Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138"

Transcripción

1 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales coceptos que compoe la DIGONLIZCIÓN de matrices, vamos a mostrar alguas fucioes de DERIVE, útiles e este cotexto. lguas de ellas está predefiidas y otras se cotiee e el fichero de utilidades VECTOR.MTH. () Fucioes predefiidas e DERIVE. Sea ua matriz cuadrada: DET() calcula el determiate de la matriz. TRCE() calcula la traza de la matriz cuadrada. CHRPOLY() calcula el poliomio característico de la matriz. EIGENVLUES() calcula los autovalores de la matriz. (B) Fucioes del programa de utilidades VECTOR.MTH RNK() calcula el rago de la matriz. EXCT_EIGENVECTOR(,v) calcula los autovectores asociados al autovalor v de la matriz. PPROX_EIGENVECTOR(,v) calcula los autovectores asociados al autovalor v de la matriz. EJEMPLO.. Dada la matriz de cada uo de ellos. 2 calcular sus autovalores y el orde de multiplicidad Solució E primer lugar defiimos e DERIVE la matriz dada editado co o bie co Editar(utor)-Expresio la expresió a:[[,-,],[-,2,-],[,-,]] y se obtiee cotiuació calculamos sus autovectores directamete a través de la fució EIGENVLUES. Editado y simplificado la fució se obtiee Otro método, cosiste e calcular su poliomio característico mediate la fució

2 Diagoalizació. utovalores y autovectores. 9 y a cotiuació aplicar el comado Resolver-Expresió-(forma algebraica) la ecuació característica, (e este caso basta aplicar el comado resolver sobre la expresió aterior, ya que DERIVE sobreetiede que la ecuació a resolver es dicha expresió igualada a cero), y de esta forma obteemos que: Obsérvese que DERIVE, por defecto, toma como variable para el poliomio característico w. Si embargo es posible defiir el poliomio característico utilizado la expresió que le defie mediate que al simplificar co se obtiee EJEMPLO.2. Calcular los autovectores asociados a los autovalores de la matriz del ejemplo aterior. Solució Para calcular los autovectores asociados a los autovalores obteidos e el ejemplo aterior podemos utilizar dos procedimietos: ) Resolver u sistema de ecuacioes a través de ROW_REDUCE. - utovectores asociados al autovalor w. Los autovectores e este caso surge de resolver el sistema ( * I ) v es decir, so las solucioes de u sistema homogéeo cuya matriz de coeficietes es (-*I ). Para resolver este sistema basta aplicar ROW_REDUCE a dicha matriz y obtedremos la matriz de coeficietes de u sistema triagular equivalete. Por tato editado y simplificado la expresió resulta Luego el subespacio de autovectores asociado al autovalor es el cojuto de vectores (x,y,z) tales que xzy, que está geerado por el autovector (,,).

3 Prácticas de Matemáticas I y Matemáticas II co DERIVE utovectores asociados al autovalor w Utilizado el mismo razoamieto que e el apartado aterior, e este caso editado y simplificado obteemos por los tato los autovectores asociados al autovalor w so aquellos ( x, y, z) R tales que x-z,y, por tato el subespacio asociado al autovalor w está geerado por (-,,). - utovectores asociados al autovalores w E este caso efectuado Luego el subespacio de autovectores asociado al autovalor es V ( λ ) {( x, y, z) R / x z, y 2z} que está geerado por el vector (,-2,). uque e este caso hemos resuelto el sistema usado la fució ROW_REDUCE, podríamos haber utilizado la fució SOLVE o bie la secuecia de comados Resolver- Sistemas de ecuacioes. 2) plicar la fució EXCT_EIGENVECTOR(,w) (Para utilizar esta fució debemos teer el fichero de utilidades VECTOR.MTH). - Cálculo de V ( λ ). Editado y simplificado obteemos como resultado u úico vector paramétrico (el parámetro es decir, V ( λ ) L{(,, )}. - Cálculo de V ( λ 2 ). Editado y simplificado resulta es decir, V ( λ 2 ) L{(,, )}.

4 Diagoalizació. utovalores y autovectores. 4 - Cálculo de V ( λ ). Editado y simplificado resulta es decir, V ( λ ) L{(, 2,)}..2. DIGONLIZCION DE MTRICES. Recordemos brevemete alguos resultados teóricos: Ua matriz cuadrada es diagoalizable, por defiició, si es semejate a ua matriz diagoal D, es decir, existe ua matriz regular P, llamada matriz de paso, tal que P D P La codició ecesaria y suficiete para que ua matriz sea diagoalizable e R es que los autovalores sea reales y la multiplicidad de cada autovalor λ sea igual a la dimesió del subespacio propio asociado a λ. Si u autovalor tiee multiplicidad m, etoces la dimesió del subespacio de autovectores (llamado tambié subespacio propio) es meor o igual que m. Si ua matriz de orde es diagoalizable, y obteemos ua base B de cada subespacio de autovectores V ( λ i ). Etoces la matriz de paso P, se costruye colocado e columa las coordeadas de los vectores propios que forma la base de cada subespacio. partir de estas ideas fudametales para el estudio de este tópico, vamos a platear alguos ejemplos de problemas típicos de DIGONLIZCIÓN. EJEMPLO.. Dada la matriz cuadrada Se pide: (a) Determiar si es diagoalizable.. E caso afirmativo obteer su matriz diagoal semejate D y la matriz de paso P y comprobar que se verifica P.D.P -. Solució (b) Utilizado la diagoalizació aterior, diagoalizar 2 y -. Defiimos la matriz, mediate el comado Editar (utor)

5 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 42 (a) Para comprobar si la matriz es diagoalizable, vamos a estudiar sus autovalores editado y simplificado la expresió (b) Observamos que co este procedimieto o obteemos la multiplicidad de los autovalores. Para ello, lo que vamos hacer, es calcular el poliomio característico y a cotiuació lo vamos a factorizar. sí pues, editado la expresió al simplificar se obtiee que al factorizar co el comado Simplificar-Factorizar-Racioal se obtiee Por lo tato las multiplicidades de los autovalores λ -2 y λ 2 2 so y respectivamete, es decir, om(λ -2), y om(λ 2 2). Vamos a estudiar ahora la dimesió de los subespacios de autovectores asociados a cada autovalor (previamete cargamos el fichero VECTOR.MTH mediate la secuecia rchivo-leer-utilidades). Calculamos e primer lugar el subespacio V ( λ 2). Para esto, de uevo editado y simplificado la expresió obteemos que el subespacio de autovectores asociado al autovalor λ -2 tiee dimesió uo que coicide co la multiplicidad del autovalor λ -2, es decir, V λ 2) L{(,,, )},dim( V ( λ 2)) om( λ 2). ( Calculamos e segudo lugar el subespacio V ( λ 2 2). La ecuacioes de este subespacio propio se obtiee editado y simplificado la expresió por tato se cocluye que

6 Diagoalizació. utovalores y autovectores. 4 V( λ 2) L{(,,,),(,,, ),(,,, )}, 2 dim( V( λ2 2)) om( λ2 2) y e cosecuecia la matriz es diagoalizable. Segú los cálculos que hemos obteido teemos que la matriz D es y que la matriz de paso P viee dada por: Fialmete comprobamos que P.D.P -, editado la expresió p.d.p^- (c) La diagoalizació de la matriz, resulta secilla, ua vez calculada la de puesto que.. P. D. P. P. D. P. P. D. P P. D. P Por tato la matriz diagoal D es semejate a la matriz. Editado y simplificado d^ obteemos permaeciedo ivariate su matriz de paso P. Por último calculado

7 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 44 y por otro lado podemos cocluir que hemos realizado bie el proceso. cotiuació pasamos a la diagoalizació de -. Para ello e primer lugar calculamos su iversa (que existe) y observamos que teiedo e cueta que ( P. D. P ) P. D. P podemos cocluir que la matriz diagoal semejate a - es y que la matriz de paso es la iversa de la aterior, es decir

8 Diagoalizació. utovalores y autovectores. 45 Se puede comprobar que efectivamete, se cumple la semejaza etre dichas matrices. EJEMPLO.4. Estudiar para qué valores de los parámetros dados, es diagoalizable la siguiete matriz: Solució tes de editar la matriz, vamos a liberar de valores a los parámetros a y b editado a: y b: hora sí podemos editar la matriz c de forma usual c(a, b):[[a,b,],[,,2],[,,2]] (obsérvese que editamos la matriz depediete de los parámetros a y b, ya que esto os puede resultar muy útil a la hora de cosiderar uos parámetros determiados) Sus autovalores se obtiee factorizado de forma racioal su poliomio característico, es decir editado y simplificado De dode obteemos que los autovalores de la matriz so wa, w2, w2. cotiuació pasamos a estudiar los distitos casos segú los valores de a : Si a, a 2 etoces tedremos tres autovalores distitos, por lo que la matriz C será diagoalizable.

9 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 46 Si a, teemos que estudiar úicamete la dimesió del subespacio V ( λ ). Este subespacio se obtiee editado y simplificado exact_eigevector(c(,b),) y resulta Obteemos que el subespacio propio está geerado por el vector (,,), es decir, tiee dimesió. Por tato e este caso C(, b) o es diagoalizable puesto que dim( V ( λ ) 2 om( λ ) Si a2, el estudio del subespacio V ( λ 2 2) se obtiee editado y simplificado exact_eigevector(c(2,b),2) y resulta Por tato e este caso C(2, b) tampoco es diagoalizable puesto que dim( V ( λ2 2) 2 om( λ2 2) EJEMPLO.5. Costruir ua matriz cuyos autovalores so: λ /2 co om(λ ) λ 2 co om(λ 2 )2 λ co om(λ ) y tal que V ( λ / 2) L{(,,,),(2,2,2,2)} V ( λ 2 ) L{(,,,),(,,,)} V ( λ ) L{(,,,),(,,,)} Solució. Lo primero que debemos determiar es si podemos costruir ua base de R 4 formada por los autovectores dados, ya que, e caso cotrario la matriz o sería diagoalizable. Para ello, elegimos ua base de cada subespacio. Es evidete que ua base para el primer subespacio lo forma el vector (,,,). Para el segudo subespacio, lo forma {(,,,),(,,,)}. Y para el tercero {(,,,)}. estos cuatro vectores forma ua base de R 4? Para comprobarlo, costruimos la matriz que tiee por columas cada uo de estos vectores editado Si calculamos su determiate

10 Diagoalizació. utovalores y autovectores. 47 Deducimos que los cuatro vectores so l.i., y por tato forma ua base de R 4. Como os da los autovalores, la matriz diagoal correspodiete a esta matriz P es Por tato, la matriz pedida verifica que es semejate a D por P, es decir se obtiee efectuado que al simplificar os da la matriz pedida EJERCICIO 5. Dadas las matrices / 5 4 / 5 / / 5 6 / 5 / 5, 2 / 5 2 / 5 / 4 2 B, 5 2 C 5 2 a) Hallar sus poliomios característicos. b) Determiar si so diagoalizables, y e ese caso hallar sus matrices de paso y diagoales. EJERCICIO 54.

11 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 48 La expoecial de ua matriz cuadrada se defie por...!... 2!! 2 I e Si la matriz es diagoalizable este cálculo se puede efectuar de forma secilla ya que..! ).. (! D P P e P D P e Utilizado este hecho, calcular la fució expoecial de la siguiete matriz 2 EJERCICIO 55. Estudiar para qué valores de los parámetros so diagoalizables las siguietes matrices: t h t B EJERCICIO 56. Dada la aplicació lieal ), 4,2 ( ),, ( z z y x z y x z y x f Se pide: (a) Determiar los subespacios vectoriales de R ivariates por f. (b) Es posible escribir R como suma directa de subespacios vectoriales ivariates por f? E caso afirmativo, obteer ua base B de R como uió de bases de dichos subespacios ivariates y hallar la matriz asociada a la aplicació lieal f respecto a esta base B.

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización Tema 2. Espacios vectoriales, aplicacioes lieales, diagoalizació Asigatura: Matemáticas I Grado e Igeiería Electróica Idustrial Uiversidad de Graada Prof. Rafael López Camio Uiversidad de Graada 3 de septiembre

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

4.4 Sistemas mal condicionados

4.4 Sistemas mal condicionados 7 4.4 Sistemas mal codicioados l resolver u sistema de ecuacioes lieales usado u método directo, es ecesario aalizar si el resultado calculado es cofiable. E esta secció se estudia el caso especial de

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Cálculo de ceros de funciones

Cálculo de ceros de funciones Cálculo de ceros de fucioes El objetivo de la presete secció es el de resolver la ecuació f(x) = 0, siedo f ua fució cotiua, co ua precisió prefijada. Geeralmete esta precisió se medirá por medio del error

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación

Se utilizan los datos puntuales de altura de precipitación o intensidades máximas de lluvia registradas en una estación .. Tormetas putuales Aspectos geerales Se utiliza los datos putuales de altura de precipitació o itesidades máximas de lluvia registradas e ua estació So válidas para áreas cuya extesió este defiida por

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II

CALCULO DIFERENCIAL E INTEGRAL II CALCULO DIFERENCIAL E INTEGRAL II TEMA 5 (Última modificació 8-7-015) TEOREMA DEL VALOR MEDIO TEOREMA DEL VALOR MEDIO O DE LAGRANGE O DE LOS INCREMENTOS FINITOS PARA FUNCIONES DE UNA VARIABLE INDEPENDIENTE.

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

************************************************************************ *

************************************************************************ * 1.- Ua barra de secció circular, de 5 mm de diámetro, está sometida a ua fuerza de tracció de 5 kg, que se supoe distribuida uiformemete e la secció. partir de la defiició de vector tesió, determiar sus

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

3 LÍMITE Ejercicios Resueltos

3 LÍMITE Ejercicios Resueltos LÍMITE Ejercicios Resueltos Límites Determiados a) 6 6 6 c) π π se π b) ( ) cos cos e) 0 π + + d) 0 f) e 0 + 5 5 g) 4 64 Idetermiació (0/0) Fucioes Racioales Factorear y Simplificar ( + ) + 6. a). ( ).

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 200 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U establecimieto poe a la veta tres tipos de camisas A, B y C. Se sabe que la razó etre los

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles