Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez"

Transcripción

1 Sisemas y Señales I Ecuaciones de Esado Auor: Dr. Juan Carlos Gómez

2 Variables de Esado Definición: Las Variables de Esado son variables inernas del sisema, cuyo conocimieno para odo iempo, juno con el conocimieno de las enradas, permie compuar cualquier ora variable del sisema. Definición: El mínimo número de variables de esado linealmene independienes, que permien deerminar cualquier ora variable del sisema es el denominado orden del sisema. J.C. Gómez SyS-I

3 Ecuaciones de Esado La dinámica de un sisema puede represenarse en función de las variables de esado con una ecuación diferencial de primer orden, de la forma: EE ( ) x () = F x(), u() donde [ ] x() = x (), x (),, x () T 1 n es el vecor de esado de dimensión n (igual al orden del sisema), u() es el vecor de enrada, y F(x,u) es una función, en general no lineal, del esado y la enrada. J.C. Gómez SyS-I 3

4 Ecuación n de Salida La Ecuación de Salida es una ecuación algebraica donde las salidas del sisema se escriben en función de las variables de esado y las enradas. Es decir ES ( ) y() = G x(), u() J.C. Gómez SyS-I 4

5 Ejemplo Consideremos el sisema masa-resore represenado en la Fig. 1 Figura 1: Sisema masa-resore La ecuación diferencial que describe la dinámica del sisema es: mz () = F kz() bz () J.C. Gómez SyS-I 5

6 Donde se asumió que el resore iene una caracerísica lineal y que el rozamieno es de ipo viscoso, es decir, la fuerza de roce es proporcional a la velocidad. En ese caso podemos definir como variables de esado la posición y la velocidad de la masa m, es decir: x1 () = z() x () = z () Las Ecuaciones de Esado resulan enonces: EE x 1 () = x() 1 k b x () = F x1() x() m m m J.C. Gómez SyS-I 6

7 En ese caso (sisema lineal), las EE pueden escribirse en forma maricial EE x 1 () x1() = k b 1 F() x () () x + u () m m m X() X () A B Es decir, son de la forma EE X () = AX() + Bu() donde: A es la mariz de ransición X() es el vecor de esado B es la mariz de enrada u() es el vecor de enrada J.C. Gómez SyS-I 7

8 Suponiendo que nos ineresan como salidas del sisema la posición de la masa m y la fuerza de rozamieno, la ecuación de salida resula: ES y () = x () 1 1 y () = bx () que en ese caso (sisema lineal) puede escribirse en forma maricial ES y1() 1 0 x1() 0 F () y() = 0 b + x () 0 u () Y() C X() J.C. Gómez SyS-I 8 D

9 Es decir, la Ecuación de Salida es de la forma ES Y () = CX () + Du () donde: C es la mariz de salida D es la mariz de ransferencia direca Y() es el vecor de salida X() es el vecor de esado u() es el vecor de enrada J.C. Gómez SyS-I 9

10 Represenación n en Espacio de Esados de un Sisema Lineal Esacionario Para un sisema lineal esacionario la represenación en espacio de esados oma la forma donde X () = AX() + Bu() Y () = CX () + Du () X, u, Y n m p n n n m p n p m A, B, C, D Es decir, el sisema queda represenado por la cuadrupla ( ABCD,,, ) J.C. Gómez SyS-I 10

11 La represenación en Espacio de Esados no es única. En efeco, basa con realizar un cambio de coordenadas en el espacio de esados, de la forma X ( ) = TX ( ), T mariz no singular para obener una represenación equivalene. Exisen por lo ano infinias represenaciones (realizaciones) en Espacio de Esados equivalenes. Hallemos la represenación equivalene. X () = TX () = TAX () + TBu() 1 = TAT X ( ) + TBu ( ) A B J.C. Gómez SyS-I 11

12 Y () = CX () + Du () 1 = CT X ( ) + Du ( ) C La represenación en espacio de esados equivalene esá dada enonces por la cuadrupla: D ( 1 TAT, TB, CT 1, D) Definición: Una realización en Espacio de Esado se dice mínima, si el vecor de esados iene la mínima dimensión posible. J.C. Gómez SyS-I 1

13 Relación n enre la represenación n en Espacio de Esados y la represenación n con Función Trans- ferencia de un Sisema Lineal Esacionario Sea un sisema LE represenado por su EE y ES: X () = AX() + Bu() Y () = CX () + Du () Transformando Laplace resula: sx () s = AX () s + BU () s Y() s = CX() s + DU() s (1) () J.C. Gómez SyS-I 13

14 De la ecuación (1) resula ( si A) X () s = BU () s 1 X () s = ( si A) BU() s (3) Reemplazando (3) en () resula 1 Y() s = C( si A) BU() s + DU() s Y() s = C( si A) B D + U() s (4) 1 donde 1 H () s = C( si A) B + D Mariz Transferencia J.C. Gómez SyS-I 14

15 Ejemplo: Consideremos un sisema de do. orden represenado por su Función n Transferencia de la forma Gs () = ω Y() s s s = U( s) n + ξωn + ωn (5) de donde puede obenerse la Ecuación Diferencial Ordinaria (EDO) que describe el comporamieno dinámico del sisema y + y + y = u () ξωn () ωn () ωn () (6) Definiendo como variables de esado: x1 () = y() x() = y () J.C. Gómez SyS-I 15

16 las Ecuaciones de Esado resulan x 1 () = x() x () = ωnx1() ξωnx() + ωnu() Que pueden escribirse en forma maricial como x 1 () 0 1 x1() 0 = u () x () () ωn ξω n x + ω n u () X () A X() B (7) J.C. Gómez SyS-I 16

17 Calculemos los auovalores de la mariz A. Debemos hallar las raíces de la ecuación caracerísica de λi A = 0 ( ) (8) Es decir: λ de 0 0 λ ωn ξω = n λ 1 de 0 = ωn λ ξω + n λ λ+ ξω + ω = n n 0 ( ) λ + ξω λ+ ω = 0 n n J.C. Gómez SyS-I 17 (9)

18 Puede verse que las raíces de la ec. (9) (es decir, los auovalores de la mariz A) coinciden con la raíces del polinomio denominador de la Función Transferencia del sisema en ec. (5) (es decir, los polos de la FT). auovalores de A = polos de G(s) J.C. Gómez SyS-I 18

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado Sisemas y Señales I Ecuacioes de Esado Auor: Dr. Jua Carlos Gómez Variables de Esado Defiició: Las Variables de Esado so variables ieras del sisema, cuyo coocimieo para odo iempo, juo co el coocimieo de

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Caso 2 Referencia distinta de cero r(t) ¹ 0

Caso 2 Referencia distinta de cero r(t) ¹ 0 Caso 2 Referencia disina de cero r() ¹ 0 2.b: Diseño de servosisemas de Tipo para planas ipo uno (la plana iene un inegrador). Fernando di Sciascio (206) Diseño de Servosisema de Tipo Cuando la Plana es

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

Tema 3 Sistemas lineales.

Tema 3 Sistemas lineales. Tema 3 Sisemas lineales. Podemos definir un sisema como un grupo o combinación de elemenos inerrelacionados o íner-acuanes que forman una enidad coleciva. En el conexo de los sisemas de comunicación los

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO. Fernando di Sciascio (2017)

MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO. Fernando di Sciascio (2017) MODELADO MATEMÁTICO DE SISTEMAS DINÁMICOS EN EL ESPACIO DE ESTADO Fernando di Sciascio (2017) Sisemas Dinámicos Lineales Invarianes en el Tiempo (LTI) Un sisema dinámico coninuo LTI se expresa maemáicamene

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela.

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela. Modelado de Sisemas Físicos Profesora Anna Paee, Dr. M.Sc. Ing. Deparameno de Sisemas de Conrol. Escuela de Ingeniería de Sisemas., Mérida, Venezuela. Correo elecrónico: apaee@ula.ve Página web: hp://webdelprofesor.ula.ve/ingenieria/apaee/

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

Práctica 3 (Resolución)

Práctica 3 (Resolución) Operaciones y funciones con Derive: A ROW [n,...] A COL [n,...] APPEND(A, B) CHARPOLY(A, λ) EIGENVALUES(A) Submariz formada por las filas de A indicadas. Submariz formada por las columnas de A indicadas.

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Fundamentos Básicos Sistemas y Señales

Fundamentos Básicos Sistemas y Señales Fundamenos Básicos Sisemas y Señales Preparado por : jhuircan Depo. Ingeniería Elécrica Universidad de La Fronera Objeivos q Revisar los concepos básicos de la Teoría de Sisemas q Revisar los concepos

Más detalles

Problema PTC Datos: L= 10mH, C=100nF. Solución PTC

Problema PTC Datos: L= 10mH, C=100nF. Solución PTC Problema PTC0004-3 Se dispone de un circuio como el de la figura. Calcular: a) El especro de ampliud del sisema (en escalas lineal y logarímica). b) El especro de fase del sisema (en escalas lineal y logarímica).

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales 2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace

Más detalles

1. Elasticidad lineal

1. Elasticidad lineal Inroducción al MEF 1. Elasicidad lineal 1.1. Descripción del problema El problema de esfueros en elasicidad lineal se planea para un sólido que ocupa una región del espacio Ω con una fronera Γ (cf. figura

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Introducción a la Representación en Variable de

Introducción a la Representación en Variable de ELC-3303 Teoría de Conrol Inrodcción a la Represenación en Variable de Esado Prof. Francisco M. Gonzalez-Longa fglonga@ieee.org hp://www.giaelec.org/fglonga/sp.hm Inrodcción a Represenación en Espacio

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las Tema IV APLIICACIIONES LIINEALES Objeivos Conocer el concepo de aplicación lineal enre dos espacios vecoriales. Saber comprobar si una deerminada ransformación es lineal. Saber calcular las imágenes mediane

Más detalles

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0 2.2.a Servoiema Tipo Referencia diina de cero r() ¹ 0 Dieño de ervoiema Tipo para plana Tipo 0. Fernando di Sciacio (207) Dieño de Servoiema de Tipo Cuando la Plana NO Tiene un Inegrador Para plana ipo

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

Introducción a LS-DYNA (4 Safety)

Introducción a LS-DYNA (4 Safety) 13/04/017 Inroducción a LS-DYNA (4 Safey) Conenido 1.. Inegración en el iempo: Implício vs. Explício 1..1. Méodo Implício vs. Explício 1... Paso de iempo críico Análisis Dinámicos Los análisis esáicos

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

1.7.MOVIMIENTO ARMÓNICO SIMPLE

1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.MOVIMIENTO ARMÓNICO SIMPLE 1.7.1. La gráfica elongación-iempo de un movimieno vibraorio armónico (M.A.S.) iene la forma de la figura. Luego, la expresión de su velocidad será: a) v = A. ω cosω b) v

Más detalles

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) <

TEMA I: RESPUESTA TEMPORAL DE LOS CIRCUITOS LINEALES. x(t) < y(t) < TEMA I: ESPUESTA TEMPOA DE OS x() SISTEMA y() IUITOS INEAES. Ecuaciones de las redes generales, lineales e invarianes con parámeros concenrados Ejemplo x() < y() < ircuio esable as ecuaciones a que dan

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

Tema 4. Filtros Analógicos

Tema 4. Filtros Analógicos Tema 4. Filros Analógicos Caracerización Temporal Francisco J. González, UC3M 29 Sisemas y Circuios 4. Definición x() Filro y ( ) = T x( ) x[ n ] ak, bk yn [ ] = T{ xn [ ]} Filro analógico: Sisema en Tiempo

Más detalles

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1 1. Sea V ALGEBRA II Ejemplo 1 a) Probar que W a, b,0 a, b y U aaa,, a son subespacios de V, b) Deerminar una base de W y una base de U, c) Probar que cada vecor en V se puede expresar de manera única como

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos TRABAJO PRÁCTICO N Inroducción al Conrol de Procesos OBJETIVOS: Adquirir una primera aproximación de la forma en que acúan los sisemas de conrol realimenados, aprendiendo a idenificar ipos de variables.

Más detalles

Análisis de generador de onda triangular

Análisis de generador de onda triangular Análisis de generador de onda riangular J.I.Huircan Universidad de La Fronera April 25, 2 Absrac Se presena el análisis de un generador de función para señal cuadrada y riangular alimenado con una fuene.

Más detalles

MODELADO Y SIMULACIÓN INTRODUCCIÓN. Eduardo Martínez

MODELADO Y SIMULACIÓN INTRODUCCIÓN. Eduardo Martínez MODELADO Y SIMULACIÓN INTRODUCCIÓN Eduardo Marínez Sisemas Dinámicos Modelos Maemáicos Principios de la Teoría General de Sisemas 3 Modelos Coninuos Discreos Sisemas Dinámicos Deinición de Sisema Un Sisema

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

El comportamiento del tipo de cambio real frente a la asimetría del sistema de política monetaria: El caso peruano

El comportamiento del tipo de cambio real frente a la asimetría del sistema de política monetaria: El caso peruano El comporamieno del ipo de cambio real frene a la asimería del sisema de políica monearia: El caso peruano Inroducción Marco Teórico y Meodología Resulados Conclusiones Auor: Jhon Valdiglesias Oviedo INTRODUCCIÓN

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

Regulación y Control de Máquinas Navales (RCMN)

Regulación y Control de Máquinas Navales (RCMN) Regulación y Conrol de Máquinas Navales (RCMN) Problemas Resuelos Módulo 3. Análisis y Conrol de Sisemas en Cadena Cerrada G. Ojea, R. González de los Reyes, I. Díaz 04/0/08 PROBLEMA : En el sisema de

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

Tema 2. Modelos matemáticos de los sistemas físicos

Tema 2. Modelos matemáticos de los sistemas físicos Tema. Modelos maemáicos de los sisemas físicos Objeivos Definir modelo maemáico en el ámbio de la ingeniería de sisemas Conocer la meodología de modelado de sisemas físicos Reconocer un modelo lineal de

Más detalles

Circuitos eléctricos paralelos RLC en Corriente Alterna

Circuitos eléctricos paralelos RLC en Corriente Alterna Circuios elécricos paralelos RLC en Corriene Alerna Beelu Gonzalo Esudiane de Ingeniería en Sisemas de Compuación Universidad Nacional del Sur, Avda. Alem 253, B8000CPB Bahía Blanca, Argenina beelugonzalo@gmail.com

Más detalles

x(t) 0 T 2T 3T 4T x(k) = {0, 3, 2.7, 2.2, 2.7, } x k = Redondear( x*(k T) )

x(t) 0 T 2T 3T 4T x(k) = {0, 3, 2.7, 2.2, 2.7, } x k = Redondear( x*(k T) ) SISEMAS DE DAOS MUESREADOS x() Muesreo x*() A/D x() Señal coninua x() : periodo de muesreo 1 1 = =(s) fm = f m =(Hz) 2 π ωm = 2 π fm = = ( rad / s) x*() 2 3 4 = {, 3, 2.7, 2.2, 2.7, } x = Redondear( x*()

Más detalles

Qué es la ecuación lineal de onda y porqué es importante? Cuáles son las ecuaciones de Maxwell? Cómo se relacionan el campo eléctrico y el campo

Qué es la ecuación lineal de onda y porqué es importante? Cuáles son las ecuaciones de Maxwell? Cómo se relacionan el campo eléctrico y el campo Qué es la ecuación lineal de onda y porqué es imporane? Cuáles son las ecuaciones de Mawell? Cómo se relacionan el campo elécrico y el campo magnéico de acuerdo a las ecuaciones de Mawell? Porqué podemos

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS

SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS P1: Sea un servo descrito por la función de transferencia de estados digital. Deseamos diseñar un control por realimentación a) Escriba las ecuaciones de

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

Múltiples representaciones de una señal eléctrica trifásica

Múltiples representaciones de una señal eléctrica trifásica Múliples represenaciones de una señal elécrica rifásica Los analizadores de poencia y energía Qualisar+ permien visualizar insanáneamene las caracerísicas de una red elécrica rifásica. Represenación emporal

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL. Estudiemos el comportamiento estacionario ante una excitación sinusoidal.

COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL. Estudiemos el comportamiento estacionario ante una excitación sinusoidal. TEMA COMPORTAMIENTO DE LOS CIRCUITOS RC ANTE UNA SEÑAL SINUSOIDAL Circuio RC pasa alo Esudiemos el comporamieno esacionario ane una exciación sinusoidal. -/ Figura. Circuio RC pasa alo C nf R k khz La

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs 1. Movimieno rmónico Simple (MS. Oscilaciones moriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS 3.1 Oscilaciones forzadas 3. Esado ransiorio y esado esacionario

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo Solución de un caso paricular del problema de valor de fronera en érminos de la función de Green sobre un inervalo Objeivos. Mosrar que un caso muy especial del problema de valor de fronera: x () = f(),

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

Tema 9 Aprendizaje por la práctica y desbordamiento del conocimiento. El modelo de Romer (1986)

Tema 9 Aprendizaje por la práctica y desbordamiento del conocimiento. El modelo de Romer (1986) Tema 9 Aprendizaje por la prácica y desbordamieno del conocimieno. El modelo de Romer (986) 9. Aprendizaje por la prácica y desbordamieno del conocimieno. 9.2 os modelos de mercado y de familias producoras.

Más detalles

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO

PRÁCTICA 1 CALIBRACIÓN DE INSTRUMENTOS DE MEDICIÓN DE FLUJO . Objeivos UNIVERSIDD SIMÓN BOLÍVR UNIDD DE LBORTORIOS LBORTORIO PRÁTI LIBRIÓN DE INSTRUMENTOS DE MEDIIÓN DE FLUJO Observar el principio de funcionamieno y las diferencias exisenes enre los principales

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

El Transistor como Ampli cador

El Transistor como Ampli cador 1 El Transisor como Ampli cador R. Carrillo, J.I.Huircan Absrac La incorporación de exciaciones de corriene alerna (ca), produc en ariaciones en i B, BE, las que asu ez modi can las ariables y V CE del

Más detalles

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII..- SOLUCIONES NUMÉRICAS A PROBLEMAS DE CONDUCCIÓN MONODIMENSIO- NALES EN RÉGIMEN TRANSITORIO El méodo numérico aplicado a los problemas de conducción

Más detalles

SOLUCIÓN AL SISTEMA GENERAL DE ECUACIONES DE EULER PARA UN FLUIDO COMPRESIBLE RESUMEN

SOLUCIÓN AL SISTEMA GENERAL DE ECUACIONES DE EULER PARA UN FLUIDO COMPRESIBLE RESUMEN Ciencia e Ingeniería Neogranadina Vol. - pp 5-4 Bogoá Junio de 0 ISSN 04-870 SOLUCIÓN AL SISTEMA GENERAL DE ECUACIONES DE EULER PARA UN FLUIDO COMPRESIBLE Adrian Ricardo Gómez Plaa eparameno de Maemáicas

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos socásicos Procesos socásicos I Inroducción y concepos básicos sadísicos de un proceso esocásico Referencias: Capíulo 8 de Inroducción a los Sisemas de Comunicación. Sremler, C.G. 993 Apunes de

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

5. Modelos dinámicos

5. Modelos dinámicos 5. Modelos dinámicos Los modelos lineales dinámicos son un caso paricular de una clase más grande de modelos dinámicos. En general los modelos dinámicos se caracerizan por ener una dinámica en los parámeros

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Control Estático de Estabilidad Transitoria

Control Estático de Estabilidad Transitoria Morelia, Mich., 24 de Agoso de 211 Escuela de Verano de Poencia Conrol Esáico de Esabilidad Transioria A. Pizano Marínez Deparameno de Ingeniería Elécrica Universidad de Guanajuao Conenido INTRODUCCIÓN

Más detalles