Práctica 3 Sucesiones y series
|
|
|
- Natividad Peña Ayala
- hace 9 años
- Vistas:
Transcripción
1 Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la mayoría de los casos, calcular el límite de ua sucesió y la suma de ua serie, respectivamete. Asimismo el programa Mathematica os facilita el estudio de sucesioes recurretes..- Sucesioes de úmeros reales Ejemplo 3. Estudiar la sucesió de térmio geeral Defiimos la sucesió a =. + Geeramos ua tabla co los 0 primeros térmios de la sucesió Los visualizamos gráficamete Tambié podemos hallar u térmio cualquiera de la sucesió:
2 Gráficamete se observa que la sucesió es decreciete ( a > ), acotada ( 0 a < ) y que + a < lim a = 0. Veamos como podemos estudiar estos aspectos co Mathematica. Crecimieto: El programa o os da iformació sobre si la desigualdad plateada es cierta. Esto es debido, etre otras cosas, a que el programa o recooce a la variable como u úmero atural. La siguiete istrucció resuelve este problema. Acotació: Límite: Tambié podemos utilizar el símbolo (véase la paleta BasicIput) para deotar el ifiito e lugar de Ifiity. Tambié podemos utilizar variables como subídices. De esta forma, la sucesió aterior podría defiirse como Esto os permite utilizar la misma termiología que habitualmete usamos e Matemáticas. Ejemplo 3. Calcular el límite de la sucesió de térmio geeral c = + 3 Defiimos la sucesió
3 Calculamos su límite Como podemos comprobar, e este ejemplo, Mathematica o es capaz de calcular el límite de determiadas expresioes. Esto suele depeder de la versió del programa que estemos utilizado. Si embargo, podemos ampliar el repertorio de expresioes para las cuales el programa puede calcular el valor del límite cargado el paquete Calculus`Limit`. Dicho paquete debería cargarse previamete siempre que ecesitemos calcular límites de sucesioes y/o de fucioes. Ejemplo 3.3 Calcular el límite de la sucesió de térmio geeral Defiimos la sucesió d = ( ) + Calculamos su límite Mathematica o puede calcular el límite de la sucesió. E este caso es debido a que se trata de ua sucesió oscilate que tiee dos subsucesioes co distito límite (por tato, la sucesió o es covergete). Estudiemos la sucesió de térmios pares: Observemos que Mathematica o idetifica (-) =, esto se debe a que, como hemos cometado ateriormete, el programa o recooce a la variable como u úmero atural. Para ello debemos utilizar la istrucció: Ahora tambié podemos calcular su límite
4 Estudiemos ahora la sucesió de térmios impares: La sucesió {d } admite dos parciales que tiee distito límite. Por tato la sucesió es oscilate..- Sucesioes recurretes Ejemplo 3.4 Estudiar la sucesió recurrete dada por x =, x = + x, N Defiimos la sucesió Ahora podemos determiar cualquier térmio de la sucesió O u valor aproximado Visualizar gráficamete los térmios de la sucesió
5 Gráficamete se observa que la sucesió es estrictamete creciete ( x x acotada ( 0 < x < ) y, por tato, será covergete. < + ) y está Si tratamos de calcular el límite de la sucesió {x } mediate la istrucció Limit el programa queda imerso e u proceso recursivo ifiito y o es capaz de daros el valor del límite. E estos casos, para calcular el límite de la sucesió hemos de seguir el procedimieto seguido e clase. Si llamamos L al límite de la sucesió, etoces deberá cumplirse que L = + L. Ahora podemos pedirle a Mathematica que os resuelva esta ecuació. Ejemplo 3.5 Estudiar la sucesió de Fiboacci dada por x =, x =, x = x + x + +, N Defiimos la sucesió Calculamos alguos térmios Se trata de ua sucesió estrictamete creciete ( x < x + ) y o está acotada, por lo que será divergete. Esto puede comprobarse fácilmete si represetamos gráficamete los térmios de la sucesió.
