación de las técnicas: Asociaciones: Una asociación entre dos atributos ocurre cuando la frecuencia de que ambos estén relacionados conjuntamente es relativamente alta. Un ejemplo es el supermercado, donde se comprueba si los pañales y los potitos de bebe se compran conjuntamente. Dependencias: Una dependencia se da cuando un atributo de un conjunto de datos determina valor de otro atributo. A veces este tipo de dependencias no nos aportan ninguna información por lo que no son nada interesantes. Un ejemplo es el siguiente caso, una persona ingresa en maternidad por consiguiente ya sabemos que esa persona es una mujer. Clasificación: La clasificación se puede ver como un esclarecimiento de una dependencia, el atributo dependiente nos puede ayudar a determinar ciertas reglas. Por ejemplo en el caso de una clínica los atributos edad, numero de miopías y astigmatismo han determinado aquellos pacientes que han superado la cirugía ocular sin problemas, gracias a esto se ha obtenido una regla que clasifican los casos en positivos o negativos a partir de dichos atributos. Agrupamiento/Segmentación: El agrupamiento (clustering) consiste en detectar grupos de individuos, estos grupos de individuos se diferencian de la clasificación en que no se conoce su número, ni la clase a la que pertenecen. El agrupamiento crea así grupos o racimos (cluster) de datos que se diferencian del resto. Tendencia/Regresión: Tiene como objetivo predecir que ocurrirá en el futro con una determinada variable, para ello se apoyará en otra variable, generalmente el tiempo. 3. WEKA Para el proceso de datos utilizaremos la herramienta de código libre Weka (Waikato Enviroment for Knowledge Análisis). Weka es un conjunto de librerías Java que permiten la extracción y aprendizaje de conocimientos a partir de bases de datos. Weka proporciona una amplia variedad de algoritmos/técnicas para realizar un modelado y que dependen de la naturaleza de los datos de entrada. En nuestro caso, el conjunto de datos presenta una serie de atributos de tipo numérico. Algoritmos de datos numéricos empleados: Regresión lineal M5' KStar RPTree A continuación detallaremos el funcionamiento de los algoritmos anteriormente indicados, permitiéndonos así una mejor compresión de los resultados que proporcionan cada uno de ellos: Regresión lineal: Es el esquema de aprendizaje para datos numéricos más sencillo, donde los parámetros solo controlan cómo se seleccionan los atributos que deben ser incluidos en la función lineal. Modela los datos usando una línea recta. Se caracteriza, por tanto, por la utilización de dos variables, una aleatoria, y (llamada variable respuesta), que es función lineal de otra variable aleatoria, x (llamada variable predictora), formándose la ecuación y = a + bx. En esta ecuación la variación de y se asume que es constante, y a y b son los coeficientes de regresión que especifican la intersección con el eje de ordenadas, y la pendiente de la recta, respectivamente. M5'

3 Este algoritmo hace uso de un modelo de regresión lineal conocido como model tree. Se trata de un árbol de decisión usado en predicción numérica que estima el valor de la clase de la instancia cuando se alcanza una de sus hojas. En un principio se construye usando un algoritmo inductivo de árbol de decisión. Posteriormente cuando el model tree es usado para predecir el valor de una instancia el árbol es recorrido hacia abajo hasta llegar a una hoja, para ello se usan los valores de los atributos de la instancia que permiten tomar las decisiones de enrutado en cada nodo. La hoja contendrá un modelo lineal basado en alguno/s de los valores de los atributos de la instancia a partir de los cuales se puede obtener el valor predicho de la misma. Cabe destacar que M5 puede reemplazar un valor de atributo no determinado, dicho hueco por la media global o la moda del conjunto de datos de entrenamiento antes de que se construyera el árbol. A su vez, permite diferentes tipos de salida: árbol modelo, árbol de decisión sin modelos lineales en las hojas y regresión lineal. KStar Es un clasificador basado en instancias, esto significa que la clasificación de una instancia está basada en la clasificación de instancias de entrenamiento similares, determinadas por alguna función de similitud. Se diferencia de otros aprendizajes basados en lo mismo en que usa una función de distancia basada en entropía. RPTree Es un método de aprendizaje rápido mediante árboles de decisión. Construye un árbol de decisión usando la información de varianza y lo poda usando como criterio la reducción del. Solamente clasifica valores para atributos numéricos una vez. Los valores que faltan se obtienen partiendo las correspondientes instancias. 4. ESTUDIO DE LA BOLSA DE NEW YORK Esta práctica tiene como objetivo el análisis de la bolsa de New York con la finalidad de poder predecir posibles acontecimientos. Para el análisis contamos con un conjunto de datos los cuales se encuentran almacenados en un fichero, la aplicación que vamos a emplear para el análisis de los datos es Weka, la cual posee una serie de algoritmos que nos ayudaran en nuestras predicciones. El fichero de datos sobre el cual vamos a realizar el análisis consta de una gran cantidad de datos, estos datos recogen una serie de atributos de la bolsa durante los años 1996 y 2000, estos atributos se muestran a continuación.. Año. Max. Mes. Min. Dia. Cierra. Salto-dia. Media-2-dias. Salto-mes. Media-3-dias. Abre. Baja Año: Es la variable que determina el año en el cual se ha tomado el correspondiente dato. Esta variable oscila entre 1996 y Mes: Determina el mes en el cual se toma le dato de la bolsa, su valor esta comprendido entre 1 y 12. Dia: El atributo dia nos muestra el dia dentro del correspondiente mes, en el cual se han hecho las mediciones. Salto-dia: En nuestro fichero de datos las muestras no se han tomado diariamente, por lo que a veces hay unos intervalos de varios dias entre cada muestra, para ello se emplea el atributo salto-dia para indicar si la muestra tomada es consecutiva con la anterior. Salto-Mes: Este atributo funciona de la misma manera que el anterior con la diferencia que este nos indica si el mes en el que se ha tomado la muestra es consecutivo con el anterior. Abre: El atributo abre nos da el valor con el cual ha abierto la bolsa ese dia. Max: Este atributo nos indica el máximo alcanzado en la bolsa de New York durante ese dia. Min: Este atributo nos indica el mínimo alcanzado en la bolsa de New York durante ese dia. Cierra: Determina al final del dia el valor con el cual se ha cerrado la bolsa. Media-2-dias: Nos indica cual ha sido la media durante los dos últimos dias anteriores al actual. Media-3-dias: Nos indica cual ha sido la media durante los tres dias anteriores al actual. Baja: El atributo baja es una variable booleana, la cual nos indica si la bolsa ha cerrado con una bajada con respecto a la apertura. A continuación mostraremos una parte de nuestro fichero bolsa.arff, el cual esta dividido en dos partes, atributos y datos. Los atributos del fichero anio mes dia salto-dia {si, salto-mes {si, abre max min cierra media-2-dias media-3-dias baja {si, no} Los datos que contiene el fichero 2000,12,28,no,no,1328,1335,1325,1334,1334,1334,no 2000,12,27,no,no,1315,1332,1310,1328,1334,1334,no 2000,12,26,no,no,1305,1315,1301,1315,1331,1331,no 2000,12,22,si,no,1274,1305,1274,1305,1322,1326,no

4 2000,12,21,no,no,1264,1285,1254,1274,1310,1316,no 2000,12,20,no,no,1305,1305,1261,1264,1290,1298,si 2000,12,19,no,no,1322,1346,1305,1305,1269,1281,si 2000,12,18,no,no,1312,1332,1312,1322,1284,1281,no Después de haber aplicado el algoritmo, hemos obtenido un de predicción del 1,5255 por ciento. Los resultados obtenidos son buenos resultados, ya que hemos utilizado regresión lineal la cual se basa en resultados anteriores. El cometido a la hora de estimar la media del valor de cierre en la bolsa es de 3, PREDICCIONES DE LA BOLSA Con los datos mostrados anteriormente y utilizando algunos de los algoritmos de la aplicación Weka podemos llegar a predecir los valores de apertura y cierre de la bolsa del dia siguiente, de igual manera se puede predecir la subida que experimentara la bolsa el siguiente mes. Para la predicción de apertura y cierre de la bolsa del dia siguiente hemos seleccionada los siguiente atributos, que posteriormente serán analizados. Año Abre Min Mes Dia Cierra Max Para hallar las predicciones hemos escogido primeramente el método LeastMedSq (-S 4 -G 0) el cual se basa en una regresión lineal y en redes de neuronas, este método nos da información de lo que puede ocurrir en el futuro de una determinada variable, para ello se apoyara en otra variable generalmente el tiempo. IBK k 1 w 0 Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % Este algoritmo se basa en los K vecinos más próximos. RESULTADOS OBTENIDOS: Cierre de la bolsa: cierra = * anio * mes * dia * abre * max * min Time taken to build model: seconds Mean absolute Root mean squared Relative absolute % Root relative squared % KStar Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % M5P M5 pruned model tree: (using smoothed linear models) LM1 (1262/1.892%)

5 LM num: 1 cierra = * abre * max * min Time taken to build model: 2.16 seconds Mean absolute Root mean squared Relative absolute % Root relative squared % * dia * abre * max * min Time taken to build model: 0.02 seconds Mean absolute Root mean squared Relative absolute % Root relative squared % REPTree Apertura de la bolsa: Time taken to build model: 0.02 seconds Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % LinearRegresion abre = * anio * mes * dia * max * min * cierra Time taken to build model: 13.2 seconds cierra = * anio * mes +

6 Mean absolute Root mean squared Relative absolute % Root relative squared % Al aplicar el algoritmo para predecir el atributo de apertura de la bolsa hemos obtenido un de predicción de 1,5139%. El cometido ala hora de estimar el valor medio con el que abre la bolsa es de 3,926 IBK k 1 -w 0 LM1 (1262/1.946%) LM num: 1 abre = * max * min * cierra Time taken to build model: 2.22 seconds Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % KStar Mean absolute Root mean squared Relative absolute % Root relative squared % REPTree Time taken to build model: 0.03 seconds Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % Correlation coefficient Mean absolute Root mean squared Relative absolute % Root relative squared % LinearRegresion: M5P abre = M5 pruned model tree: (using smoothed linear models) * anio * mes +

7 * dia * max * min * cierra Time taken to build model: 0.02 seconds Mean absolute Root mean squared Relative absolute % Root relative squared % A continuación mostramos los resultados obtenidos al aplicar cada uno de los algoritmos en formato de tabla. Esta tabla representa al atributo cierra de la bolsa. Método de predicción Tiempo en generar el modelo(seg) Root mean squared Relative absolute LeastMedsq 11,09 5,8125 1,5255% LinearRegresion 0,02 5,389 1,4379% IBK 0 15,0293 4,0348% Kstar 0 11,4229 3,1623% MP5 2,16 5,4218 1,4508% REPTree 0,02 11,0928 3,1828% Método de predicción Tiempo en generar el modelo(seg) Root mean squared Relative absolute LeastMedsq 13,2 5,5019 1,5139 % LinearRegresion 0,02 5,3993 1,4729 % IBK 0 14,6868 4,0233 % Kstar 0 10,3123 2,9493 % MP5 2,22 5,4124 1,4813 % REPTree 0,03 11,8121 3,4233 % 6. CONCLUSION: Hemos realizado un estudio de los diferentes algoritmos de Weka para predecir cual será el cierre con respecto la apertura de la bolsa en un determinado día, con los algoritmos aplicados hemos conseguido es inferiores al 15%, el algoritmo que menos es nos ha dado es el Linear Regresion con una tasa de de predicción inferior al 5.4% con un tiempo de ejecución bastante bajo. 7. REFERENCIAS: Apuntes y trabajos de la asignatura Inteligencia en redes de comunicaciones. Base de datos (dataset) A continuación mostramos los resultados obtenidos al aplicar cada uno de los algoritmos en formato de tabla. Esta tabla representa al atributo abre de la bolsa.

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Predicción de los ciclos de El Niño

Predicción de los ciclos de El Niño Predicción de los ciclos de El Niño Israel Cendrero Sánchez I.T.T.Telemática Universidad Carlos III de Madrid Leganes,Madrid,España 100055713@alumnos.uc3m.es Beatriz López Moreno I.T.T.Telemática Universidad

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos).

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Autores: - MsC. Ing. Mario L. Basulto Núñez (ETECSA) mario.basulto@etecsa.cu - Lic.

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo

Más detalles

Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. www.fundibeq.

Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. www.fundibeq. DIAGRAMA DE DISPERSIÓN 1.- INTRODUCCIÓN Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. Describe la construcción de los Diagramas

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Análisis de Datos. Práctica de métodos predicción de en WEKA

Análisis de Datos. Práctica de métodos predicción de en WEKA SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción TEMA 1. Introducción Francisco José Ribadas Pena, Santiago Fernández Lanza Modelos de Razonamiento y Aprendizaje 5 o Informática ribadas@uvigo.es, sflanza@uvigo.es 28 de enero de 2013 1.1 Aprendizaje automático

Más detalles

Inteligencia de Negocio

Inteligencia de Negocio UNIVERSIDAD DE GRANADA E.T.S. de Ingenierías Informática y de Telecomunicación Departamento de Ciencias de la Computación e Inteligencia Artificial Inteligencia de Negocio Guión de Prácticas Práctica 1:

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. GRÁAFICOS DE CONTROL POR VARIABLES 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas más potentes para el control de procesos,

Más detalles

TEMA 1. Introducción y conceptos generales sobre la ciencia económica: Gráficas en Economía

TEMA 1. Introducción y conceptos generales sobre la ciencia económica: Gráficas en Economía TEMA 1 Introducción y conceptos generales sobre la ciencia económica: Gráficas en Economía Objetivos Hacer e interpretar gráficas de series de tiempo, gráficas de sección trasversal y diagramas de dispersión

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

Práctica 1: Entorno WEKA de aprendizaje automático y data mining.

Práctica 1: Entorno WEKA de aprendizaje automático y data mining. PROGRAMA DE DOCTORADO TECNOLOGÍAS INDUSTRIALES APLICACIONES DE LA INTELIGENCIA ARTIFICIAL EN ROBÓTICA Práctica 1: Entorno WEKA de aprendizaje automático y data mining. Objetivos: Utilización de funciones

Más detalles

Lección n 5. Modelos de distribución n potencial de especies

Lección n 5. Modelos de distribución n potencial de especies Lección n 5. Modelos de distribución n potencial de especies 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución

Más detalles

Pablo Martínez-Camblor Subdirección de Salud de Guipuzcoa, Donosti.

Pablo Martínez-Camblor Subdirección de Salud de Guipuzcoa, Donosti. Métodos Estadísticos sticos para Diagnósticos MédicosM Barcelona, uno de marzo de 2008 Pablo Martínez-Camblor Subdirección de Salud de Guipuzcoa, Donosti. MODULO: Diseño de proyectos y análisis estadístico

Más detalles

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo 1 Algoritmos de minería de datos incluidos en SQL Server 2008 Los algoritmos que aquí se presentan son: Árboles de decisión de Microsoft, Bayes naive de Microsoft, Clústeres de Microsoft, Serie temporal

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES

UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES UN MODELO PARA LA PREDICCIÓN DE RECIDIVA DE PACIENTES OPERADOS DE CÁNCER DE MAMA (CMO) BASADO EN REDES NEURONALES José Alejandro Chiri Aguirre RESUMEN La predicción de recidiva en pacientes que han sido

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Correlación entre variables

Correlación entre variables Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte

Más detalles

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones.

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. 2.1 Revisión sistema reconocimiento caracteres [9]: Un sistema de reconocimiento típicamente esta conformado por

Más detalles

Práctica 3. Explorando datos con Statistix

Práctica 3. Explorando datos con Statistix Práctica 3. Explorando datos con Statistix En esta práctica aprenderemos a explorar un conjunto de datos utilizando el menú Statistics de nuestro programa. Un geyser es un nacimiento de agua hirviente

Más detalles

Sistema categorizador de ofertas de empleo informáticas

Sistema categorizador de ofertas de empleo informáticas Diego Expósito Gil diegoexpositogil@hotmail.com Manuel Fidalgo Sicilia Manuel_fidalgo@hotmail.com Diego Peces de Lucas pecesdelucas@hotmail.com Sistema categorizador de ofertas de empleo informáticas 1.

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos KNime - Introducción KNime Significa KoNstanz Information MinEr. Se pronuncia [naim]. Fue desarrollado en la Universidad de Konstanz (Alemania). Esta escrito en Java y su entorno grafico esta desarrollado

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Métricas de complejidad para la transformación del problema de detección de cáncer basado en

Métricas de complejidad para la transformación del problema de detección de cáncer basado en Índice para la transformación del problema de detección de cáncer basado en mamografías Alumna: Núria Macià Antoĺınez Asesora: Ester Bernadó Mansilla Núria Macià Antoĺınez PFC: 1/49 Índice 1 Planteamiento

Más detalles

Tema 3. Series de Tiempo

Tema 3. Series de Tiempo Tema 3. Series de Tiempo 3.3.1. Definición En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Reconocimiento de imágenes

Reconocimiento de imágenes Capítulo 4 Reconocimiento de imágenes En la actualidad, el reconocimiento de imágenes es una herramienta de gran utilidad en el área de control y automatización. Varias empresas usan el reconocimiento

Más detalles

Ingeniería en Informática

Ingeniería en Informática Departamento de Informática Universidad Carlos III de Madrid Ingeniería en Informática Aprendizaje Automático Junio 2007 Normas generales del examen El tiempo para realizar el examen es de 3 horas No se

Más detalles

EJEMPLO. Práctica de clustering

EJEMPLO. Práctica de clustering Práctica de clustering Preparación de los ficheros binarios Para operar los ficheros binarios se ha utilizado una aplicación en Delphi que permite montar los ficheros ".arff" que usa Weka. La aplicación

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software

Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software J. Cuadrado Gallego 1, Miguel Ángel Sicilia 1, Miguel Garre Rubio 1 1 Dpto de Ciencias de la Computación,

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Data Mining o Minería de Datos

Data Mining o Minería de Datos Data Mining o Minería de Datos A quién se le ocurriría basar una de las estrategias comerciales para incrementar las ventas de una compañía de retail, en una correlación de consumo nada obvia entre pañales

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES

2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3

Más detalles

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los

Más detalles

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH 1) DEFINICIÓN Las series de tiempo llamadas también series cronológicas o series históricas son un conjunto de datos numéricos que se obtienen en períodos regulares

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. DISEÑO DE EXPERIMENTOS 1.- INTRODUCCIÓN Este documento trata de dar una visión muy simplificada de la utilidad y la utilización del Diseño de Experimentos. En él se explican los conceptos clave de esta

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos ESCUELA POLITÉCNICA SUPERIOR Grupo de Sistemas Electrónicos de Potencia PROYECTO FIN DE CARRERA INGENIERÍA INDUSTRIAL Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productivity in Construction Companies: Knowledge acquired from the databases Hernando Camargo Mila, Rogelio Flórez

Más detalles

Con el fin de obtener los datos, se procede con las siguientes instrucciones:

Con el fin de obtener los datos, se procede con las siguientes instrucciones: Capitulo 3. La predicción de beneficios del mercado bursátil Este segundo caso de estudio va más allá en el uso de técnicas de minería de datos. El dominio específico utilizado para ilustrar estos problemas

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo Minería de Datos Óscar Palomo Miñambres Universidad Carlos III de Madrid Avda. De la Universidad, 30 28911, Leganés (Madrid-España) 100049074@alumnos.uc3m.es Abstract En este artículo analizaremos las

Más detalles

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Emilio Soria Olivas! Antonio José Serrano López! Departamento de Ingeniería Electrónica! Escuela Técnica Superior de Ingeniería!

Más detalles

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II.

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II. PROGRAMA DE ESTUDIOS A. ANTECEDENTES GENERALES Nombre de la asignatura Carácter de la asignatura Pre requisitos Co requisitos Créditos Ubicación dentro del plan de estudio Número de clases por semana Número

Más detalles

Inteligencia emocional y éxito académico. Hay relación entre ellas?

Inteligencia emocional y éxito académico. Hay relación entre ellas? Inteligencia emocional y éxito académico Hay relación entre ellas? Índice Introducción..2 Fundamento del estudio.2 Instrumentos de medida.3 Selección de la muestra.7 Análisis General por cursos...7 Por

Más detalles

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y):

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y): INTRODUCCIÓN Nos vamos a ocupar ahora de estudiar un fenómeno desde la perspectiva temporal, observando su evolución a través del tiempo, lo que se denomina investigación diacrónica o longitudinal, en

Más detalles

I.S.C. E.D. M.E. Ricardo Bustamante González

I.S.C. E.D. M.E. Ricardo Bustamante González INSTITUTO TECNOLOGICO SUPERIOR DE LERDO LICENCIATURA EN INFORMATICA TOPICOS AVANZADOS Ejemplos de la implementación de la minería de datos en el mundo real BRENDA CAROLINA PEREZ IBARRA 06230255 I.S.C.

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

Análisis de Regresión y Correlación con MINITAB

Análisis de Regresión y Correlación con MINITAB Análisis de Regresión y Correlación con MINITAB Primeras definiciones y conceptos de la regresión El análisis de la regresión es una técnica estadística que se utiliza para estudiar la relación entre variables

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

Aplicación de los ordenadores

Aplicación de los ordenadores Aplicación de los ordenadores Los ordenadores pueden emplearse para resolver una gran cantidad de problemas. Hoy en día, podría decirse que el ordenador puede aplicarse a casi todas las áreas del conocimiento.

Más detalles

MINERÍA DE DATOS CON WEKA PARA LA PREDICCIÓN DEL PRECIO DE AUTOMÓVILES DE SEGUNDA MANO

MINERÍA DE DATOS CON WEKA PARA LA PREDICCIÓN DEL PRECIO DE AUTOMÓVILES DE SEGUNDA MANO UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA TÉCNICA SUPERIOR DE INFORMÁTICA APLICADA MINERÍA DE DATOS CON WEKA PARA LA PREDICCIÓN DEL PRECIO DE AUTOMÓVILES DE SEGUNDA MANO PROYECTO FIN DE CARRERA Autor

Más detalles

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS Solucionario 5 Inecuaciones ACTIVIDADES INICIALES 5.I. rdena de menor a mayor los siguientes números. a), 6 8, 4 y 7 b) 0,v,, y 0, 4 5 5 0 90 5 a) 75 ; 6 8 7 ; 4 80 y 7 70 7 6 8 4 4 00 5 00 5 00 0 00 0

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles