Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado"

Transcripción

1 Sisemas y Señales I Ecuacioes de Esado Auor: Dr. Jua Carlos Gómez Variables de Esado Defiició: Las Variables de Esado so variables ieras del sisema, cuyo coocimieo para odo iempo, juo co el coocimieo de las eradas, permie compuar cualquier ora variable del sisema. Defiició: El míimo úmero de variables de esado liealmee idepediees, que permie deermiar cualquier ora variable del sisema es el deomiado orde del sisema. J.C. Gómez SyS-I

2 Ecuacioes de Esado La diámica de u sisema puede represearse e fució de las variables de esado co ua ecuació diferecial de primer orde, de la forma: EE ( ) x () = F x(), u() dode [ ] x() = x (), x (),, x () T 1 es el vecor de esado de dimesió (igual al orde del sisema), u() es el vecor de erada, y F(x,u) es ua fució, e geeral o lieal, del esado y la erada. J.C. Gómez SyS-I 3 Ecuació de Salida La Ecuació de Salida es ua ecuació algebraica dode las salidas del sisema se escribe e fució de las variables de esado y las eradas. Es decir ES y() = G x(), u() ( ) J.C. Gómez SyS-I 4

3 Ejemplo Cosideremos el sisema masa-resore represeado e la Fig. 1 Figura 1: Sisema masa-resore La ecuació diferecial que describe la diámica del sisema es: mz () = F kz() bz () J.C. Gómez SyS-I 5 Dode se asumió que el resore iee ua caracerísica lieal y que el rozamieo es de ipo viscoso, es decir, la fuerza de roce es proporcioal a la velocidad. E ese caso podemos defiir como variables de esado la posició y la velocidad de la masa m, es decir: x1 () = z() x () = z () Las Ecuacioes de Esado resula eoces: EE x 1 () = x() 1 k b x () = F x1() x() m m m J.C. Gómez SyS-I 6

4 E ese caso (sisema lieal), las EE puede escribirse e forma maricial EE x 1 () x1() = k b 1 F() x () () x + u () m m m X() X () A B Es decir, so de la forma EE X () = AX() + Bu() dode: A es la mariz de rasició X() es el vecor de esado B es la mariz de erada u() es el vecor de erada J.C. Gómez SyS-I 7 Supoiedo que os ieresa como salidas del sisema la posició de la masa m y la fuerza de rozamieo, la ecuació de salida resula: ES y1() = x1() y() = bx() que e ese caso (sisema lieal) puede escribirse e forma maricial ES y1() 1 0 x1() 0 F () y() = 0 b + x () 0 u () Y() C X() J.C. Gómez SyS-I 8 D

5 Es decir, la Ecuació de Salida es de la forma ES Y () = CX () + Du () dode: C es la mariz de salida D es la mariz de rasferecia direca Y() es el vecor de salida X() es el vecor de esado u() es el vecor de erada J.C. Gómez SyS-I 9 Represeació e Espacio de Esados de u Sisema Lieal Esacioario Para u sisema lieal esacioario la represeació e espacio de esados oma la forma dode X () = AX() + Bu() Y () = CX () + Du () X, u, Y m p m p p m A, B, C, D Es decir, el sisema queda represeado por la cuadrupla ( ABCD,,, ) J.C. Gómez SyS-I 10

6 La represeació e Espacio de Esados o es úica. E efeco, basa co realizar u cambio de coordeadas e el espacio de esados, de la forma X ( ) = TX ( ), T mariz o sigular para obeer ua represeació equivalee. Exise por lo ao ifiias represeacioes (realizacioes) e Espacio de Esados equivalees. Hallemos la represeació equivalee. X () = TX () = TAX () + TBu() = TAT X ( ) + TBu ( ) A B J.C. Gómez SyS-I 11 Y () = CX () + Du () 1 = CT X ( ) + Du ( ) C La represeació e espacio de esados equivalee esá dada eoces por la cuadrupla: D ( 1 TAT, TB, CT 1, D) Defiició: Ua realizació e Espacio de Esado se dice míima, si el vecor de esados iee la míima dimesió posible. J.C. Gómez SyS-I 1

7 Relació ere la represeació e Espacio de Esados y la represeació co Fució Tras- ferecia de u Sisema Lieal Esacioario Sea u sisema LE represeado por su EE y ES: Trasformado Laplace resula: X () = AX() + Bu() Y () = CX () + Du () sx () s = AX () s + BU () s Y() s = CX() s + DU() s (1) () J.C. Gómez SyS-I 13 De la ecuació (1) resula ( si A) X () s = BU () s X s si A BU s () = ( ) () (3) Reemplazado (3) e () resula Y s C si A BU s DU s () = ( ) () + () Y() s = C( si A) B+ D U() s (4) dode H () s = C( si A) B + D Mariz Trasferecia J.C. Gómez SyS-I 14

8 Ejemplo: Cosideremos u sisema de do. orde represeado por su Fució Trasferecia de la forma Y() s Gs () = ω s s = U( s) + ξω + ω (5) de dode puede obeerse la Ecuació Diferecial Ordiaria (EDO) que describe el comporamieo diámico del sisema y + y + y = u () ξω () ω () ω () (6) Defiiedo como variables de esado: x1 () = y() x() = y () J.C. Gómez SyS-I 15 las Ecuacioes de Esado resula x 1 () = x() x () = ωx1() ξωx() + ωu() Que puede escribirse e forma maricial como x 1 () 0 1 x1() 0 = + u () x () () ω ξω x ω u () X () A X() B (7) J.C. Gómez SyS-I 16

9 Calculemos los auovalores de la mariz A. Debemos hallar las raíces de la ecuació caracerísica Es decir: ( I A) de λ = 0 λ de 0 0 λ ω ξω = λ de 0 ω λ ξω = + λ λ+ ξω + ω = ( ) = 0 λ ξω λ ω J.C. Gómez SyS-I 17 (8) (9) Puede verse que las raíces de la ec. (9) (es decir, los auovalores de la mariz A) coicide co la raíces del poliomio deomiador de la Fució Trasferecia del sisema e ec. (5) (es decir, los polos de la FT). auovalores de A = polos de G(s) J.C. Gómez SyS-I 18

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez Sisemas y Señales I Ecuaciones de Esado Auor: Dr. Juan Carlos Gómez Variables de Esado Definición: Las Variables de Esado son variables inernas del sisema, cuyo conocimieno para odo iempo, juno con el

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

Control de un proceso en bucle cerrado:

Control de un proceso en bucle cerrado: 0/0/0 0/0/0 Corol de u proceso e bucle cerrado: PC e Corolador v Proceso M Medida Para poder aplicar el corolador adecuado ecesiamos saber cómo se compora el proceso a lo largo del iempo. Cualquier proceso

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso UNIVERSIDAD NACIONAL AUÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULAD DE ECONOMÍA ECONOMERIA Proceso Esocásico Mro. Horacio Caalá Aloso Proceso esocásico Defiició.- U Proceso Esocásico (PE es ua secuecia

Más detalles

Decimocuarta clase. Respuesta al impulso y convolución

Decimocuarta clase. Respuesta al impulso y convolución Uiversidad Disrial Fracisco José de Caldas - Aálisis de Señales y Sisemas - Marco A. Alzae Decimocuara clase. Respuesa al impulso y covolució E esa clase repasamos y esedemos la clase 3, ya que se raó

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS V.- CONDICIÓN DE CONTONO ISOTÉMICA EN SÓIDOS INFINITOS V.1.- CONDUCCIÓN TANSITOIA EN PACA INFINITA CON CONDICIÓN DE CONTO- NO ISOTÉMICA a coducció a ravés de ua placa plaa de espesor fiio e la direcció

Más detalles

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores Capíulo Iroducció a la Elecróica de oecia. Iroducció a la Elecróica de oecia. Clasificació de los Coeridores Como su ombre lo idica su fució es coerir ua fuee de ua esió y frecuecia dada a ora de diferees

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

Introducción al control moderno

Introducción al control moderno Igeiería e Cotrol y Automatizació Itroducció al cotrol modero Ecuacioes e variables de Estado TEORÍA DEL CONTROL III 5 de agosto de 5 Autor: M. e C. Rubé Velázquez Cuevas Escuela Superior de Igeiería Mecáica

Más detalles

EXAMEN FINAL DE METODOS NUMERICOS (MB536)

EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 7- FACULTAD DE INGENIERIA MECANICA //7 EXAMEN FINAL DE METODOS NUMERICOS (MB36) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA CIENTIFICA ESCRIBA

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO Igeiería de iema Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO 3. Repuea Temporal de Siema e Tiempo Coiuo Sea u iema coiuo cuya repuea y( ) ae ua erada u ( ) e objeo de eudio, repreeado

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Control y Robótica. Laboratorio de Señales y Sistemas

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Control y Robótica. Laboratorio de Señales y Sistemas Facula e Igeiería Divisió e Igeiería Elécrica Deparameo e Corol y Robóica Laboraorio e Señales y Sisemas P R A C T I C A Respuesa e Sisemas Lieales Ivariaes e el Tiempo SLIT Noviembre e 06 C O N T E N

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

Identificación de Sistemas

Identificación de Sistemas Idetificació de Sistemas Estimació de Míimos Cuadrados Autor: Dr. Jua Carlos Gómez Estimació de Míimos M Cuadrados para Estructura de Regresor Lieal Se asume que la relació etrada-salida puede ser descripta

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536)

EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 0- FACULTAD DE INGENIERIA MECANICA //0 DACIBACC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB6 SOLO SE PERMITE EL USO DE UNA OJA DE FORMULARIO Y CALCULADORA ESCRIBA

Más detalles

Curvas MOISES VILLENA

Curvas MOISES VILLENA 6 6.1. 6.. 6.. 6.4. 6.1. FUNCIÓN VECTORIAL DE UNA VARIABLE REAL 6.1.1 DOMINIO 6.1. LIMITE 6.1. CONTINUIDAD 6.. TRAYECTORIA (CAMINO) 6.. GRAFICA. DEFINICIÓN 6.4. TRAZA 6.5. CURVA 6.6. DERIVADA 6.7. CONCEPTOS

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 8 7 - - - - - Méodos Numéricos - Cap 7 cuacioes Diereciales Ordiarias PVI 8 cuacioes Diereciales Ordiarias DO Ua cuació Dierecial es aquella ecuació que coiee diereciales o derivadas de ua o más ucioes

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O MATEMÁTICAS BÁSICAS X+J?..~±~b' -4.c ~±.Jb' -4.c 1. {a si a > O ( Recordar que -. 4a - =. ) a 4a a - a SI a < O Así que, si b - 4ac ~ O hay solamete dos raíces e R de la ecuació ax + bx + c = O, a saber,

Más detalles

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 6 LM - PM. Valores y Vectores propios. Unidad 6 1. FCEyT - UNSE

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 6 LM - PM. Valores y Vectores propios. Unidad 6 1. FCEyT - UNSE Álgera II (LM-PM) - Álgera Lieal (Igs.) - F.C.E. T.- UNSE ÁLGEBRA LINEAL Igeierías ÁLGEBRA II LM - PM Uidad Nº 6 Valores Vecores propios. FCET - UNSE Uidad 6 Uidad Nº6: VALORES Y VECTORES PROPIOS.- VALORES

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES

Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES Capítulo II ASPECTOS GENERALES DE LAS ECUACIONES DIFERENCIALES.1 ECUACIÓN DIFERENCIAL: Es ua ecuació que cotiee derivadas o difereciales. Ejemplo 1: Las siguietes expresioes costituye ecuacioes difereciales:

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL OSCILACIONES AMORTIGUADAS. PENDULO DE POHL.- INTRODUCCION TEÓRICA El Pédulo de Pohl de la figura permie esudiar las oscilacioes libres, amoriguadas y forzadas de baja frecuecia producidas mediae u pédulo

Más detalles

Ecuaciones diferenciales ordinarias: Problemas de valor inicial

Ecuaciones diferenciales ordinarias: Problemas de valor inicial Tiulació: Asigaura: Auor: Igeiero Geólogo Aálisis Numérico César Meédez Ulima acualizació: 6/0/00 Ecuacioes difereciales ordiarias: Problemas de valor iicial Plaificació: Maeriales: Coocimieos previos:

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Régimen transitorio. Respuesta a funciones elementales

Régimen transitorio. Respuesta a funciones elementales Régie rasiorio Vibració Trasioria: Desaparece co el paso el iepo, pero puee ser iporae e respuesa a fuerzas o perióicas (golpes, explosioes...). Respuesa a fucioes eleeales c () x ució escaló ució rapa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS 3º E.S.O. PROGRESIONES ARITMÉTICAS (a + a ) RECUERDA: E ua progresió aritmética: a a + ( )d, S ) Escribe el térmio geeral de las siguietes progresioes aritméticas: a) a -3, d 5; b) a 3, d ; c) a 5, d )

Más detalles

APÉNDICE: ANÁLISIS DE REGRESIÓN

APÉNDICE: ANÁLISIS DE REGRESIÓN Fud. Físicos de la Iformáica / Fud. Tecológicos de los Compuadores APÉDICE: AÁLISIS DE REGRESIÓ ITRODUCCIÓ El aálisis de regresió es ua herramiea esadísica que permie hacer u ajuse de daos eperimeales

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad Ciéica Química Objeivos Esudiar la velocidad de las reaccioes químicas los facores de los cuales depede la velocidad los mecaismos a ravés de los cuales ocurre las reaccioes que se esudia plicacioes Síesis

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

Apuntes Sistemas Lineales Dinámicos

Apuntes Sistemas Lineales Dinámicos Uiversidad de Cocepció Faculad de Igeiería Depo. de Igeiería Elécrica Apues Sisemas Lieales Diámicos - 543 4 4 Posició y fuerza ormalizada 5 5 5 3 35 4 5 ava edició Prof. José R. Espioza C. Daiel G. Sbárbaro

Más detalles

PROPUESTA A. b ) Coordenadas de los máximos y mínimos relativos de f(x). dx. b )

PROPUESTA A. b ) Coordenadas de los máximos y mínimos relativos de f(x). dx. b ) ES CSTELR DJOZ Eame Juio de (Geeral) Euciado oio Megiao Corbacho PRUE DE CCESO (LOGSE) UNVERSDD DE CSTLL L MNCH JUNO (GENERL) MTEMÁTCS Tiempo máimo: horas miuos Elija ua de las dos opcioes, o, coese a

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

TEORÍA DEL CONTROL III

TEORÍA DEL CONTROL III Igeiería e Cotrol y Atomatizació Formas caóicas Trasformació de similitd TEORÍA DEL CONTROL III 5 de agosto de 5 Ator: M. e C. Rbé Velázqez Cevas Escela Sperior de Igeiería Mecáica y Eléctrica Formas caóicas

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Ecuaciones Diferenciales Ordinarias (No Lineales)

Ecuaciones Diferenciales Ordinarias (No Lineales) Uiversidad de Chile Departameto de Igeiería Matemática Ecuacioes Difereciales Ordiarias (No Lieales) θ L m MA-33A Cálculo Numérico Gozalo Herádez Oliva GHO EDO - MA-33A Ecuacioes Difereciales Ordiarias:

Más detalles

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física MAEMÁICAS Posgrado e Naoecología Dr. Robero Pedro Duare Zamorao 16 Deparameo de Física EMARIO. Series de Fourier 1. Iroducció.. Desarrollo de Fourier. 3. Expasioes de Fourier de medio rago. Iroducció.

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

5. 2. PROBLEMAS NO HOMOGÉNEOS.

5. 2. PROBLEMAS NO HOMOGÉNEOS. 5 PROBEMAS NO HOMOGÉNEOS UNIVERSIDAD DE CONCEPCIÓN 5 PROBEMAS DE DIFUSIÓN NO HOMOGENEOS a o homogeeidad puede darse ao e la EDP como e las CC Si las CC so o homogéeas, eoces o podemos cosruir u SS Nuesro

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

03) Rapidez de Cambio. 0301) Cambio

03) Rapidez de Cambio. 0301) Cambio Págia 1 03) Rapidez de Cambio 0301) Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Págia 2 A) Iroducció Uo de los aspecos más desacables de la auraleza es su carácer variable. La Tierra y odos

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS.

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. UNIDAD Nº 3 ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. 3.- Iroducció. Como se vio e los emas aeriores, el primer paso para aalizar u sisema de corol es obeer el modelo maemáico del mismo. Ua vez

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

parciales de segundo orden.

parciales de segundo orden. MMII_L_c: Irodcció a las ecacioes e derivadas parciales de segdo orde. Gió: E esa lecció esableceremos las propiedades geerales de las ecacioes e derivadas parciales de segdo orde, qe lego va a ser esdiadas

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

APROXIMACIÓN DE FILTROS CAPÍTULO 2

APROXIMACIÓN DE FILTROS CAPÍTULO 2 APROXIMACIÓN DE FILTROS CAPÍTULO . Aproximacioes de Filtros E el capítulo se mecioaro los filtros ideales, e la realidad o se puede lograr ua aproximació ideal, por lo que los filtros reales sólo puede

Más detalles

Material didáctico. Bibliografía básica. Aula global

Material didáctico. Bibliografía básica.   Aula global Fracisco J. Gozález, UC3M Maerial didácico Bibliografía básica Señales y Sisemas Ala V. Oppeheim, Ala S. Willsky, S. Hamid Nawab, ª edició (998) Preice Hall; ISBN: 97897764 Circuios Elécricos, James W.

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

3.2. Teoremas de Dini

3.2. Teoremas de Dini 3.2. TEOREMAS DE DINI 63 3.2. Teoremas de Dii Defiició 3.11. Sea X u espacio métrico y {f } ua sucesió e C(X). Decimos que la sucesió {f } es moótoa e si para todo x X se cumple f (x) f +1 (x), 1, o bie

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN FCULTS DE INGENIERÍ PÁGIN: 5-1 de 16 INTRODUCCIÓN El esudio de las aceleracioes e los mecaismos ariculados coplaares se puede abordar ya sea por méodos aalíicos o por méodos gráficos. Ese capíulo se deermiará

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

{ a 1, a 2,..., a } n. Cualquier vector n

{ a 1, a 2,..., a } n. Cualquier vector n Deparameo de Aálss Ecoómco UNIVERSIDAD DE ZARAGOZA Tema 3: Formas cuadrácas reales Para odo el ema, se cosdera e R u ssema de refereca (o base) dado { a 1, a 2,..., a }. Cualquer vecor x R se escrbe de

Más detalles

LEY FINANCIERA DE CAPITALIZACIÓN COMPUESTA. TEORÍA

LEY FINANCIERA DE CAPITALIZACIÓN COMPUESTA. TEORÍA LEY FINANIERA DE APITALIZAIÓN OMPUESTA. TEORÍA Profesor: Jua Aoio Gozález Díaz Dearameo Méodos uaiaivos Uiversidad Pablo de Olavide www.clasesuiversiarias.com LEY FINANIERA DE APITALIZAIÓN OMPUESTA E el

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

LECCIÓN 10 DISPOSITIVOS EMISORES DE MICROONDAS (DISPOSITIVOS GUNN)

LECCIÓN 10 DISPOSITIVOS EMISORES DE MICROONDAS (DISPOSITIVOS GUNN) LIÓN 0 ISPOSITIVOS MISOS MIOONAS (ISPOSITIVOS GUNN) )INTOUIÓN Ya hemos viso e la lecció 6 u disposiivo PN (el diodo úel) co ua caracerísica I(V) que iee ua zoa de resisecia diferecial egaiva. icha zoa

Más detalles

f x dx F b F a f x dx F x C f, g f x g x dx g x

f x dx F b F a f x dx F x C f, g f x g x dx g x Tarea. Equatio Chapter Sectio Resuelta. Idica qué tipo de aplicació matemática (fució, operador, fucioal) es cada uo de los siguietes: Respuestas a. Ua itegral defiida b a f d F b F a Toma ua fució y arroja

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

Simulación de sistemas continuos y a tramos

Simulación de sistemas continuos y a tramos Simulació de sisemas coiuos a ramos Uiversidad Nacioal Eperimeal oliécica de la Fuerza Armada Miguel Rodríguez Celi mirodriguez@usb.ve Modelos e el Espacio del Esado Los modelos diámicos co parámeros cocerados

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA GESTIÓN BOLETÍN DE PROBLEMAS CÁLCULO INFINITESIMAL CURSO 00- Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3, 3 4, 3 4 5, c),,

Más detalles

VII. Sistemas con múltiples grados de libertad

VII. Sistemas con múltiples grados de libertad VII. Sistemas co múltiples Objetivos: 1. Describir que es u sistema de múltiples grados de libertar. 2. Aplicar la seguda ley de Newto y las ecuacioes de Lagrage para derivar las ecuacioes de movimieto.

Más detalles