6 .- Series de úmeros reales Ejemplo 3.6 Probar que la serie es covergete. Calcular su suma Defiimos el térmio geeral de la serie Se trata de ua serie de térmios positivos. Para estudiar su covergecia procedemos como sigue. Codició ecesaria de covergecia La serie puede ser covergete. Criterio del cociete Estamos ate u caso dudoso. Para resolverlo aplicamos el criterio de Raabe. Criterio de Raabe Como el límite obteido es mayor que la serie es covergete. Calculamos su suma. Mathematica puede calcula el valor exacto de la suma de diferetes tipos de series mediate la istrucció Sum Tambié podemos utilizar el símbolo que figura e la paleta BasicImput.
7 Ejemplo 3.7 Probar que la serie sumas parciales. Defiimos el térmio geeral de la serie es covergete. Calcular su suma a partir de la sucesió de Se trata de ua serie de térmios positivos. Codició ecesaria de covergecia La serie puede ser covergete. Criterio del cociete Como el límite es meor que la serie es covergete. Sucesió de sumas parciales. Mathematica os facilita, e este caso, ua expresió explícita para el térmio geeral de la sucesió {S } de sumas parciales. Ahora podemos calcular el valor de la suma de la serie estudiado el límite de la sucesió {S }. Suma de la serie El valor de la suma tambié podría haberse obteido directamete:
8 Ejemplo 3.8 Probar que la serie (log ) es covergete. Calcular su suma. Defiimos el térmio geeral de la serie Se trata de ua serie de térmios positivos. Codició ecesaria de covergecia La serie puede ser covergete. Criterio de la raíz Como el límite es meor que la serie es covergete. Sucesió de sumas parciales. E este caso, Mathematica o ha sido capaz de daros ua expresió explícita para el térmio geeral de la sucesió {S } de sumas parciales. Suma de la serie El programa Mathematica tampoco ha podido daros el valor exacto de la suma. Si embargo, podemos pedirle que os de u valor aproximado usado el comado N.
9 Tambié podemos pedirle que os dé el valor de la suma co ua cierta precisió. Si bie el comado N puede serviros, e la mayoría de los casos, para obteer u valor aproximado de la suma de ua serie, el programa Mathematica icorpora dos istruccioes específicas para este propósito: NSum y EulerSum. La istrucció NSum os da u valor aproximado de la serie co ua precisió de 6 dígitos. Por su parte la istrucció EulerSum o forma parte del repertorio básico de istruccioes dispoibles e el úcleo del programa Mathematica. Para poder utilizar esta istrucció hay que cargar el paquete NumericalMath`Nlimit`. La istrucció EulerSum utiliza algoritmos matemáticos más complejos para calcular la suma de la serie y, e la mayoría de los casos, el resultado obteido es bastate más fiable. Opera co bastate eficiecia, por ejemplo, cuado se trata de sumar series del tipo p ( ) r dode p() es u poliomio y 0<r< y cuado se trata de sumar series alteradas. Ejemplo 3.9 Calcular u valor aproximado de la suma de las siguietes series: a) ( 3 + ) b) = ( ) = c) = + 3.! a) Defiimos el térmio geeral de la serie y calculamos u valor aproximado de la suma b) Defiimos el térmio geeral de la serie y calculamos u valor aproximado de la suma
10 c) Defiimos el térmio geeral de la serie y calculamos u valor aproximado de la suma Auque hemos utilizado la istrucció EulerSum, e los tres casos ateriores podríamos haber obteido u valor aproximado de la suma de la serie utilizado tambié la istrucció NSum o el comado N[ ]. Tambié, e cualquiera de los tres casos, Mathematica os facilita el valor exacto de la suma. 3.- Ejercicios propuestos.- Dada la sucesió de térmio geeral a = 3. Se pide: 4 a) escribir los 0 primeros térmios y represetarlos gráficamete, b) estudiar el crecimieto y la acotació, c) calcular el límite..- Probar que la sucesió de térmio geeral b = cos( π ) es oscilate, estudiado las subsucesioes {b } y {b - }. 3.- Obteer la suma de: a) los primeros úmeros aturales b) los primeros úmeros impares. 4.- Probar que lim L+ ( ) + = + 3
11 5.- Estudiar la sucesió recurrete dada por x = a, x+ = + x, N, para los valores de a =, a = y a = Probar que las siguietes series so covergetes. Calcular el valor de la suma o, e su caso, u valor aproximado. ( ) a) b) = = c) 3 =!. 7.- Comprobar que la serie es hipergeométrica. Calcular su suma: (4 )(4 + 3) a) utilizado la fórmula para sumar ua serie hipergeométrica b) directamete co el programa Mathematica π 8.- Probar que la serie ( ) se es covergete. Hallar el valor de su suma o, e su caso, u valor aproximado.
Práctica 1.- Sucesiones y series
Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría
Práctica 1.- Sucesiones y series
Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría
Series alternadas Introducción
Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia
Hoja de Problemas Tema 3. (Sucesiones y series)
Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar
Series de números reales
Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió
Sucesiones de números reales
Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :
EJERCICIOS DE SERIES DE FUNCIONES
EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:
TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García
TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E
Sucesiones y series de números reales
38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,
Sucesiones de números reales
Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54
4. Sucesiones de números reales
4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...
S7: Series numéricas II
Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.
R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de
Problemas de Sucesiones
Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]
Análisis Matemático IV
Aálisis Matemático IV Relació 4. Ejercicios resueltos Ejercicio : Estudiar la covergecia putual y uiforme de las siguietes series fucioales e los cojutos que se idica (i) Σ x =! e x e [0, ] Primero, estudiamos
Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n.
Sucesioes Tema 8.- Sucesioes y Límites Cojuto de úmeros dispuestos uo a cotiuació de otro: a, a, a 3,..., a Operacioes a =a, a, a 3,..., a b =b, b, b 3,..., b Suma Diferecia (a )+(b )=(a +b )= a +b, a
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
3.8. Ejercicios resueltos
3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
Cálculo de límites Criterio de Stolz. Tema 8
Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que
Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:
Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.
INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R
P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III
( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7
LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.
Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7
Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}
1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente
FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 3 1. a) Mostrar que los siguietes cojutos
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad
Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El
valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.
(Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
Sucesiones. Límite de una
Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua
TEMA IV. 1. Series Numéricas
TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios
SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)
Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:
TRABAJO DE GRUPO Series de potencias
DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre
SUCESIONES Y SERIES DE FUNCIONES
CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes
METODO DE ITERACION DE NEWTON
METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura
Sucesiones de números reales Sucesiones convergentes: límite de una sucesión
Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica
La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,
Series infinitas de números reales. Series convergentes
Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas
1. Serie de Potencias
. Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada
1. SUCESIONES Y SERIES
1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?
Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.
Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,
Tema 5 Series numéricas
Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular
Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.
CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió
Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n
Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias
CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.
CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió
1) Considera el sistema de ecuaciones:
SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de
1. Sucesiones y series numéricas
ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero
ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los
Departamento de Matemáticas
MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la
Tema 8 Límite de Funciones. Continuidad
Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)
El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.
Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
Series de términos no negativos
Tema 0 Series de térmios o egativos Vamos a presetar aquí alguos criterios útiles para estudiar la covergecia de series de térmios o egativos. Empezamos co u método básico que cosiste e comparar la serie
Curso: 3 E.M. ALGEBRA 8
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
Convergencia absoluta y series alternadas
Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales
Tema 4 Sucesiones numéricas
Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular
(finitas o infinitas)
Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.
Matemáticas Especiales. Sucesiones y Series. R. Rossignoli Universidad Nacional de La Plata
Matemáticas Especiales (Física Médica) Sucesioes y Series R. Rossigoli Uiversidad Nacioal de La Plata 5. Sucesioes Ua sucesió es u cojuto de úmeros reales a, a,..., a,... () dode a está defiido para todo
TALLER DE MATEMÁTICAS DESIGUALDADES
TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto
Construcción de los números reales.
B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x
EJERCICIOS DE RECURRENCIA
EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla
L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2
Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los
8. SUCESIONES Y SERIES NUMÉRICAS DEFINICIÓN Y EJEMPLOS SUCESIÓN CONVERGENTE TEOREMAS Y EJEMPLOS
ÍNDICE 8. SUCESIONES Y SERIES NUMÉRICAS 6 8.. DEFINICIÓN Y EJEMPLOS......................... 6 8.. SUCESIÓN CONVERGENTE........................ 6 8.3. TEOREMAS Y EJEMPLOS......................... 63 8.4.
SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA
